LATTICE OF IDEMPOTENT STATES ON A LOCALLY COMPACT QUANTUM GROUP

Noncommutative Geometry Seminar, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa

Piotr M. Sołtan (joint work with P. Kasprzak)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

February 26, 2018

P.M. SOLTAN (WARSAW)

LATTICE OF IDEMPOTENT STATES

1 IDEMPOTENT STATES

- Quasi-subgroups
- Idempotent states, coideals & group-like projections
- Order on quasi-subgroups

LATTICE OPERATIONS

Intersection

2

- Generation
- Modular law

3 Open quasi-subgroups

- Duality
- Compact and discrete quantum groups
- Operations on open quasi-subgroups

 $\bullet\,$ Let $\mathbb G$ be a locally compact quantum group.

 $\omega\ast\omega=\omega$

$$\omega \ast \omega = \omega,$$

where * is the convolution: $\mu * \nu = (\mu \otimes \nu) \circ \Delta^{u}$.

$$\omega \ast \omega = \omega,$$

where * is the convolution: $\mu * \nu = (\mu \otimes \nu) \circ \Delta^{u}$.

• Let $Idem(\mathbb{G})$ be the set of all idempotent states on $C_0^u(\mathbb{G})$.

 $\omega \ast \omega = \omega,$

where * is the convolution: $\mu * \nu = (\mu \otimes \nu) \circ \Delta^{u}$.

• Let $Idem(\mathbb{G})$ be the set of all idempotent states on $C_0^u(\mathbb{G})$.

THEOREM (KAWADA-ITÔ)

 $\omega \ast \omega = \omega,$

where * is the convolution: $\mu * \nu = (\mu \otimes \nu) \circ \Delta^{u}$.

• Let $Idem(\mathbb{G})$ be the set of all idempotent states on $C_0^u(\mathbb{G})$.

THEOREM (KAWADA-ITÔ)

Let G be a locally compact group and let $\omega \in \text{Idem}(G)$.

$$\omega * \omega = \omega,$$

where * is the convolution: $\mu * \nu = (\mu \otimes \nu) \circ \Delta^{u}$.

• Let $Idem(\mathbb{G})$ be the set of all idempotent states on $C_0^u(\mathbb{G})$.

THEOREM (KAWADA-ITÔ)

Let G be a locally compact group and let $\omega \in \text{Idem}(G)$. Then there exists a unique compact subgroup K of G such that

$$\omega(f) = \int_{K} f(k) d\mathbf{h}_{K}(k), \qquad f \in C_{0}(G)$$

$$\omega * \omega = \omega,$$

where * is the convolution: $\mu * \nu = (\mu \otimes \nu) \circ \Delta^{u}$.

• Let $Idem(\mathbb{G})$ be the set of all idempotent states on $C_0^u(\mathbb{G})$.

THEOREM (KAWADA-ITÔ)

Let G be a locally compact group and let $\omega \in \text{Idem}(G)$. Then there exists a unique compact subgroup K of G such that

$$\omega(f) = \int_{K} f(k) \, d\mathbf{h}_{K}(k), \qquad f \in \mathcal{C}_{0}(G)$$

(\mathbf{h}_K = the Haar measure on K, $C_0(G) = C_0^u(G)$ canonically).

 $\bullet~$ If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then

• If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then

• we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,

- If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.

- If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

- If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

- If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

- $\bullet~$ If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

Let $\mathbb{G} = \widehat{S_3}$: $C(\mathbb{G}) = \mathbb{C}[S_3]$, $\Delta(g) = g \otimes g$ for all $g \in S_3$.

- $\bullet~$ If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

Let $\mathbb{G} = \widehat{S_3}$: $C(\mathbb{G}) = \mathbb{C}[S_3]$, $\Delta(g) = g \otimes g$ for all $g \in S_3$. Define

$$\omega \left(\sum_{g \in S_3} \alpha_g \, g \right) = \alpha_e + \alpha_s,$$

where $s \in S_3$ is any order two element.

- $\bullet~$ If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

Let $\mathbb{G} = \widehat{S_3}$: $C(\mathbb{G}) = \mathbb{C}[S_3]$, $\Delta(g) = g \otimes g$ for all $g \in S_3$. Define

$$\omega \left(\sum_{g \in S_3} \alpha_g \, g \right) = \alpha_e + \alpha_s,$$

where $s \in S_3$ is any order two element. Then $\omega \in \text{Idem}(\mathbb{G})$

- $\bullet~$ If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

Let $\mathbb{G} = \widehat{S_3}$: $C(\mathbb{G}) = \mathbb{C}[S_3]$, $\Delta(g) = g \otimes g$ for all $g \in S_3$. Define

$$\omega \left(\sum_{g \in S_3} \alpha_g \, g \right) = \alpha_e + \alpha_s,$$

where $s \in S_3$ is any order two element. Then $\omega \in \text{Idem}(\mathbb{G})$ and ω does not arise from a (compact quantum) subgroup of \mathbb{G} .

- $\bullet~$ If $\mathbb G$ is a locally compact quantum group and $\mathbb K$ is a compact quantum subgroup of $\mathbb G$ then
 - we have an epimorphism $\pi : C_0^u(\mathbb{G}) \longrightarrow C^u(\mathbb{K})$,
 - $\omega = \mathbf{h}_{\mathbb{K}} \circ \pi$ is an idempotent state on $C_0^u(\mathbb{G})$.
- However, not every $\omega \in \text{Idem}(\mathbb{G})$ arises this way (A. Pal).

