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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),

o A: L®(G) — L®(G)® L®(G) with (id ® A)oA = (A ® id)oA,
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A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L*°(G) with a certain invariance property.
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DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (1)
o Let G be a locally compact group
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (1)

o Let G be a locally compact group,
L®(G) = L®(G),
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (1)

o Let G be a locally compact group,
L>®(G) = L*>=(G),
for f € L>°(G) define A(f) € L>®(G) ® L>®(G) = L*=(G x G):

ANy =fxy), xyeq,
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (1)

o Let G be a locally compact group,
L>®(G) = L*>=(G),
for f € L>°(G) define A(f) € L>®(G) ® L>®(G) = L*=(G x G):

ANy =fxy), xyeq,

v and 1 are given by integration w.r.t. left and right Haar
measures.
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (2)
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (2)

o (A, A) be a compact quantum group (a la Woronowicz) with
Haar state ¢g
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (2)

o (A, A) be a compact quantum group (a la Woronowicz) with
Haar state ¢,

L=(G) = A” with A C B() and H = L(A, @o)
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (2)

o (A, A) be a compact quantum group (a la Woronowicz) with
Haar state ¢,

L=(G) = A” with A ¢ B(H) and H = L*(A, o) (= L*(G)),
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (2)

o (A, A) be a compact quantum group (a la Woronowicz) with
Haar state ¢,

L>(G) = A” with A C B(H) and H = L%(A, ¢o) (= L*(G)),
extend A: A - A® Atoamap L®(G) —» L=(G)® L*(G),
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LOCALLY COMPACT QUANTUM GROUPS

DEFINITION (INFORMAL)

A locally compact quantum group is an object G for which we
have the following:

o a von Neumann algebra L>(G),
0 A: L®(G) —» L™(G)® L>®(G) with (id ® A)oA = (A ®id)oA,
o weights ¢, 1 on L>°(G) with a certain invariance property.

EXAMPLE (2)

o (A,A) be a compact quantum group (a la Woronowicz) with
Haar state ¢,
L=(G) = A” with A ¢ B(H) and H = L*(A, o) (= L*(G)),
extend A: A - A® Atoamap L®(G) —» L=(G)® L*(G),
extend ¢ to a state ¢ on L*°(G), put ¢ = .
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DUALITY
Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G.
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

o when G happens to be classical and abelian (G = G for
some l.c.a. group G)
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),

o there is a unitary W ¢ LOO(@) ® L*>°(G) such that
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Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),

o there is a unitary W € L>(G) ® L>®(G) such that
> L(G) = span™{(w @ id)(W)|w € B(L¥@)). }.
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),
o there is a unitary W € L>(G) ® L®(G) suc
» L*(G) = 5pan"{(w ® id)(W)|w € B(L%(G))
» L°(G) = span”{(id @ w)(W)|w € B(LX(G))
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),
o there is a unitary W ¢ L°°( )® ( ) such that
> L°(G) = Span{ (w @ id) (W) w D}
» L(G) = span*{(id ® w)( )‘ €B L2 )}
» comultiplications Ag and Az are 1mp1emented by W
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),
o there is a unitary W ¢ L°°( ) ® L>®(G) such that
» L>(G) = span"{(w ® id)(W) |w € B(L*(G)).},
» L(G) = span*{(id ® w)( W)|w € B(L*(G)).},
» comultiplications Ag and Az are 1mp1emented by W:

Ac(x) = W(x® 1)W*, x € L=(G),
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,
o L%(G) can be naturally identified with L2(G), so
L>(G) c B(L4(G)),
o there is a unitary W € L>(G) ® L>®(G) such that
> L*(C) = span”{ (w ®id>( W)|w € B(L2(G)). }.
» L°(G) = span”{(id ® w)(W)|w € B(LA(G)). },
» comultiplications Ag and Ag are implemented by W:

