SUBGROUPS OF QUANTUM GROUPS, THE **CENTER AND INNER AUTOMORPHISMS**

NON-COMMUTATIVE WORKSHOP

KRAKÓW

Piotr M. Soltan (joint work with P. Kasprzak & A. Skalski)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

September 24, 2015

P.M. SOLTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

200 September 24, 2015

1 / 12

PLAN OF TALK

LOCALLY COMPACT QUANTUM GROUPS

- 2 QUANTUM SUBGROUPS
- THE CENTER
- QUANTUM GROUP OF INNER AUTOMORPHISMS
- THE EXACT SEQUENCE 5

Sac

P.M. SOLTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

SEPTEMBER 24, 2015

3 / 12

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

• a von Neumann algebra $L^{\infty}(\mathbb{G})$,

Sac

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,

200

イロト イポト イヨト イヨト 二日

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object G for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- ${\rm \circ}\,$ weights φ,ψ on $L^\infty({\mathbb G})$ with a certain invariance property.

EXAMPLE (1)

< = > < = >

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (1)

• Let *G* be a locally compact group

コト・モート

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (1)

• Let *G* be a locally compact group,

•
$$L^{\infty}(\mathbb{G}) = L^{\infty}(G)$$
,

< = > < = >

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (1)

• Let *G* be a locally compact group,

$$\begin{array}{l} {}^{\scriptstyle \succ} \ L^{\infty}(\mathbb{G}) = L^{\infty}(G), \\ {}^{\scriptstyle \succ} \ \text{for} \ f \in L^{\infty}(\mathbb{G}) \ \text{define} \ \Delta(f) \in L^{\infty}(\mathbb{G}) \ \bar{\otimes} \ L^{\infty}(\mathbb{G}) = L^{\infty}(G \times G): \end{array}$$

$$\Delta(f)(x,y) = f(xy), \qquad x, y \in G,$$

P.M. SOŁTAN (WARSAW)

1211121

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (1)

• Let *G* be a locally compact group,

 $\begin{array}{l} {}^{\scriptstyle } L^\infty(\mathbb{G})=L^\infty(G),\\ {}^{\scriptstyle } \text{ for } f\in L^\infty(\mathbb{G}) \text{ define } \Delta(f)\in L^\infty(\mathbb{G})\,\bar{\otimes}\,\,L^\infty(\mathbb{G})=L^\infty(G\times G): \end{array}$

$$\Delta(f)(x,y) = f(xy), \qquad x, y \in G,$$

 $\blacktriangleright \varphi$ and ψ are given by integration w.r.t. left and right Haar measures.

P.M. SOŁTAN (WARSAW)

イロト イボト イヨト イヨト ニヨ

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (2)

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (2)

 $\bullet~({\rm A},\Delta)$ be a compact quantum group (à la Woronowicz) with Haar state φ_0

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (2)

• (A, $\Delta)$ be a compact quantum group (à la Woronowicz) with Haar state $\varphi_0,$

•
$$L^{\infty}(\mathbb{G}) = \mathsf{A}''$$
 with $A \subset \mathsf{B}(\mathcal{H})$ and $\mathcal{H} = L^2(\mathsf{A}, \varphi_0)$

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (2)

• (A, $\Delta)$ be a compact quantum group (à la Woronowicz) with Haar state $\varphi_0,$

$$L^{\infty}(\mathbb{G}) = \mathsf{A}'' \text{ with } A \subset \mathsf{B}(\mathcal{H}) \text{ and } \mathcal{H} = L^2(\mathsf{A},\varphi_0) \ \left(=L^2(\mathbb{G})\right),$$

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object \mathbb{G} for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (2)

- (A, $\Delta)$ be a compact quantum group (à la Woronowicz) with Haar state $\varphi_0,$
 - $\vdash L^{\infty}(\mathbb{G}) = \mathsf{A}'' \text{ with } A \subset \mathsf{B}(\mathcal{H}) \text{ and } \mathcal{H} = L^2(\mathsf{A}, \varphi_0) \ (= L^2(\mathbb{G})),$
 - extend $\Delta \colon \mathsf{A} \to \mathsf{A} \otimes \mathsf{A}$ to a map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$,

DEFINITION (INFORMAL)

A **locally compact quantum group** is an object G for which we have the following:

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- $\Delta: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$ with $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- weights φ, ψ on $L^{\infty}(\mathbb{G})$ with a certain invariance property.

EXAMPLE (2)

- (A, Δ) be a compact quantum group (à la Woronowicz) with Haar state φ_0 ,
 - ▶ $L^{\infty}(\mathbb{G}) = \mathsf{A}''$ with $A \subset \mathsf{B}(\mathcal{H})$ and $\mathcal{H} = L^2(\mathsf{A}, \varphi_0)$ $(= L^2(\mathbb{G}))$,
 - extend $\Delta: A \to A \otimes A$ to a map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\bar{\mathbb{G}})$,
 - extend φ_0 to a state φ on $L^{\infty}(\mathbb{G})$, put $\psi = \varphi$.

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

September 24, 2015

4 / 12

DUALITY Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$.