Let $\mathbb{G} = \widehat{S_3}$: $C(\mathbb{G}) = \mathbb{C}[S_3]$, $\Delta(g) = g \otimes g$ for all $g \in S_3$. Define

$$\omega \left(\sum_{g \in S_3} \alpha_g \, g \right) = \alpha_e + \alpha_s,$$

where $s \in S_3$ is any order two element. Then $\omega \in \text{Idem}(\mathbb{G})$ and ω does not arise from a (compact quantum) subgroup of \mathbb{G} .

• Given $\omega \in \text{Idem}(\mathbb{G})$ we will say that ω corresponds to a compact quantum **quasi-subgroup** of \mathbb{G} .

4/31

P.M. SOŁTAN (WARSAW)	LATTICE OF IDEMPOTENT STATES	FEBRUARY 26, 2018
----------------------	------------------------------	-------------------

 \mathbb{G} – locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - ${\ensuremath{\, \bullet }}$ The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - ${\ensuremath{\, \bullet }}$ The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_{\omega} = \left\{ \boldsymbol{x} \in L^{\infty}(\mathbb{G}) \, \middle| \, \boldsymbol{E}_{\omega}(\boldsymbol{x}) = \boldsymbol{x} \right\}$$

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_{\omega} = \left\{ \boldsymbol{x} \in L^{\infty}(\mathbb{G}) \, \middle| \, \boldsymbol{E}_{\omega}(\boldsymbol{x}) = \boldsymbol{x} \right\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_\omega = \left\{ x \in L^\infty(\mathbb{G}) \, \middle| \, E_\omega(x) = x
ight\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$\boldsymbol{E}_{\omega}: L^{\infty}(\mathbb{G}) \ni \boldsymbol{X} \longmapsto \omega \ast \boldsymbol{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_{\omega} = \left\{ \boldsymbol{x} \in L^{\infty}(\mathbb{G}) \, \middle| \, \boldsymbol{E}_{\omega}(\boldsymbol{x}) = \boldsymbol{x} \right\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

• The convolution operation $x \mapsto \omega * x$ can be viewed as

$$\omega * \mathbf{x} = (\mathrm{id} \otimes \omega) \big(\mathbb{W}(\mathbf{x} \otimes \mathbb{1}) \mathbb{W}^* \big), \qquad \mathbf{x} \in L^{\infty}(\mathbb{G}),$$

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - ${\ensuremath{\, \bullet }}$ The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_{\omega} = \left\{ \boldsymbol{x} \in L^{\infty}(\mathbb{G}) \, \middle| \, \boldsymbol{E}_{\omega}(\boldsymbol{x}) = \boldsymbol{x} \right\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(N_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} N_{\omega}$).

• The convolution operation $x \mapsto \omega * x$ can be viewed as

$$\omega * \mathbf{x} = (\mathrm{id} \otimes \omega) \big(\mathbb{W}(\mathbf{x} \otimes \mathbb{1}) \mathbb{W}^* \big), \qquad \mathbf{x} \in L^{\infty}(\mathbb{G}),$$

where $\mathbb{W} \in \mathsf{M}(\mathrm{C}_0(\widehat{\mathbb{G}}) \otimes \mathrm{C}^{\mathrm{u}}_0(\mathbb{G})) \subset \mathsf{M}(\mathscr{K}(L^2(\mathbb{G}))) \otimes \mathrm{C}^{\mathrm{u}}_0(\mathbb{G}))$ is the "half-lifted" Kac-Takesaki operator of \mathbb{G} .

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_\omega = \left\{ x \in L^\infty(\mathbb{G}) \, \middle| \, E_\omega(x) = x
ight\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

• The coideal N_{ω} is invariant under the scaling group $\tau = (\tau_t)_{t \in \mathbb{R}}$ of \mathbb{G} and **integrable**

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_\omega = \left\{ oldsymbol{x} \in L^\infty(\mathbb{G}) \, \middle| \, oldsymbol{E}_\omega(oldsymbol{x}) = oldsymbol{x}
ight\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

• The coideal N_{ω} is invariant under the scaling group $\tau = (\tau_t)_{t \in \mathbb{R}}$ of \mathbb{G} and **integrable** (the right Haar measure of \mathbb{G} is semifinite on N_{ω} .)

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_\omega = \left\{ oldsymbol{x} \in L^\infty(\mathbb{G}) \, \middle| \, oldsymbol{E}_\omega(oldsymbol{x}) = oldsymbol{x}
ight\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

The element

$$P_{\omega} = (\mathrm{id} \otimes \omega) \mathbb{W} \in L^{\infty}(\widehat{\mathbb{G}})$$

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$\boldsymbol{E}_{\omega}: L^{\infty}(\mathbb{G}) \ni \boldsymbol{X} \longmapsto \omega \ast \boldsymbol{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_\omega = \left\{ oldsymbol{x} \in L^\infty(\mathbb{G}) \, \middle| \, oldsymbol{E}_\omega(oldsymbol{x}) = oldsymbol{x}
ight\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

The element

$$P_{\omega} = (\mathrm{id} \otimes \omega) \mathbb{W} \in L^{\infty}(\widehat{\mathbb{G}})$$

is a group-like projection

- \mathbb{G} locally compact quantum group, $\omega \in \text{Idem}(\mathbb{G})$.
 - The state ω defines a normal conditional expectation

$$E_{\omega}: L^{\infty}(\mathbb{G}) \ni \mathbf{X} \longmapsto \omega * \mathbf{X} \in L^{\infty}(\mathbb{G})$$

$$\mathsf{N}_{\omega} = \left\{ \boldsymbol{x} \in L^{\infty}(\mathbb{G}) \, \middle| \, \boldsymbol{E}_{\omega}(\boldsymbol{x}) = \boldsymbol{x} \right\}$$

is a left **coideal** in $L^{\infty}(\mathbb{G})$ (von Neumann subalgebra with $\Delta(\mathbb{N}_{\omega}) \subset L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}_{\omega}$).