Ag(x) = W(x© 1)W*, x € L¥(G),
Ag(y) = o (W (1@ yW), ye L*(G),
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),

o there is a unitary W € L>(G) ® L>®(G) such that
> L=(G) = Spanw{(w®id)( W)|w € B(L*(G)). }.
» L°(G) = span”{(id ® w)(W)|w € B(LA(G)). },
» comultiplications Ag and Ag are implemented by W:
Ag(x) = W(x1)W*, x € L™(G),
Asy)=o(W(@ayWw).,  yeLG),

where o is the flip map a® b— b® a,
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DUALITY

Each l.c.q.g. G has its Pontriagin dual locally compact
quantum group G. We have:

© when G happens to be classical and abelian (G = G for
some l.c.a. group G) then G coincides with G,

o LZ(GA) can be naturally identified with L?(G), so
L=(G) C B(L%(G)),

o there is a unitary W € L>(G) ® L>®(G) such that

> L=(G) = Spanw{(w®id)( W)|w € B(L*(G)). }.

» L°(G) = span”{(id ® w)(W)|w € B(LA(G)). },

» comultiplications Ag and Ag are implemented by W:
Ag(x) = W(x1)W*, x € L™(G),
Asy)=o(W(@ayWw).,  yeLG),

where o is the flip map a® b— b® a,

o the dual G of G is naturally isomorphic to G.

P.M. SOLTAN (WARSAW) SUBGROUPS OF QUANTUM GROUPS SEPTEMBER 24, 2015

4/12



THE ANTIPODE

«O» «Fr «=>» - o



THE ANTIPODE

o Al.c.q.g. G has an antipode S which is a densely defined
map L>°(G) — L*(G)
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map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L?(G)), we have (w ®id)(W) € D(S) and
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map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L%(G)). we have (w ®id)(W) € D(S) and

S((w ®id)(W)) = (w®id)(W*).
o The antipode has the following unique decomposition:

S = ROTi/Za
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map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L%(G)). we have (w ®id)(W) € D(S) and

S((w ®id)(W)) = (w®id)(W*).
o The antipode has the following unique decomposition:
S = ROTi/Za

where
» Ris a x-anti-automorphism of L>*(G)
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THE ANTIPODE

o Al.c.q.g. G has an antipode S which is a densely defined
map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L%(G)). we have (w ®id)(W) € D(S) and

S((w ®id)(W)) = (w®id)(W*).
o The antipode has the following unique decomposition:
S = ROTi/Za

where
» Ris a x-anti-automorphism of L>°(G) (unitary antipode),
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THE ANTIPODE

o Al.c.q.g. G has an antipode S which is a densely defined
map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L%(G)). we have (w ®id)(W) € D(S) and

S((w ®id)(W)) = (w®id)(W*).
o The antipode has the following unique decomposition:
S = ROTi/Za

where

» Ris a x-anti-automorphism of L>°(G) (unitary antipode),

» 72 is the analytic continuation to ¢t = i/2 of a one parameter
group (7¢)ter of automorphisms of L>°(G) such that
7ioR = Ror; for all t
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THE ANTIPODE
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map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L%(G)). we have (w ®id)(W) € D(S) and

S((w ®id)(W)) = (w®id)(W*).
o The antipode has the following unique decomposition:
S = ROTi/Za

where

» Ris a x-anti-automorphism of L>°(G) (unitary antipode),

» 72 is the analytic continuation to ¢t = i/2 of a one parameter
group (7¢)ter of automorphisms of L>°(G) such that
TtoR = RoT; for all t (scaling group).
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THE ANTIPODE

o Al.c.q.g. G has an antipode S which is a densely defined
map L*°(G) — L*°(G) roughly characterized by the fact that
for all w € B(L%(G)). we have (w ®id)(W) € D(S) and