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

୬ < ୍ର 4 / 12

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

when G happens to be classical and abelian (G = G for some l.c.a. group G)

Sac

- ロト - 4 日 ト - 4 日 ト - 日 ト

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

when G happens to be classical and abelian (G = G for some l.c.a. group G) then G coincides with G,

Sac

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when G happens to be classical and abelian (G = G for some l.c.a. group G) then G coincides with G,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset B(L^2(\mathbb{G}))$,

SOG

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when G happens to be classical and abelian (G = G for some l.c.a. group G) then G coincides with G,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset B(L^2(\mathbb{G}))$,
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that

SOG

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when G happens to be classical and abelian (G = G for some l.c.a. group G) then G coincides with G,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset B(L^2(\mathbb{G}))$,
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $\bullet \ L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\omega \otimes \operatorname{id})(W) \, \big| \, \omega \in \mathrm{B}(L^{2}(\mathbb{G}))_{*} \big\},$

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when G happens to be classical and abelian (G = G for some l.c.a. group G) then G coincides with G,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset B(L^2(\mathbb{G}))$,
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $\blacktriangleright \ L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\omega \otimes \operatorname{id})(W) \, \Big| \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\},$
 - $\blacktriangleright \ L^{\infty}(\widehat{\mathbb{G}}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\operatorname{id} \otimes \omega)(W) \, \Big| \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\},$

Each l.c.q.g. \mathbb{G} has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when G happens to be classical and abelian (G = G for some l.c.a. group G) then G coincides with G,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset B(L^2(\mathbb{G}))$,
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $\blacktriangleright \ L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\omega \otimes \operatorname{id})(W) \, \Big| \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\},$
 - $\blacktriangleright \ L^{\infty}(\widehat{\mathbb{G}}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\operatorname{id} \otimes \omega)(W) \, \Big| \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\},$
 - $\blacktriangleright\,$ comultiplications $\Delta_{\mathbb{G}}$ and $\Delta_{\widehat{\mathbb{G}}}$ are implemented by W

Each l.c.q.g. G has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when \mathbb{G} happens to be classical and abelian ($\mathbb{G} = G$ for some l.c.a. group G) then $\widehat{\mathbb{G}}$ coincides with \widehat{G} ,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset \mathrm{B}(L^{2}(\mathbb{G})),$
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \{ (\omega \otimes \operatorname{id})(W) | \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \},\$
 - $L^{\infty}(\widehat{\mathbb{G}}) = \overline{\operatorname{span}}^{\mathrm{w}} \{ (\operatorname{id} \otimes \omega)(W) \mid \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \},\$
 - comultiplications $\Delta_{\mathbb{G}}$ and $\Delta_{\widehat{\mathbb{G}}}$ are implemented by *W*:

$$\Delta_{\mathbb{G}}(\mathbf{x}) = \mathbf{W}(\mathbf{x} \otimes \mathbb{1})\mathbf{W}^*, \qquad \mathbf{x} \in L^{\infty}(\mathbb{G}),$$

Each l.c.q.g. G has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when \mathbb{G} happens to be classical and abelian ($\mathbb{G} = G$ for some l.c.a. group G) then $\widehat{\mathbb{G}}$ coincides with \widehat{G} ,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset \mathrm{B}(L^{2}(\mathbb{G})),$
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \{ (\omega \otimes \operatorname{id})(W) | \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \},\$
 - $L^{\infty}(\widehat{\mathbb{G}}) = \overline{\operatorname{span}}^{\mathrm{w}} \{ (\operatorname{id} \otimes \omega)(W) \mid \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \},\$
 - comultiplications $\Delta_{\mathbb{G}}$ and $\Delta_{\widehat{\mathbb{G}}}$ are implemented by *W*:

$$egin{aligned} &\Delta_{\mathbb{G}}(x) = W(x\otimes \mathbb{1})W^*, & x\in L^{\infty}(\mathbb{G}), \ &\Delta_{\widehat{\mathbb{G}}}(y) = \pmb{\sigma}ig(W^*(\mathbb{1}\otimes y)Wig), & y\in L^{\infty}(\widehat{\mathbb{G}}), \end{aligned}$$

Each l.c.q.g. G has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb{G}}$. We have:

- when \mathbb{G} happens to be classical and abelian ($\mathbb{G} = G$ for some l.c.a. group G) then $\widehat{\mathbb{G}}$ coincides with \widehat{G} ,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset \mathrm{B}(L^{2}(\mathbb{G})),$
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \{ (\omega \otimes \operatorname{id})(W) | \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \},\$
 - $L^{\infty}(\widehat{\mathbb{G}}) = \overline{\operatorname{span}}^{w} \{ (\operatorname{id} \otimes \omega)(W) \mid \omega \in B(L^{2}(\mathbb{G}))_{*} \},\$
 - comultiplications $\Delta_{\mathbb{G}}$ and $\Delta_{\widehat{\mathbb{G}}}$ are implemented by *W*:

$$egin{aligned} &\Delta_{\mathbb{G}}(m{x}) = W(m{x}\otimes \mathbb{1})W^*, & m{x}\in L^\infty(\mathbb{G}), \ &\Delta_{\widehat{\mathbb{G}}}(m{y}) = m{\sigma}ig(W^*(\mathbb{1}\otimes m{y})Wig), & m{y}\in L^\infty(\widehat{\mathbb{G}}), \end{aligned}$$

where σ is the flip map $a \otimes b \mapsto b \otimes a$,

Each l.c.q.g. $\mathbb G$ has its **Pontriagin dual** locally compact quantum group $\widehat{\mathbb G}.$ We have:

- when G happens to be classical and abelian (G = G for some l.c.a. group G) then Ĝ coincides with Ĝ,
- $L^2(\widehat{\mathbb{G}})$ can be naturally identified with $L^2(\mathbb{G})$, so $L^{\infty}(\widehat{\mathbb{G}}) \subset B(L^2(\mathbb{G}))$,
- there is a unitary $W \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{G})$ such that
 - $\blacktriangleright \ L^{\infty}(\mathbb{G}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\omega \otimes \operatorname{id})(W) \, \Big| \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\},$
 - $\blacktriangleright \ L^{\infty}(\widehat{\mathbb{G}}) = \overline{\operatorname{span}}^{\mathrm{w}} \big\{ (\operatorname{id} \otimes \omega)(W) \, \Big| \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\},$
 - ► comultiplications $\Delta_{\mathbb{G}}$ and $\Delta_{\widehat{\mathbb{G}}}$ are implemented by *W*:

$$egin{aligned} &\Delta_{\mathbb{G}}(m{x}) = W(m{x}\otimes \mathbb{1})W^*, & m{x}\in L^\infty(\mathbb{G}), \ &\Delta_{\widehat{\mathbb{G}}}(m{y}) = m{\sigma}ig(W^*(\mathbb{1}\otimes m{y})Wig), & m{y}\in L^\infty(\widehat{\mathbb{G}}), \end{aligned}$$

where σ is the flip map $a \otimes b \mapsto b \otimes a$,

• the dual $\hat{\widehat{\mathbb{G}}}$ of $\hat{\mathbb{G}}$ is naturally isomorphic to \mathbb{G} .

P.M. SOŁTAN (WARSAW)

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ E 990 September 24, 2015

5/12

• A l.c.q.g. \mathbb{G} has an **antipode** S which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$

• A l.c.q.g. \mathbb{G} has an **antipode** *S* which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$

• A l.c.q.g. \mathbb{G} has an **antipode** *S* which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

 $S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$

• A l.c.q.g. G has an **antipode** S which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$
• A l.c.q.g. G has an **antipode** S which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$

where

• *R* is a *-anti-automorphism of $L^{\infty}(\mathbb{G})$

5/12

• A l.c.q.g. \mathbb{G} has an **antipode** *S* which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$

where

▶ *R* is a *-anti-automorphism of $L^{\infty}(\mathbb{G})$ (**unitary antipode**),

• A l.c.q.g. \mathbb{G} has an **antipode** *S* which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$

where

- ▶ *R* is a *-anti-automorphism of $L^{\infty}(\mathbb{G})$ (**unitary antipode**),
- $\tau_{i/2}$ is the analytic continuation to t = i/2 of a one parameter group $(\tau_t)_{t \in \mathbb{R}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that $\tau_t \circ R = R \circ \tau_t$ for all t

• A l.c.q.g. G has an **antipode** S which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$

where

- ▶ *R* is a *-anti-automorphism of $L^{\infty}(\mathbb{G})$ (**unitary antipode**),
- $\tau_{i/2}$ is the analytic continuation to t = i/2 of a one parameter group $(\tau_t)_{t\in\mathbb{R}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that $\tau_t \circ R = R \circ \tau_t$ for all *t* (scaling group).

• A l.c.q.g. \mathbb{G} has an **antipode** *S* which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$

where

- ▶ *R* is a *-anti-automorphism of $L^{\infty}(\mathbb{G})$ (**unitary antipode**),
- $\tau_{i/2}$ is the analytic continuation to t = i/2 of a one parameter group $(\tau_t)_{t \in \mathbb{R}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that $\tau_t \circ R = R \circ \tau_t$ for all t (scaling group).

Moreover

• for all *t* we have $\Delta_{\mathbb{G}} \circ \tau_t = (\tau_t \otimes \tau_t) \circ \Delta_{\mathbb{G}}$,

P.M. SOŁTAN (WARSAW)

• A l.c.q.g. \mathbb{G} has an **antipode** *S* which is a densely defined map $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ roughly characterized by the fact that for all $\omega \in B(L^2(\mathbb{G}))_*$ we have $(\omega \otimes id)(W) \in D(S)$ and

$$S((\omega \otimes id)(W)) = (\omega \otimes id)(W^*).$$

• The antipode has the following unique decomposition:

$$S = R \circ \tau_{i/2},$$

where

- ▶ *R* is a *-anti-automorphism of $L^{\infty}(\mathbb{G})$ (unitary antipode),
- $\tau_{i/2}$ is the analytic continuation to t = i/2 of a one parameter group $(\tau_t)_{t \in \mathbb{R}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that $\tau_t \circ R = R \circ \tau_t$ for all t (scaling group).