The element

$$P_{\omega} = (\mathrm{id} \otimes \omega) \mathbb{W} \in L^{\infty}(\widehat{\mathbb{G}})$$

is a group-like projection, i.e. it is a projection such that

$$\widehat{\Delta}(P_{\omega})(\mathbb{1}\otimes P_{\omega})=P_{\omega}\otimes P_{\omega}.$$

THEOREM (FAAL-KASPRZAK)

THEOREM (FAAL-KASPRZAK)

Let \mathbb{G} be a locally compact quantum group.

THEOREM (FAAL-KASPRZAK)

Let $\mathbb G$ be a locally compact quantum group. Then there are bijective correspondences between the sets of

• *idempotent states* ω *on* $C_0^u(\mathbb{G})$ *,*

Let $\mathbb G$ be a locally compact quantum group. Then there are bijective correspondences between the sets of

- *idempotent states* ω *on* $C_0^u(\mathbb{G})$ *,*
- integrable τ -invariant left coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$,

Let $\mathbb G$ be a locally compact quantum group. Then there are bijective correspondences between the sets of

- *idempotent states* ω *on* $C_0^u(\mathbb{G})$ *,*
- integrable τ -invariant left coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$,
- $\hat{\tau}$ -invariant group-like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$

Let $\mathbb G$ be a locally compact quantum group. Then there are bijective correspondences between the sets of

- *idempotent states* ω *on* $C_0^u(\mathbb{G})$ *,*
- integrable τ -invariant left coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$,
- $\hat{\tau}$ -invariant group-like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$

mapping $\omega \in \text{Idem}(\mathbb{G})$ to N_{ω} and P_{ω} respectively.

Let $\mathbb G$ be a locally compact quantum group. Then there are bijective correspondences between the sets of

- *idempotent states* ω *on* $C_0^u(\mathbb{G})$ *,*
- integrable τ -invariant left coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$,
- $\hat{\tau}$ -invariant group-like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$

mapping $\omega \in \text{Idem}(\mathbb{G})$ to N_{ω} and P_{ω} respectively.

• $P_{\omega} \in \mathsf{B}(L^2(\mathbb{G}))$ is the (orthogonal) projection onto $L^2(\mathsf{N}_{\omega})$.

Let $\mathbb G$ be a locally compact quantum group. Then there are bijective correspondences between the sets of

- *idempotent states* ω *on* $C_0^u(\mathbb{G})$ *,*
- integrable τ -invariant left coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$,
- $\hat{\tau}$ -invariant group-like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$

mapping $\omega \in \text{Idem}(\mathbb{G})$ to N_{ω} and P_{ω} respectively.

- $P_{\omega} \in \mathsf{B}(L^{2}(\mathbb{G}))$ is the (orthogonal) projection onto $L^{2}(\mathsf{N}_{\omega})$.
- If ω arises as the Haar measure of a compact quantum subgroup \mathbbm{K} then

$$\mathsf{N}_{\omega} = L^{\infty}(\mathbb{G}/\mathbb{K}).$$

 $\omega\ast\mu=\mu.$

 $\omega\ast\mu=\mu.$

Notation: $\omega \leq \mu$.

$$\omega \ast \mu = \mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$

$$\omega\ast\mu=\mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups \mathbb{H} and \mathbb{K} we have

$$\left(\omega \leqslant \mu\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

$$\omega\ast\mu=\mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

$$\omega\ast\mu=\mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$.

$$\omega\ast\mu=\mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then the following are equivalent

$$\omega \ast \mu = \mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then the following are equivalent: • $\omega \leq \mu$,

$$\omega \ast \mu = \mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then the following are equivalent:

• $\omega \leq \mu$,

•
$$E_\omega \circ E_\mu = E_\mu$$
,

$$\omega \ast \mu = \mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then the following are equivalent:

• $\omega \leqslant \mu$,

•
$$E_\omega \circ E_\mu = E_\mu$$
 ,

• $N_{\mu} \subset N_{\omega}$,

$$\omega \ast \mu = \mu.$$

Notation: $\omega \leq \mu$.

• For idempotent states ω, μ arising from compact quantum subgroups $\mathbb H$ and $\mathbb K$ we have

$$\left(\boldsymbol{\omega} \leqslant \boldsymbol{\mu}\right) \Longleftrightarrow \left(\mathbb{H} \subset \mathbb{K}\right)$$

PROPOSITION

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then the following are equivalent:

• $\omega \leqslant \mu$,

•
$$E_\omega \circ E_\mu = E_\mu$$
 ,

- $N_{\mu} \subset N_{\omega}$,
- $P_{\mu} \leqslant P_{\omega}$.

$$\mathsf{N}=\mathsf{N}_{\omega}\vee\mathsf{N}_{\mu}.$$

$$\mathsf{N}=\mathsf{N}_{\omega}\vee\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$.

$$\mathsf{N}=\mathsf{N}_{\omega}\vee\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$. • It follows that there exists $\nu \in \text{Idem}(\mathbb{G})$ such that

$$N = N_{\nu}$$
.

$$\mathsf{N}=\mathsf{N}_{\omega}\vee\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$. • It follows that there exists $\nu \in \text{Idem}(\mathbb{G})$ such that

$$N = N_{\nu}$$
.