S((w ®id)(W)) = (w®id)(W*).
o The antipode has the following unique decomposition:
S = ROTi/Za

where
» Ris a x-anti-automorphism of L>°(G) (unitary antipode),
» 72 is the analytic continuation to ¢t = i/2 of a one parameter
group (7¢)ter of automorphisms of L>°(G) such that
TtoR = RoT; for all t (scaling group).
Moreover
» for all t we have Agort = (1 ® 7¢)0Ag,
» AgoR=00(R® R)oAg.
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QUANTUM SUBGROUPS

o In non-commutative setting we often work by “reversing the
arrows”, so one expects a quantum subgroup H of a
quantum group G to be described by a surjection on the
level of algebras of “functions” L*°(G) and L>(H).
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quantum group G to be described by a surjection on the
level of algebras of “functions” L*°(G) and L*°(H). This
works partially on the level of C*-algebras.

o On the level of von Neumann algebras the subgroup might
be “invisible” (measure zero), so the restriction mapping on
functions might fail to exist.
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o In non-commutative setting we often work by “reversing the
arrows”, so one expects a quantum subgroup H of a
quantum group G to be described by a surjection on the
level of algebras of “functions” L*°(G) and L*°(H). This
works partially on the level of C*-algebras.

o On the level of von Neumann algebras the subgroup might
be “invisible” (measure zero), so the restriction mapping on
functions might fail to exist.

DEFINITION
Alc.q.g H is a quantum subgroup of a l.c.q.g. G if there is a

~

normal unital x-homomorphism ~: L>®(H) — L>®(G)
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o In non-commutative setting we often work by “reversing the
arrows”, so one expects a quantum subgroup H of a
quantum group G to be described by a surjection on the
level of algebras of “functions” L*°(G) and L*°(H). This
works partially on the level of C*-algebras.

o On the level of von Neumann algebras the subgroup might
be “invisible” (measure zero), so the restriction mapping on
functions might fail to exist.

DEFINITION
Alc.q.g H is a quantum subgroup of a l.c.q.g. G if there is a

~

normal unital x-homomorphism v: L*(H) — L*°(G) such that

Agoy = (y®7)oAg.
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QUANTUM SUBGROUPS

o In non-commutative setting we often work by “reversing the
arrows”, so one expects a quantum subgroup H of a
quantum group G to be described by a surjection on the
level of algebras of “functions” L*°(G) and L*°(H). This
works partially on the level of C*-algebras.

o On the level of von Neumann algebras the subgroup might
be “invisible” (measure zero), so the restriction mapping on
functions might fail to exist.

DEFINITION
Alc.q.g H is a quantum subgroup of a l.c.q.g. G if there is a

~

normal unital x-homomorphism v: L*(H) — L*°(G) such that
Agoy = (y®7)oAg.

o The image of v as above is R® and 7®-invariant.
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o A von Neumann subalgebra N C L>°(G) is called a
Baaj-Vaes subalgebra if
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o A von Neumann subalgebra N C L>°(G) is called a
Baaj-Vaes subalgebra if
» Ag(N) C N®N,
» RE(N) =N,
» for all t we have 77¢(N) = N.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of G and
Baaj-Vaes subalgebras of L*=(G).
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» for all t we have 77¢(N) = N.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of G and
Baaj-Vaes subalgebras of L*=(G).

o Given a quantum subgroup H of G the corresponding
Baaj-Vaes subalgebra is N = 7 (L>(H)) ¢ L®(G).
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BAAJ-VAES THEOREM

o A von Neumann subalgebra N C L>°(G) is called a
Baaj-Vaes subalgebra if
» Ag(N) C N®N,
» RE(N) =N,
» for all t we have 77¢(N) = N.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of G and
Baaj-Vaes subalgebras of L*=(G).

o Given a quantum subgroup H of G the corresponding
Baaj-Vaes subalgebra is N = 7 (L>(H)) ¢ L®(G).

o For any Baaj-Vaes subalgebra M C L*°(G) there exists a
l.c.q.g. K such that L*(K) = M.
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Baaj-Vaes subalgebra if
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» for all t we have 77¢(N) = N.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of G and
Baaj-Vaes subalgebras of L*=(G).