Moreover

- for all *t* we have $\Delta_{\mathbb{G}} \circ \tau_t = (\tau_t \otimes \tau_t) \circ \Delta_{\mathbb{G}}$,
- $\Delta_{\mathbb{G}} \circ R = \sigma \circ (R \otimes R) \circ \Delta_{\mathbb{G}}.$

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ▷ < □ □ < □ □ < □ □ < □ □ <

୬ < ୍ର 6 / 12

In non-commutative setting we often work by "reversing the arrows", so one expects a quantum subgroup ℍ of a quantum group G to be described by a surjection on the level of algebras of "functions" L[∞](G) and L[∞](ℍ).

Sac

- ロト - 4 日 ト - 4 日 ト - 日 ト

In non-commutative setting we often work by "reversing the arrows", so one expects a quantum subgroup ℍ of a quantum group G to be described by a surjection on the level of algebras of "functions" L[∞](G) and L[∞](ℍ). This works partially on the level of C*-algebras.

Sac

イロト イロト イヨト イヨト 三日

- In non-commutative setting we often work by "reversing the arrows", so one expects a quantum subgroup \mathbb{H} of a quantum group \mathbb{G} to be described by a surjection on the level of algebras of "functions" $L^{\infty}(\mathbb{G})$ and $L^{\infty}(\mathbb{H})$. This works partially on the level of C*-algebras.
- On the level of von Neumann algebras the subgroup might be "invisible" (measure zero), so the restriction mapping on functions might fail to exist.

- In non-commutative setting we often work by "reversing the arrows", so one expects a quantum subgroup ℍ of a quantum group G to be described by a surjection on the level of algebras of "functions" L[∞](G) and L[∞](ℍ). This works partially on the level of C*-algebras.
- On the level of von Neumann algebras the subgroup might be "invisible" (measure zero), so the restriction mapping on functions might fail to exist.

DEFINITION

A l.c.q.g \mathbb{H} is a **quantum subgroup** of a l.c.q.g. \mathbb{G} if there is a normal unital *-homomorphism $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$

- In non-commutative setting we often work by "reversing the arrows", so one expects a quantum subgroup ℍ of a quantum group G to be described by a surjection on the level of algebras of "functions" L[∞](G) and L[∞](ℍ). This works partially on the level of C*-algebras.
- On the level of von Neumann algebras the subgroup might be "invisible" (measure zero), so the restriction mapping on functions might fail to exist.

DEFINITION

A l.c.q.g \mathbb{H} is a **quantum subgroup** of a l.c.q.g. \mathbb{G} if there is a normal unital *-homomorphism $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$ such that

$$\Delta_{\widehat{\mathbb{H}}} \circ \gamma = (\gamma \otimes \gamma) \circ \Delta_{\widehat{\mathbb{G}}}.$$

P.M. SOŁTAN (WARSAW)

- In non-commutative setting we often work by "reversing the arrows", so one expects a quantum subgroup ℍ of a quantum group G to be described by a surjection on the level of algebras of "functions" L[∞](G) and L[∞](ℍ). This works partially on the level of C*-algebras.
- On the level of von Neumann algebras the subgroup might be "invisible" (measure zero), so the restriction mapping on functions might fail to exist.

DEFINITION

A l.c.q.g \mathbb{H} is a **quantum subgroup** of a l.c.q.g. \mathbb{G} if there is a normal unital *-homomorphism $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$ such that

$$\Delta_{\widehat{\mathbb{H}}} \circ \gamma = (\gamma \otimes \gamma) \circ \Delta_{\widehat{\mathbb{G}}}.$$

• The image of γ as above is $R^{\widehat{\mathbb{G}}}$ and $\tau^{\widehat{\mathbb{G}}}$ -invariant.

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ E IQC September 24, 2015

7 / 12

BAAJ-VAES THEOREM

• A von Neumann subalgebra $N \subset L^\infty(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if

3

990

イロト イポト イヨト

- A von Neumann subalgebra $N \subset L^{\infty}(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if
 - ► $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \, \bar{\otimes} \, \mathsf{N}$,

Sac

(日)

- A von Neumann subalgebra $N \subset L^{\infty}(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N}$,

•
$$R^{\mathbb{G}}(\mathsf{N}) = \mathsf{N},$$

Sac

(日)

- A von Neumann subalgebra $N \subset L^{\infty}(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N},$
 - $R^{\mathbb{G}}(\mathbb{N}) = \mathbb{N}$,
 - for all *t* we have $\tau_t^{\mathbb{G}}(\mathsf{N}) = \mathsf{N}$.

SOG

(日)

- A von Neumann subalgebra $N \subset L^\infty(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N}$,
 - $R^{\mathbb{G}}(\mathsf{N}) = \mathsf{N},$
 - for all *t* we have $\tau_t^{\mathbb{G}}(\mathsf{N}) = \mathsf{N}$.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of \mathbb{G} and Baaj-Vaes subalgebras of $L^{\infty}(\widehat{\mathbb{G}})$.