We denote $\nu = \omega \wedge \mu$

$$\mathsf{N}=\mathsf{N}_{\omega}\vee\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$. • It follows that there exists $\nu \in \text{Idem}(\mathbb{G})$ such that

$$N = N_{\nu}$$
.

We denote $\nu = \omega \wedge \mu$ and call it the idempotent state corresponding to the **intersection** of quasi-subgroups related to ω and μ .

$$\mathsf{N}=\mathsf{N}_{\omega}\vee\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$. • It follows that there exists $\nu \in \text{Idem}(\mathbb{G})$ such that

$$N = N_{\nu}$$
.

We denote $\nu = \omega \wedge \mu$ and call it the idempotent state corresponding to the **intersection** of quasi-subgroups related to ω and μ .

• $(\omega, \mu) \mapsto \omega \land \mu$ is commutative and associative.

$$\mathsf{N}=\mathsf{N}_{\omega}\lor\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$. • It follows that there exists $\nu \in \text{Idem}(\mathbb{G})$ such that

$$N = N_{\nu}$$
.

We denote $\nu = \omega \wedge \mu$ and call it the idempotent state corresponding to the **intersection** of quasi-subgroups related to ω and μ .

• $(\omega, \mu) \mapsto \omega \land \mu$ is commutative and associative.

PROPOSITION

$$\mathsf{N}=\mathsf{N}_{\omega}\lor\mathsf{N}_{\mu}.$$

Then N is an integrable τ -invariant left coideal in $L^{\infty}(\mathbb{G})$. • It follows that there exists $\nu \in \text{Idem}(\mathbb{G})$ such that

$$N = N_{\nu}$$
.

We denote $\nu = \omega \wedge \mu$ and call it the idempotent state corresponding to the **intersection** of quasi-subgroups related to ω and μ .

• $(\omega, \mu) \mapsto \omega \land \mu$ is commutative and associative.

PROPOSITION

We have

$$\omega \wedge \mu = \sup \{ \nu \in \operatorname{Idem}(\mathbb{G}) \mid \nu \leq \omega, \ \nu \leq \mu \}.$$

$$\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$$

$$\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$$

Then N is a τ -invariant left coideal.

$$\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

$$\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$.

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then • $L^2(N_{\omega}) \cap L^2(N_{\mu}) = L^2(N_{\omega} \cap N_{\mu})$,

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then • $L^2(N_\omega) \cap L^2(N_\mu) = L^2(N_\omega \cap N_\mu)$, • the sequence $((\omega * \mu)^{*n})_{n \in \mathbb{N}}$

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then

•
$$L^2(\mathsf{N}_\omega) \cap L^2(\mathsf{N}_\mu) = L^2(\mathsf{N}_\omega \cap \mathsf{N}_\mu)$$
,

• the sequence $((\omega * \mu)^{*n})_{n \in \mathbb{N}}$ is weak* convergent to $\nu \in \text{Idem}_0(\mathbb{G})$,

• For $\omega, \mu \in \text{Idem}(\mathbb{G})$ put

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then

•
$$L^2(\mathsf{N}_{\omega}) \cap L^2(\mathsf{N}_{\mu}) = L^2(\mathsf{N}_{\omega} \cap \mathsf{N}_{\mu})$$
,

- the sequence $((\omega * \mu)^{*n})_{n \in \mathbb{N}}$ is weak* convergent to $\nu \in \text{Idem}_0(\mathbb{G})$,
- $L^2(N_{\omega}) \cap L^2(N_{\mu}) \neq \{0\}$ if and only if $\nu \neq 0$

• For $\omega, \mu \in \text{Idem}(\mathbb{G})$ put

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then

•
$$L^2(\mathsf{N}_\omega) \cap L^2(\mathsf{N}_\mu) = L^2(\mathsf{N}_\omega \cap \mathsf{N}_\mu)$$
,

- the sequence $((\omega * \mu)^{*n})_{n \in \mathbb{N}}$ is weak* convergent to $\nu \in \text{Idem}_0(\mathbb{G})$,
- $L^2(N_{\omega}) \cap L^2(N_{\mu}) \neq \{0\}$ if and only if $\nu \neq 0$; moreover, in this case, ν is the idempotent state corresponding to the τ -invariant integrable left coideal $N_{\omega} \cap N_{\mu}$.

• For $\omega, \mu \in \text{Idem}(\mathbb{G})$ put

 $\mathsf{N}=\mathsf{N}_{\omega}\cap\mathsf{N}_{\mu}.$

Then N is a τ -invariant left coideal.

• Set $\operatorname{Idem}_0(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cup \{0\}.$

THEOREM

Let $\omega, \mu \in \text{Idem}(\mathbb{G})$. Then

•
$$L^2(\mathsf{N}_\omega) \cap L^2(\mathsf{N}_\mu) = L^2(\mathsf{N}_\omega \cap \mathsf{N}_\mu)$$
,

- the sequence $((\omega * \mu)^{*n})_{n \in \mathbb{N}}$ is weak* convergent to $\nu \in \text{Idem}_0(\mathbb{G})$,
- $L^2(N_{\omega}) \cap L^2(N_{\mu}) \neq \{0\}$ if and only if $\nu \neq 0$; moreover, in this case, ν is the idempotent state corresponding to the τ -invariant integrable left coideal $N_{\omega} \cap N_{\mu}$.

• $M \subset L^{\infty}(\mathbb{G})$ – coideal. Then $L^{2}(M) \neq \{0\}$ iff M is integrable.

$$(\omega,\mu) \longmapsto \omega \lor \mu = \mathbf{w}^* - \lim_{n \to \infty} (\omega * \mu)^{*n}$$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

is a commutative and associative operation.