o Given a quantum subgroup H of G the corresponding
Baaj-Vaes subalgebra is N = 7 (L>(H)) ¢ L®(G).

o For any Baaj-Vaes subalgebra M C L*°(G) there exists a

l.c.q.g. K such that L>*°(K) = M. It is the dual of the
subgroup corresponding to M.
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BAAJ-VAES THEOREM

o A von Neumann subalgebra N C L>°(G) is called a
Baaj-Vaes subalgebra if
» Ag(N) C N®N,
» RE(N) =N,
» for all t we have 77¢(N) = N.

THEOREM (BAAJ-VAES)

There is a bijection between quantum subgroups of G and
Baaj-Vaes subalgebras of L*=(G).

o Given a quantum subgroup H of G the corresponding
Baaj-Vaes subalgebra is N = 7 (L>(H)) ¢ L®(G).

o For any Baaj-Vaes subalgebra M C L*°(G) there exists a
l.c.q.g. K such that L>*°(K) = M. It is the dual of the
subgroup corresponding to M.

o The relative commutant N’ N L>°(G) plays the role of the
algebra L>(G/H).
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THE CENTER

THEOREM

Let G be a locally compact quantum group. Then the set of

Baaj-Vaes subalgebras N contained in the center of LOO(@) has
the largest element.
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THE CENTER

THEOREM

Let G be a locally compact quantum group. Then the set of
Baaj-Vaes subalgebras N contained in the center of L>°(G) has
the largest element.

DEFINITION

The center Z(G) of a locally compact quantum group G is
defined as the quantum subgroup corresponding to the largest
central Baaj-Vaes subalgebra of L>(G).
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THE CENTER

o If G = G (with G a classical group) then Z(G) coincides with
the center of G.
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THE CENTER

o If G = G (with G a classical group) then Z(G) coincides with
the center of G.

o For any G the quantum group Z(G) is abelian
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THE CENTER

o If G = G (with G a classical group) then Z(G) coincides with
the center of G.

o For any G the quantum group Z(G) is abelian (in other
words co-commutative: A y ) = 00A ().
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THE CENTER
o If G = G (with G a classical group) then Z(G) coincides with
the center of G.
o For any G the quantum group Z(G) is abelian (in other
words co-commutative: A y ) = 00A ().
o If G is abelian then Z(G) = G.
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THE CENTER

o If G = G (with G a classical group) then Z(G) coincides with
the center of G.

o For any G the quantum group Z(G) is abelian (in other
words co-commutative: A y ) = 00A ().

o If G is abelian then Z(G) = G.

o Z(G) has an appropriate universal property w.r.t. so called
central subgroups of G (its description is beyond the scope
of this talk).
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o If G is abelian then Z(G) = G.

o Z(G) has an appropriate universal property w.r.t. so called
central subgroups of G (its description is beyond the scope
of this talk).

o For al.c.q.g. G equipped with a 2-cocycle 2 on G the center
of the Rieffel deformation G of G is the same as Z(G).
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THE CENTER

o If G = G (with G a classical group) then Z(G) coincides with
the center of G.

o For any G the quantum group Z(G) is abelian (in other
words co-commutative: A y ) = 00A ().

o If G is abelian then Z(G) = G.

o Z(G) has an appropriate universal property w.r.t. so called
central subgroups of G (its description is beyond the scope
of this talk).

o For al.c.q.g. G equipped with a 2-cocycle 2 on G the center
of the Rieffel deformation G of G is the same as Z(G).

o Z(SUq(2)) = Zs.
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THE CENTER

o

Qo

If G = G (with G a classical group) then Z(G) coincides with
the center of G.

For any G the quantum group £(G) is abelian (in other
words co-commutative: A y ) = 00A ().

If G is abelian then Z(G) = G.

% (G) has an appropriate universal property w.r.t. so called
central subgroups of G (its description is beyond the scope
of this talk).