イロト イロト イヨト イヨト 三日

- A von Neumann subalgebra $N \subset L^{\infty}(\mathbb{G})$ is called a Baaj-Vaes subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N},$
 - ► $R^{\mathbb{G}}(\mathbb{N}) = \mathbb{N}$.
 - for all t we have $\tau_t^{\mathbb{G}}(\mathsf{N}) = \mathsf{N}$.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of \mathbb{G} and Baaj-Vaes subalgebras of $L^{\infty}(\widehat{\mathbb{G}})$.

• Given a quantum subgroup \mathbb{H} of \mathbb{G} the corresponding Baaj-Vaes subalgebra is $\mathsf{N} = \gamma(L^{\infty}(\widehat{\mathbb{H}})) \subset L^{\infty}(\widehat{\mathbb{G}}).$

7 / 12

- A von Neumann subalgebra $N \subset L^{\infty}(\mathbb{G})$ is called a Baaj-Vaes subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N},$
 - ► $R^{\mathbb{G}}(\mathbb{N}) = \mathbb{N}$.
 - for all t we have $\tau_t^{\mathbb{G}}(\mathsf{N}) = \mathsf{N}$.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of \mathbb{G} and Baaj-Vaes subalgebras of $L^{\infty}(\widehat{\mathbb{G}})$.

- Given a quantum subgroup \mathbb{H} of \mathbb{G} the corresponding Baaj-Vaes subalgebra is $\mathsf{N} = \gamma(L^{\infty}(\widehat{\mathbb{H}})) \subset L^{\infty}(\widehat{\mathbb{G}}).$
- For any Baaj-Vaes subalgebra $M \subset L^{\infty}(\mathbb{G})$ there exists a l.c.q.g. \mathbb{K} such that $L^{\infty}(\mathbb{K}) \cong M$.

- A von Neumann subalgebra $N \subset L^\infty(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N}$,
 - $R^{\mathbb{G}}(\mathsf{N}) = \mathsf{N},$
 - for all *t* we have $\tau_t^{\mathbb{G}}(\mathsf{N}) = \mathsf{N}$.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of \mathbb{G} and Baaj-Vaes subalgebras of $L^{\infty}(\widehat{\mathbb{G}})$.

- Given a quantum subgroup \mathbb{H} of \mathbb{G} the corresponding Baaj-Vaes subalgebra is $\mathsf{N} = \gamma \left(L^{\infty}(\widehat{\mathbb{H}}) \right) \subset L^{\infty}(\widehat{\mathbb{G}}).$
- For any Baaj-Vaes subalgebra M ⊂ L[∞](G) there exists a l.c.q.g. K such that L[∞](K) ≅ M. It is the dual of the subgroup corresponding to M.

September 24, 2015

- A von Neumann subalgebra $N \subset L^\infty(\mathbb{G})$ is called a **Baaj-Vaes** subalgebra if
 - $\Delta_{\mathbb{G}}(\mathsf{N}) \subset \mathsf{N} \,\bar{\otimes} \,\mathsf{N},$
 - $R^{\mathbb{G}}(\mathsf{N}) = \mathsf{N},$
 - for all *t* we have $\tau_t^{\mathbb{G}}(\mathsf{N}) = \mathsf{N}$.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of \mathbb{G} and Baaj-Vaes subalgebras of $L^{\infty}(\widehat{\mathbb{G}})$.

- Given a quantum subgroup \mathbb{H} of \mathbb{G} the corresponding Baaj-Vaes subalgebra is $\mathsf{N} = \gamma \left(L^{\infty}(\widehat{\mathbb{H}}) \right) \subset L^{\infty}(\widehat{\mathbb{G}}).$
- For any Baaj-Vaes subalgebra M ⊂ L[∞](G) there exists a l.c.q.g. K such that L[∞](K) ≅ M. It is the dual of the subgroup corresponding to M.
- The relative commutant $N' \cap L^{\infty}(\mathbb{G})$ plays the role of the algebra $L^{\infty}(\mathbb{G}/\mathbb{H})$.

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ヨ わくゆ September 24, 2015

8 / 12

THEOREM

Let \mathbb{G} be a locally compact quantum group. Then the set of Baaj-Vaes subalgebras N contained in the center of $L^{\infty}(\widehat{\mathbb{G}})$ has the largest element.

SEPTEMBER 24, 2015 8 / 12

THEOREM

Let \mathbb{G} be a locally compact quantum group. Then the set of Baaj-Vaes subalgebras N contained in the center of $L^{\infty}(\widehat{\mathbb{G}})$ has the largest element.

DEFINITION

The center $\mathscr{Z}(\mathbb{G})$ of a locally compact quantum group \mathbb{G} is defined as the quantum subgroup corresponding to the largest central Baaj-Vaes subalgebra of $L^{\infty}(\widehat{\mathbb{G}})$.

P.M. SOŁTAN (WARSAW)

SUBGROUPS OF QUANTUM GROUPS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ヨ わくゆ September 24, 2015

9/12

• If $\mathbb{G} = G$ (with *G* a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.

イロト イポト イヨト

1

- If $\mathbb{G} = G$ (with G a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any $\mathbb G$ the quantum group $\mathscr Z(\mathbb G)$ is abelian

- If $\mathbb{G} = G$ (with G a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any G the quantum group 𝔅(G) is **abelian** (in other words co-commutative: Δ_{𝔅(G)} = σ ∘ Δ_{𝔅(G)}).