• Putting $\omega \lor \mu = 0$ whenever either of the states is zero

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

is a commutative and associative operation.

• Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups $\mathbb H$ and $\mathbb K$ of $\mathbb G$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

is a commutative and associative operation.

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups \mathbb{H} and \mathbb{K} of \mathbb{G} then

 $\omega \lor \mu =$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups \mathbb{H} and \mathbb{K} of \mathbb{G} then

$$\omega \lor \mu = \begin{cases} \text{Haar measure of } \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \\ \end{cases}$$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups \mathbb{H} and \mathbb{K} of \mathbb{G} then

$$\omega \lor \mu = \begin{cases} \text{Haar measure of } \overline{\langle \mathbb{H}, \mathbb{K} \rangle} & \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \text{ is compact,} \end{cases}$$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups \mathbb{H} and \mathbb{K} of \mathbb{G} then

$$\omega \lor \mu = \begin{cases} \text{Haar measure of } \overline{\langle \mathbb{H}, \mathbb{K} \rangle} & \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \\ 0 \end{cases} \text{ is compact,}$$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups \mathbb{H} and \mathbb{K} of \mathbb{G} then

$$\omega \lor \mu = \begin{cases} \text{Haar measure of } \overline{\langle \mathbb{H}, \mathbb{K} \rangle} & \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \text{ is compact,} \\ 0 & \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \text{ is not compact.} \end{cases}$$

$$(\omega,\mu)\longmapsto\omega\vee\mu=\mathbf{w}^*-\lim_{n\to\infty}(\omega*\mu)^{*n}$$

is a commutative and associative operation.

- Putting $\omega \lor \mu = 0$ whenever either of the states is zero extends this operation to a commutative and associative operation on $\mathrm{Idem}_0(\mathbb{G})$.
- If ω and μ are Haar measures on compact subgroups $\mathbb H$ and $\mathbb K$ of $\mathbb G$ then

$$\omega \lor \mu = \begin{cases} \text{Haar measure of } \overline{\langle \mathbb{H}, \mathbb{K} \rangle} & \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \text{ is compact,} \\ 0 & \overline{\langle \mathbb{H}, \mathbb{K} \rangle} \text{ is not compact.} \end{cases}$$

We say that ω ∨ μ corresponds to the quasi-subgroup of G
 generated by the quasi-subgroups related to ω and μ.

PROPOSITION

PROPOSITION

We have

$$\omega \lor \mu = \inf \{ \nu \in \operatorname{Idem}_{0}(\mathbb{G}) \mid \omega \leqslant \nu, \ \mu \leqslant \nu \}.$$

PROPOSITION

We have

$$\omega \lor \mu = \inf \{ \nu \in \operatorname{Idem}_{\mathbf{0}}(\mathbb{G}) \mid \omega \leqslant \nu, \ \mu \leqslant \nu \}.$$

Proof

PROPOSITION

We have

$$\omega \lor \mu = \inf \{ \nu \in \operatorname{Idem}_{\mathbf{0}}(\mathbb{G}) \mid \omega \leqslant \nu, \ \mu \leqslant \nu \}.$$

Proof

 $N_{\omega \lor \mu}$ is the largest integrable $\tau\text{-invariant}$ coideal contained both in N_ω and N_μ

PROPOSITION

We have

$$\omega \lor \mu = \inf \{ \nu \in \operatorname{Idem}_{\mathbf{0}}(\mathbb{G}) \mid \omega \leqslant \nu, \ \mu \leqslant \nu \}.$$

Proof

 $N_{\omega \lor \mu}$ is the largest integrable τ -invariant coideal contained both in N_{ω} and N_{μ} (it is {0} if $N_{\omega} \cap N_{\mu}$ is not integrable).

PROPOSITION

We have

$$\omega \lor \mu = \inf \{ \nu \in \operatorname{Idem}_{0}(\mathbb{G}) \mid \omega \leqslant \nu, \ \mu \leqslant \nu \}.$$

Proof

 $N_{\omega \lor \mu}$ is the largest integrable τ -invariant coideal contained both in N_{ω} and N_{μ} (it is {0} if $N_{\omega} \cap N_{\mu}$ is not integrable).

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1) $\rho \leq \omega$,

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

$$\ \, 0 \ \, \rho \leqslant \omega,$$

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

- $\textcircled{1} \ \rho \leqslant \omega,$
- 2 $\rho \lor \mu = \rho * \mu$,
- 3 $\mathsf{N}_{\omega \wedge \mu} = (\mathsf{N}_{\omega}\mathsf{N}_{\mu})^{\sigma-\mathrm{c.l.s.}}$.

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

(1) $\rho \leq \omega$, (2) $\rho \lor \mu = \rho * \mu$, (3) $N_{\omega \land \mu} = (N_{\omega}N_{\mu})^{\sigma-c.l.s.}$. Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

- (3) $\mathsf{N}_{\omega \wedge \mu} = (\mathsf{N}_{\omega}\mathsf{N}_{\mu})^{\sigma-\mathrm{c.l.s.}}$.

Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

• Assumption ② has several equivalent forms

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

- $\begin{array}{l} \bigcirc \rho \leqslant \omega, \\ @ \rho \lor \mu = \rho \ast \mu, \\ @ \mathsf{N}_{\omega \land \mu} = (\mathsf{N}_{\omega}\mathsf{N}_{\mu})^{\sigma-\mathrm{c.l.s.}}. \\ \text{Then } \omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho. \end{array}$
 - Assumption ② has several equivalent forms:

•
$$\rho \lor \mu = \rho * \mu$$
,

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1)
$$\rho \leq \omega$$
,
2) $\rho \lor \mu = \rho * \mu$,
3) $N_{\omega \land \mu} = (N_{\omega}N_{\mu})^{\sigma-c.l.s.}$.
Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$

• Assumption ⁽²⁾ has several equivalent forms:

•
$$\rho \lor \mu = \rho * \mu$$
,

•
$$\mu * \rho * \mu = \rho * \mu$$
,

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1)
$$\rho \leq \omega$$
,
2) $\rho \lor \mu = \rho * \mu$,
3) $\mathsf{N}_{\omega \land \mu} = (\mathsf{N}_{\omega}\mathsf{N}_{\mu})^{\sigma-\mathrm{c.l.s.}}$.
Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

• Assumption ⁽²⁾ has several equivalent forms:

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1)
$$\rho \leq \omega$$
,
2) $\rho \lor \mu = \rho * \mu$,
3) $N_{\omega \land \mu} = (N_{\omega}N_{\mu})^{\sigma-c.l.s.}$.
Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

• Assumption ⁽²⁾ has several equivalent forms:

•
$$\rho \lor \mu = \rho * \mu$$
,

•
$$\mu * \rho * \mu = \rho * \mu$$
,

•
$$\mu * \rho = \rho * \mu$$
.

In terms of quasi-subgroups one could say that this assumption says that those corresponding to ρ and ω normalize one another.

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1)
$$\rho \leq \omega$$
,
2) $\rho \lor \mu = \rho * \mu$,
3) $N_{\omega \land \mu} = (N_{\omega}N_{\mu})^{\sigma-c.l.s.}$.
Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

• Assumption ⁽²⁾ has several equivalent forms:

•
$$\rho \lor \mu = \rho * \mu$$
,

•
$$\mu * \rho * \mu = \rho * \mu$$
,

•
$$\mu * \rho = \rho * \mu$$
.

In terms of quasi-subgroups one could say that this assumption says that those corresponding to ρ and ω normalize one another.

• Assumption ③ is of technical nature

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1)
$$\rho \leq \omega$$
,
2) $\rho \lor \mu = \rho * \mu$,
3) $\mathsf{N}_{\omega \land \mu} = (\mathsf{N}_{\omega}\mathsf{N}_{\mu})^{\sigma-\mathrm{c.l.s.}}$.
Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

• Assumption ⁽²⁾ has several equivalent forms:

•
$$\rho \lor \mu = \rho * \mu$$
,

•
$$\mu * \rho * \mu = \rho * \mu$$
,

•
$$\mu * \rho = \rho * \mu$$
.

In terms of quasi-subgroups one could say that this assumption says that those corresponding to ρ and ω normalize one another.

• Assumption 3 is of technical nature (" σ -c.l.s." means σ -weakly closed linear span).

Let $\omega, \mu, \rho \in \text{Idem}(\mathbb{G})$ be such that

1)
$$\rho \leq \omega$$
,
2) $\rho \lor \mu = \rho * \mu$,
3) $\mathsf{N}_{\omega \land \mu} = (\mathsf{N}_{\omega}\mathsf{N}_{\mu})^{\sigma-\mathrm{c.l.s.}}$.
Then $\omega \land (\mu \lor \rho) = (\omega \land \mu) \lor \rho$.

• Assumption ⁽²⁾ has several equivalent forms:

•
$$\rho \lor \mu = \rho * \mu$$
,

•
$$\mu * \rho * \mu = \rho * \mu$$
,

•
$$\mu * \rho = \rho * \mu$$
.

In terms of quasi-subgroups one could say that this assumption says that those corresponding to ρ and ω normalize one another.

• Assumption ③ is of technical nature (" σ -c.l.s." means σ -weakly closed linear span). It is fulfilled in case of actual compact quantum subgroups.

P.M. SOŁTAN (WARSAW)

• The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$.

• The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.

($\mathbb{K} \subset \mathbb{G}$ is open

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.
 - $(\mathbb{K} \subset \mathbb{G} \text{ is } \textbf{open} \text{ if apart form the epimorphism}$

$$\pi: \mathrm{C}^{\mathrm{u}}_{\mathbf{0}}(\mathbb{G}) \longrightarrow \mathrm{C}^{\mathrm{u}}(\mathbb{K})$$

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.
 - $(\mathbb{K} \subset \mathbb{G} \text{ is } \textbf{open} \text{ if apart form the epimorphism}$

$$\pi: \mathrm{C}^{\mathrm{u}}_{\mathbf{0}}(\mathbb{G}) \longrightarrow \mathrm{C}^{\mathrm{u}}(\mathbb{K})$$

$$\widetilde{\pi}: L^\infty(\mathbb{G}) {\longrightarrow} L^\infty(\mathbb{K})$$

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.
 - $(\mathbb{K} \subset \mathbb{G} \text{ is } \textbf{open} \text{ if apart form the epimorphism}$

$$\pi: \mathrm{C}^{\mathrm{u}}_{\mathbf{0}}(\mathbb{G}) \longrightarrow \mathrm{C}^{\mathrm{u}}(\mathbb{K})$$

$$\widetilde{\pi}: L^\infty(\mathbb{G}) {\longrightarrow} L^\infty(\mathbb{K})$$

- both commuting with comultiplications.)