For a l.c.q.g. G equipped with a 2-cocycle (2 on G the center
of the Rieffel deformation G of G is the same as Z(G).
Z(SUq(2)) = Zo.

For G the quantum “az + b” or the quantum “ax + b” group
we have Z(G) = {e}.
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THE CENTER

o

Qo

If G = G (with G a classical group) then Z(G) coincides with
the center of G.

For any G the quantum group £(G) is abelian (in other
words co-commutative: A y ) = 00A ().

If G is abelian then Z(G) = G.

% (G) has an appropriate universal property w.r.t. so called
central subgroups of G (its description is beyond the scope
of this talk).

For a l.c.q.g. G equipped with a 2-cocycle (2 on G the center
of the Rieffel deformation G of G is the same as Z(G).
Z(SUq(2)) = Zo.

For G the quantum “az + b” or the quantum “ax + b” group
we have Z(G) = {e}.

For a compact semisimple simply connected Lie group G
the dual ch of the Drinfeld deformation G, (0 < g < 1) has
trivial center.
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INNER AUTOMORPHISMS

THEOREM

Let G be a locally compact quantum group and let M C L*>(G) be
the subalgebra generated by

{(w®id)(W(x @ 1)W*)

x € L®(G), w € B(LX(G)). }.
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Let G be a locally compact quantum group and let M C L*>(G) be
the subalgebra generated by

{(w®id)(W(x @ 1)W*)

x € L®(G), w € B(LX(G)). }.

Then M is a Baaj-Vaes subalgebra.

DEFINITION
We define the locally compact quantum group Inn(G) by setting

L¥(Inn(G)) =M and Appe) = Agly,
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INNER AUTOMORPHISMS

THEOREM

Let G be a locally compact quantum group and let M C L*>(G) be
the subalgebra generated by

{(w®id)(W(x @ 1)W*)

x € L®(G), w € B(LX(G)). }.

Then M is a Baaj-Vaes subalgebra.

DEFINITION
We define the locally compact quantum group Inn(G) by setting

L¥(Inn(G)) =M and Appe) = Agly,

and call Inn(G) the quantum group of inner automorphisms
of G.
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INNER AUTOMORPHISMS

o For classical G the quantum group Inn(G) is the classical
group of inner automorphisms of G.
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o For classical G the quantum group Inn(G) is the classical
group of inner automorphisms of G.
o Inn(SU4(2)) = SO4(3).
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INNER AUTOMORPHISMS

o For classical G the quantum group Inn(G) is the classical
group of inner automorphisms of G.

o Inn(SU4(2)) = SO4(3).

o Inn(G) acts on G via a: L®(G) — L>*(Inn(G)) ® L>(G)

~

a(y) = a(W*(y ® ll)W), y e L=(G).
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INNER AUTOMORPHISMS

o For classical G the quantum group Inn(G) is the classical
group of inner automorphisms of G.

o Inn(SUq(2)) = SO4(3).

o Inn(G) acts on G via a: L®(G) — L>*(Inn(G)) ® L>(G)

~

a(y) :a(W*(y®ll)W), y e L=(G).

THEOREM

~ ~

Let H be a quantum subgroup of G with y: L*(H) — L*(G).
Then the following are equivalent:
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INNER AUTOMORPHISMS

o For classical G the quantum group Inn(G) is the classical

group of inner automorphisms of G.
o Inn(SUq(2)) = SO4(3).
o Inn(G) acts on G via a: L®(G) — L>*(Inn(G)) ® L>(G)

a(y) :a(W*(y®ll)W), y e L=(G).

THEOREM

~ ~

Let H be a quantum subgroup of G with y: L*(H) — L*(G).

Then the following are equivalent:
@ ~(L>(H)) is invariant under the action c,

@ L>*(G/H) is a Bagj-Vaes subalgebra of L>(G)
(i.e. G/H is a quantum group).
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INNER AUTOMORPHISMS

o For classical G the quantum group Inn(G) is the classical

group of inner automorphisms of G.
o Inn(SUq(2)) = SO4(3).
o Inn(G) acts on G via a: L®(G) — L>*(Inn(G)) ® L>(G)

~

a(y) :a(W*(y®ll)W), y e L=(G).