- If $\mathbb{G} = G$ (with *G* a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any \mathbb{G} the quantum group $\mathscr{Z}(\mathbb{G})$ is **abelian** (in other words co-commutative: $\Delta_{\mathscr{Z}(\mathbb{G})} = \boldsymbol{\sigma} \circ \Delta_{\mathscr{Z}(\mathbb{G})}$).
- If \mathbb{G} is abelian then $\mathscr{Z}(\mathbb{G}) = \mathbb{G}$.

- If $\mathbb{G} = G$ (with *G* a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any \mathbb{G} the quantum group $\mathscr{Z}(\mathbb{G})$ is **abelian** (in other words co-commutative: $\Delta_{\mathscr{Z}(\mathbb{G})} = \boldsymbol{\sigma} \circ \Delta_{\mathscr{Z}(\mathbb{G})}$).
- If \mathbb{G} is abelian then $\mathscr{Z}(\mathbb{G}) = \mathbb{G}$.
- $\mathscr{Z}(\mathbb{G})$ has an appropriate universal property w.r.t. so called **central subgroups** of \mathbb{G} (its description is beyond the scope of this talk).

- If $\mathbb{G} = G$ (with G a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any G the quantum group 𝔅(G) is **abelian** (in other words co-commutative: Δ_{𝔅(G)} = σ ∘ Δ_{𝔅(G)}).
- If \mathbb{G} is abelian then $\mathscr{Z}(\mathbb{G}) = \mathbb{G}$.
- $\mathscr{Z}(\mathbb{G})$ has an appropriate universal property w.r.t. so called **central subgroups** of \mathbb{G} (its description is beyond the scope of this talk).
- For a l.c.q.g. G equipped with a 2-cocycle Ω on G the center of the Rieffel deformation G^Ω of G is the same as Z(G).

- If $\mathbb{G} = G$ (with G a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any G the quantum group 𝔅(G) is **abelian** (in other words co-commutative: Δ_{𝔅(G)} = σ ∘ Δ_{𝔅(G)}).
- If \mathbb{G} is abelian then $\mathscr{Z}(\mathbb{G}) = \mathbb{G}$.
- $\mathscr{Z}(\mathbb{G})$ has an appropriate universal property w.r.t. so called **central subgroups** of \mathbb{G} (its description is beyond the scope of this talk).
- For a l.c.q.g. G equipped with a 2-cocycle Ω on G the center of the Rieffel deformation G^Ω of G is the same as *L*(G).
- $\mathscr{Z}(\mathrm{SU}_q(2)) = \mathbb{Z}_2.$

- If $\mathbb{G} = G$ (with G a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any G the quantum group 𝔅(G) is **abelian** (in other words co-commutative: Δ_{𝔅(G)} = σ ∘ Δ_{𝔅(G)}).
- If \mathbb{G} is abelian then $\mathscr{Z}(\mathbb{G}) = \mathbb{G}$.
- $\mathscr{Z}(\mathbb{G})$ has an appropriate universal property w.r.t. so called **central subgroups** of \mathbb{G} (its description is beyond the scope of this talk).
- For a l.c.q.g. G equipped with a 2-cocycle Ω on G the center of the Rieffel deformation G^Ω of G is the same as *L*(G).
- $\mathscr{Z}(\mathrm{SU}_q(2)) = \mathbb{Z}_2.$
- For \mathbb{G} the quantum "az + b" or the quantum "ax + b" group we have $\mathscr{Z}(\mathbb{G}) = \{e\}$.

- If $\mathbb{G} = G$ (with G a classical group) then $\mathscr{Z}(\mathbb{G})$ coincides with the center of G.
- For any G the quantum group 𝔅(G) is **abelian** (in other words co-commutative: Δ_{𝔅(G)} = σ ∘ Δ_{𝔅(G)}).
- If \mathbb{G} is abelian then $\mathscr{Z}(\mathbb{G}) = \mathbb{G}$.
- $\mathscr{Z}(\mathbb{G})$ has an appropriate universal property w.r.t. so called **central subgroups** of \mathbb{G} (its description is beyond the scope of this talk).
- For a l.c.q.g. G equipped with a 2-cocycle Ω on G the center of the Rieffel deformation G^Ω of G is the same as *L*(G).
- $\mathscr{Z}(\mathrm{SU}_q(2)) = \mathbb{Z}_2.$
- For G the quantum "az + b" or the quantum "ax + b" group we have 𝔅(G) = {e}.
- For a compact semisimple simply connected Lie group G the dual \widehat{G}_q of the **Drinfeld deformation** G_q (0 < q < 1) has trivial center.
P.M. Soltan (Warsaw)
 Subgroups of Quantum Groups
 September 24, 2015
 10 / 12

THEOREM

Let $\mathbb G$ be a locally compact quantum group and let $M\subset L^\infty(\mathbb G)$ be the subalgebra generated by

 $\{(\omega \otimes \mathrm{id})(W(x \otimes 1)W^*) | x \in L^{\infty}(\widehat{\mathbb{G}}), \ \omega \in \mathrm{B}(L^2(\mathbb{G}))_*\}.$

SEPTEMBER 24, 2015

10 / 12

THEOREM

Let $\mathbb G$ be a locally compact quantum group and let $M\subset L^\infty(\mathbb G)$ be the subalgebra generated by

 $\big\{(\omega \otimes \mathrm{id})(W(x \otimes 1)W^*) \, \big| \, x \in L^{\infty}(\widehat{\mathbb{G}}), \, \omega \in \mathrm{B}(L^2(\mathbb{G}))_* \big\}.$

Then M is a Baaj-Vaes subalgebra.