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.
 - $(\mathbb{K} \subset \mathbb{G} \text{ is } \textbf{open} \text{ if apart form the epimorphism}$

$$\pi: \mathrm{C}^{\mathrm{u}}_{\mathbf{0}}(\mathbb{G}) \longrightarrow \mathrm{C}^{\mathrm{u}}(\mathbb{K})$$

$$\widetilde{\pi}: L^\infty(\mathbb{G}) {\longrightarrow} L^\infty(\mathbb{K})$$

- both commuting with comultiplications.)
- Let $\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cap L^{\infty}(\mathbb{G})_*$.

- The space $L^{\infty}(\mathbb{G})_*$ embeds naturally into $C_0^u(\mathbb{G})^*$. We will refer to elements of $L^{\infty}(\mathbb{G})_* \subset C_0^u(\mathbb{G})^*$ as **normal** functionals.
- Normal functionals form a closed ideal in $C_0^u(\mathbb{G})^*$.
- A compact quantum subgroup \mathbb{K} of a locally compact quantum group \mathbb{G} is open in \mathbb{G} iff the Haar measure of \mathbb{K} is normal.
 - $(\mathbb{K} \subset \mathbb{G} \text{ is } \textbf{open} \text{ if apart form the epimorphism}$

$$\pi: \mathrm{C}^{\mathrm{u}}_{\mathbf{0}}(\mathbb{G}) \longrightarrow \mathrm{C}^{\mathrm{u}}(\mathbb{K})$$

$$\widetilde{\pi}: L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{K})$$

- both commuting with comultiplications.)
- Let $\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) = \operatorname{Idem}(\mathbb{G}) \cap L^{\infty}(\mathbb{G})_*$. The corresponding quasi-subgroups will be called **open**.

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$

For any $\omega, \mu \in \operatorname{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})).$

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{nor}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{nor}(\mathbb{G})).$

Proof

For any $\omega, \mu \in \operatorname{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $\mathrm{C}^{\mathrm{u}}_0(\mathbb{G})^*$

For any $\omega, \mu \in \operatorname{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C^{u}_0(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{nor}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{nor}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^u(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

For any $\omega, \mu \in \operatorname{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^u(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{nor}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{nor}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^u(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$.

COROLLARY

For any $\omega, \mu \in \operatorname{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^u(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{nor}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{nor}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^u(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

Proof

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{\text{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{\text{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^{\mathrm{u}}(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

Proof

The counit ε of \mathbb{G} is normal.

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{nor}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{nor}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C_0^u(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

Proof

The counit ε of \mathbb{G} is normal. Consequently any $\omega \in \text{Idem}(\mathbb{G})$ satisfies $\varepsilon \leqslant \omega$

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{\text{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{\text{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C^{\mathrm{u}}_0(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

Proof

The counit ε of \mathbb{G} is normal. Consequently any $\omega \in \text{Idem}(\mathbb{G})$ satisfies $\varepsilon \leq \omega$, so $\omega \in \text{Idem}_{nor}(\mathbb{G})$ by proposition above.

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{\text{nor}}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{\text{nor}}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C^{\mathrm{u}}_0(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

Proof

The counit ε of \mathbb{G} is normal. Consequently any $\omega \in \text{Idem}(\mathbb{G})$ satisfies $\varepsilon \leq \omega$, so $\omega \in \text{Idem}_{nor}(\mathbb{G})$ by proposition above.

For any $\omega, \mu \in \text{Idem}(\mathbb{G})$ we have $\begin{pmatrix} \omega \leqslant \mu \\ \omega \in \text{Idem}_{nor}(\mathbb{G}) \end{pmatrix} \implies (\mu \in \text{Idem}_{nor}(\mathbb{G})).$

Proof

 $L^{\infty}(\mathbb{G})_*$ is an ideal in $C^{\mathrm{u}}_0(\mathbb{G})^*$, so $\mu = \omega * \mu \in L^{\infty}(\mathbb{G})_*$ and hence $\mu \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

COROLLARY

If \mathbb{G} is a discrete quantum group then $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) = \mathrm{Idem}(\mathbb{G})$.

Proof

The counit ε of \mathbb{G} is normal. Consequently any $\omega \in \text{Idem}(\mathbb{G})$ satisfies $\varepsilon \leq \omega$, so $\omega \in \text{Idem}_{nor}(\mathbb{G})$ by proposition above.

• In other words any compact quasi-subgroup of a discrete quantum group is open.

P.M. SOLTAN (WARSAW)

LATTICE OF IDEMPOTENT STATES

• Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

is of the form $\mathsf{J}_\omega = L^\infty(\mathbb{G}) \mathcal{Q}_\omega$

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \boldsymbol{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\boldsymbol{x}^*\boldsymbol{x}) = \boldsymbol{0} \big\}$$

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

• It turns out that $Q_{\omega}^{\perp} = \mathbb{1} - Q_{\omega}$ is a group like projection.

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

• It turns out that $Q_{\omega}^{\perp} = \mathbb{1} - Q_{\omega}$ is a group like projection. The proof proceeds in several steps.

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

• It turns out that $Q_{\omega}^{\perp} = \mathbb{1} - Q_{\omega}$ is a group like projection. The proof proceeds in several steps.

PROPOSITION

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

• It turns out that $Q_{\omega}^{\perp} = \mathbb{1} - Q_{\omega}$ is a group like projection. The proof proceeds in several steps.

PROPOSITION

We have

$$\label{eq:constraint} \texttt{1} \ x \in \mathsf{N}_{\omega} \text{ if and only if } \Delta(x)(\mathbbm{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp},$$

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

• It turns out that $Q_{\omega}^{\perp} = \mathbb{1} - Q_{\omega}$ is a group like projection. The proof proceeds in several steps.