THEOREM

~ ~

Let H be a quantum subgroup of G with y: L*(H) — L*(G).
Then the following are equivalent:
@ ~(L>(H)) is invariant under the action c,
@ L>*(G/H) is a Bagj-Vaes subalgebra of L>(G)
(i.e. G/H is a quantum group).

o Subgroups H satisfying the above conditions are called
normal.
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INNER AUTOMORPHISMS

o For classical G the quantum group Inn(G) is the classical
group of inner automorphisms of G.

o Inn(SUq(2)) = SO4(3).

o Inn(G) acts on G via a: L®(G) — L>*(Inn(G)) ® L>(G)

~

a(y) =c(W'(yo1)W), yc L™(G).

THEOREM

~ ~

Let H be a quantum subgroup of G with y: L*(H) — L*(G).
Then the following are equivalent:
@ ~(L>(H)) is invariant under the action c,
@ L>*(G/H) is a Bagj-Vaes subalgebra of L>(G)
(i.e. G/H is a quantum group).

o Subgroups H satisfying the above conditions are called
normal. (This agrees with Wang’s definition from 1995.)
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THEOREM
Let G be a locally compact quantum group.
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THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
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THE EXACT SEQUENCE

THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).
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THE EXACT SEQUENCE
THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).

o The proof makes use of the fact that the following sets
coincide:
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THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).
o The proof makes use of the fact that the following sets

coincide: R
» {y e L™(@G) | Ag(y) € Z(L2(G)) © Z(L=(G))}.
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THE EXACT SEQUENCE

THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).
o The proof makes use of the fact that the following sets

coincide: R
» {y e L™(@G) | Ag(y) € Z(L2(G)) © Z(L=(G))}.

v {ye I=@)| As(y) € I¥(G) & 2(L=(G))},
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THE EXACT SEQUENCE

THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).
o The proof makes use of the fact that the following sets

coincide: R
» {y e L™(@G) | Ag(y) € Z(L2(G)) © Z(L=(G))}.

- {ye I=@)| agly) € L¥(€) & Z(L=(@))),
> L¥(Z(G))
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THE EXACT SEQUENCE

THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).

o The proof makes use of the fact that the following sets

coincide:
> {y € L¥(G)|As(y) € Z(L¥(G) & Z(L=(G))},
» {ye LOO(@) |A5(Y) € L=(G) ® Z(L™(G))},
> L7 ( )) (+this is the largest central Baaj-Vaes subalgebra
of L*(G)).
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THE EXACT SEQUENCE

THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).
o The proof makes use of the fact that the following sets

coincide:
» {ye L™(G)|As(y) € Z(L™(G)) & Z(L™(G))},
» {yeL® @)\A ) € L=(G) & Z(L™®(G))}.
> L7 ( )) (+this is the largest central Baaj-Vaes subalgebra
of L*(G)).
o In pgti\cular this gives a more concrete description of

L=(Z(G)).
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THE EXACT SEQUENCE

THEOREM
Let G be a locally compact quantum group. Then
@ the quantum subgroup % (G) of G is normal,
@ the quotient quantum group G/ % (G) coincides with Inn(G).
o The proof makes use of the fact that the following sets

coincide:
» {ye L™(G)|As(y) € Z(L™(G)) & Z(L™(G))},
» {yeL® @)\A ) € L=(G) & Z(L™®(G))}.
> L7 ( )) (+this is the largest central Baaj-Vaes subalgebra
of L*(G)).
o In pgti\cular this gives a more concrete description of

LX(Z(G)).
o The conclusion of the theorem above can be rephrased as

{e} — Z(G) —= G ——Inn(G) —— {e}.
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