SEPTEMBER 24, 2015

THEOREM

Let $\mathbb G$ be a locally compact quantum group and let $M\subset L^\infty(\mathbb G)$ be the subalgebra generated by

 $\big\{(\omega\otimes \mathrm{id})(W(x\otimes \mathbb{1})W^*)\,\Big|\,x\in L^\infty(\widehat{\mathbb{G}}),\ \omega\in \mathrm{B}(L^2(\mathbb{G}))_*\big\}.$

Then M is a Baaj-Vaes subalgebra.

DEFINITION

We define the locally compact quantum group $Inn(\mathbb{G})$ by setting

$$L^{\infty}(\operatorname{Inn}(\mathbb{G})) = \mathsf{M} \text{ and } \Delta_{\operatorname{Inn}(\mathbb{G})} = \Delta_{\mathbb{G}}|_{\mathsf{M}}$$

P.M. SOLTAN (WARSAW)

イロト イポト イヨト イヨト

THEOREM

Let \mathbb{G} be a locally compact quantum group and let $\mathsf{M} \subset L^{\infty}(\mathbb{G})$ be the subalgebra generated by

{ $(\omega \otimes \mathrm{id})(W(x \otimes \mathbb{1})W^*) | x \in L^{\infty}(\widehat{\mathbb{G}}), \omega \in \mathrm{B}(L^2(\mathbb{G}))_*$ }.

Then M is a Baaj-Vaes subalgebra.

DEFINITION

We define the locally compact quantum group $Inn(\mathbb{G})$ by setting

$$L^{\infty}(\operatorname{Inn}(\mathbb{G})) = \mathsf{M} \text{ and } \Delta_{\operatorname{Inn}(\mathbb{G})} = \Delta_{\mathbb{G}}|_{\mathsf{M}}$$

and call $Inn(\mathbb{G})$ the quantum group of inner automorphisms of G.

P.M. SOLTAN (WARSAW)

イロト イポト イヨト イヨト

• For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .

Image: A match a ma

200

- For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(\mathbb{G}) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

Image: A matrix and a matrix

- \bullet For classical $\mathbb G$ the quantum group $Inn(\mathbb G)$ is the classical group of inner automorphisms of $\mathbb G.$
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(\mathbb{G}) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

THEOREM

Let \mathbb{H} be a quantum subgroup of \mathbb{G} with $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$. Then the following are equivalent:

- \bullet For classical $\mathbb G$ the quantum group $Inn(\mathbb G)$ is the classical group of inner automorphisms of $\mathbb G.$
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(\mathbb{G}) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

THEOREM

Let \mathbb{H} be a quantum subgroup of \mathbb{G} with $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$. Then the following are equivalent:

(1) $\gamma(L^{\infty}(\widehat{\mathbb{H}}))$ is invariant under the action α ,

- For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(G) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

THEOREM

Let \mathbb{H} be a quantum subgroup of \mathbb{G} with $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$. Then the following are equivalent:

- **1** $\gamma(L^{\infty}(\widehat{\mathbb{H}}))$ is invariant under the action α ,

Sac

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(G) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

THEOREM

Let \mathbb{H} be a quantum subgroup of \mathbb{G} with $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$. Then the following are equivalent:

- **1** $\gamma(L^{\infty}(\widehat{\mathbb{H}}))$ is invariant under the action α ,
- 2 $L^{\infty}(\mathbb{G}/\mathbb{H})$ is a Baaj-Vaes subalgebra of $L^{\infty}(\mathbb{G})$ (*i.e.* \mathbb{G}/\mathbb{H} is a quantum group).

イロト イボト イヨト ニヨー

- For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(G) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

THEOREM

Let \mathbb{H} be a quantum subgroup of \mathbb{G} with $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$. Then the following are equivalent:

- (1) $\gamma(L^{\infty}(\widehat{\mathbb{H}}))$ is invariant under the action α ,
- 2 $L^{\infty}(\mathbb{G}/\mathbb{H})$ is a Baaj-Vaes subalgebra of $L^{\infty}(\mathbb{G})$ (*i.e.* \mathbb{G}/\mathbb{H} is a quantum group).

● Subgroups ℍ satisfying the above conditions are called **normal**.

P.M. SOŁTAN (WARSAW)

- For classical \mathbb{G} the quantum group $Inn(\mathbb{G})$ is the classical group of inner automorphisms of \mathbb{G} .
- $\operatorname{Inn}(\operatorname{SU}_q(2)) = \operatorname{SO}_q(3).$
- Inn(G) acts on $\widehat{\mathbb{G}}$ via $\alpha \colon L^{\infty}(\widehat{\mathbb{G}}) \to L^{\infty}(\operatorname{Inn}(\mathbb{G})) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$

$$oldsymbol{lpha}(y) = oldsymbol{\sigma}ig(W^*(y\otimes \mathbb{1})Wig), \qquad y\in L^\infty(\widehat{\mathbb{G}}).$$

THEOREM

Let \mathbb{H} be a quantum subgroup of \mathbb{G} with $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \hookrightarrow L^{\infty}(\widehat{\mathbb{G}})$. Then the following are equivalent:

- (1) $\gamma(L^{\infty}(\widehat{\mathbb{H}}))$ is invariant under the action α ,
- 2 L[∞](G/H) is a Baaj-Vaes subalgebra of L[∞](G) (i.e. G/H is a quantum group).

P.M. SOŁTAN (WARSAW)

Sar

 P.M. Soltan (Warsaw)
 Subgroups of Quantum Groups
 September 24, 2015
 12 / 12

THEOREM

Let \mathbb{G} be a locally compact quantum group.

イロト イポト イヨト イヨト

1

THEOREM

Let ${\mathbb G}$ be a locally compact quantum group. Then

(1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,

イロト イポト イヨト

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2) the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.

THEOREM

Let ${\mathbb G}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2 the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2 the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:
 - $\blacktriangleright \ \big\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \, \Delta_{\widehat{\mathbb{G}}}(y) \in \mathscr{Z}(L^\infty(\mathbb{G})) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \big\},$

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2) the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:
 - $\blacktriangleright \ \big\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \, \Delta_{\widehat{\mathbb{G}}}(y) \in \mathscr{Z}(L^\infty(\mathbb{G})) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \big\},$
 - $\blacktriangleright \ \left\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \, \Delta_{\widehat{\mathbb{G}}}(y) \in L^\infty(\mathbb{G}) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \right\},$

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2) the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:
 - $\blacktriangleright \ \big\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \Delta_{\widehat{\mathbb{G}}}(y) \in \mathscr{Z}(L^\infty(\mathbb{G})) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \big\},$
 - $\blacktriangleright \ \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \Delta_{\widehat{\mathbb{G}}}(y) \in L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, \mathscr{Z}(L^{\infty}(\mathbb{G})) \right\},$
 - $\blacktriangleright \ L^{\infty}(\widehat{\mathscr{Z}(\mathbb{G})})$

- コット (雪) (雪) (日)

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2) the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:
 - $\blacktriangleright \ \left\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \, \Delta_{\widehat{\mathbb{G}}}(y) \in \mathscr{Z}(L^\infty(\mathbb{G})) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \right\},$
 - $\bullet \ \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \Delta_{\widehat{\mathbb{G}}}(y) \in L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, \mathscr{Z}(L^{\infty}(\mathbb{G})) \right\},$
 - ► $L^{\infty}(\widehat{\mathscr{Z}(\mathbb{G})})$ (←this is the largest central Baaj-Vaes subalgebra of $L^{\infty}(\widehat{\mathbb{G}})$).

Sac

12 / 12

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2) the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:
 - $\blacktriangleright \ \left\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \, \Delta_{\widehat{\mathbb{G}}}(y) \in \mathscr{Z}(L^\infty(\mathbb{G})) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \right\},$
 - $\bullet \ \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \Delta_{\widehat{\mathbb{G}}}(y) \in L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, \mathscr{Z}(L^{\infty}(\mathbb{G})) \right\},$
 - L[∞](*I*(G)) (←this is the largest central Baaj-Vaes subalgebra of L[∞](G)).
 - In particular this gives a more concrete description of $\widehat{L^{\infty}(\mathscr{T}(\mathbb{G}))}$.

Sac

THEOREM

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group. Then

- (1) the quantum subgroup $\mathscr{Z}(\mathbb{G})$ of \mathbb{G} is normal,
- 2) the quotient quantum group $\mathbb{G}/\mathscr{Z}(\mathbb{G})$ coincides with $\text{Inn}(\mathbb{G})$.
 - The proof makes use of the fact that the following sets coincide:
 - $\blacktriangleright \ \big\{ y \in L^\infty(\widehat{\mathbb{G}}) \, \Big| \Delta_{\widehat{\mathbb{G}}}(y) \in \mathscr{Z}(L^\infty(\mathbb{G})) \, \bar{\otimes} \, \mathscr{Z}(L^\infty(\mathbb{G})) \big\},$
 - $\blacktriangleright \ \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \middle| \, \Delta_{\widehat{\mathbb{G}}}(y) \in L^{\infty}(\mathbb{G}) \, \bar{\otimes} \, \mathscr{Z}(L^{\infty}(\mathbb{G})) \right\},$
 - L[∞](*I*(G)) (←this is the largest central Baaj-Vaes subalgebra of L[∞](G)).
 - In particular this gives a more concrete description of $\widehat{L^{\infty}(\mathscr{D}(\mathbb{G}))}$.
 - The conclusion of the theorem above can be rephrased as

$$\{e\} \longrightarrow \mathscr{Z}(\mathbb{G}) \longrightarrow \mathbb{G} \longrightarrow \operatorname{Inn}(\mathbb{G}) \longrightarrow \{e\}.$$