PROPOSITION

We have

1 $x \in \mathsf{N}_{\omega}$ if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$(\textbf{Q}_{\omega})(\textbf{Q}_{\omega}^{\perp}\otimes \textbf{Q}_{\omega}^{\perp}) = \textbf{0},$$

- Take $\omega \in \text{Idem}_{nor}(\mathbb{G})$.
- The σ -weakly closed left ideal

$$\mathsf{J}_{\omega} = \big\{ \mathbf{x} \in L^{\infty}(\mathbb{G}) \, \big| \, \omega(\mathbf{x}^* \mathbf{x}) = \mathbf{0} \big\}$$

• It turns out that $Q_{\omega}^{\perp} = \mathbb{1} - Q_{\omega}$ is a group like projection. The proof proceeds in several steps.

PROPOSITION

We have

 $) \quad x \in \mathsf{N}_{\omega} \text{ if and only if } \Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp},$

2
$$\Delta(Q_{\omega})(Q_{\omega}^{\perp}\otimes Q_{\omega}^{\perp})=0,$$

We have

- $\ \ 2 \ \ \Delta({\cal Q}_{\omega})({\cal Q}_{\omega}^{\perp}\otimes {\cal Q}_{\omega}^{\perp})=0,$

We have

- $(2) \Delta(Q_{\omega})(Q_{\omega}^{\perp} \otimes Q_{\omega}^{\perp}) = 0,$

Proof of $\mathbb{Q} \leftarrow$

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$\ \ \, {\bf 2} \ \ \, \Delta({\boldsymbol Q}_{\omega})({\boldsymbol Q}_{\omega}^{\perp}\otimes{\boldsymbol Q}_{\omega}^{\perp})=0,$$

3
$$R(Q_{\omega}) = Q_{\omega}$$
 and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Leftarrow$

Assume that $\Delta(x)(\mathbb{1}\otimes Q_{\omega}^{\perp}) = x\otimes Q_{\omega}^{\perp}$.

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

3
$$R(Q_{\omega}) = Q_{\omega}$$
 and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Leftarrow$

Assume that $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$. Apply $(\mathrm{id} \otimes \omega)$ to both sides to get

$$\omega * x = \omega(Q_\omega^\perp) x = x$$

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

3
$$R(Q_{\omega}) = Q_{\omega}$$
 and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Leftarrow$

Assume that $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$. Apply $(\mathrm{id} \otimes \omega)$ to both sides to get

$$\omega * \mathbf{x} = \omega(\mathbf{Q}_{\omega}^{\perp})\mathbf{x} = \mathbf{x},$$

i.e. $x \in N_{\omega}$.

We have

- $(2) \Delta(Q_{\omega})(Q_{\omega}^{\perp} \otimes Q_{\omega}^{\perp}) = 0,$

Proof of $1 \Rightarrow$

We have

$$I \hspace{-.5ex} I \hspace{-.5e$$

2
$$\Delta({old Q}_\omega)({old Q}_\omega^\perp\otimes {old Q}_\omega^\perp)=0$$
 ,

$$\Im R(Q_{\omega}) = Q_{\omega} \text{ and } \tau_t(Q_{\omega}) = Q_{\omega} \text{ for all } t \in \mathbb{R}.$$

Proof of $1 \Rightarrow$

Suppose that $x \in N_{\omega}$.

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

2
$$\Delta(Q_\omega)(Q_\omega^\perp\otimes Q_\omega^\perp)=0,$$

$$\Im R(Q_{\omega}) = Q_{\omega} \text{ and } \tau_t(Q_{\omega}) = Q_{\omega} \text{ for all } t \in \mathbb{R}.$$

Proof of $\mathbb{Q} \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

2
$$\Delta(Q_\omega)(Q_\omega^\perp\otimes Q_\omega^\perp)=0,$$

$$\Im$$
 $R(Q_{\omega}) = Q_{\omega}$ and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$, so $(id \otimes \omega)(\Delta(x^*x)) = x^*x$.

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$\ \ \, {\bf 2} \ \ \, \Delta({\boldsymbol Q}_{\omega})({\boldsymbol Q}_{\omega}^{\perp}\otimes{\boldsymbol Q}_{\omega}^{\perp})=0,$$

$$\Im$$
 $R(Q_{\omega}) = Q_{\omega}$ and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$, so $(id \otimes \omega)(\Delta(x^*x)) = x^*x$. In particular

$$\begin{aligned} (\mathrm{id}\otimes\omega)\big((\Delta(x)-x\otimes\mathbb{1})^*(\Delta(x)-x\otimes\mathbb{1})\big)\\ &=(\mathrm{id}\otimes\omega)\big(\Delta(x^*x)-\Delta(x^*)(x\otimes\mathbb{1})-(x^*\otimes\mathbb{1})\Delta(x)+x^*x\otimes\mathbb{1}\big)\end{aligned}$$

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$\Im$$
 $R(Q_{\omega}) = Q_{\omega}$ and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$, so $(id \otimes \omega)(\Delta(x^*x)) = x^*x$. In particular

$$\begin{aligned} (\mathrm{id}\otimes\omega)\big((\Delta(x)-x\otimes\mathbb{1})^*(\Delta(x)-x\otimes\mathbb{1})\big)\\ &=(\mathrm{id}\otimes\omega)\big(\Delta(x^*x)-\Delta(x^*)(x\otimes\mathbb{1})-(x^*\otimes\mathbb{1})\Delta(x)+x^*x\otimes\mathbb{1}\big)\\ &=x^*x-(\omega*x)^*x-x^*(\omega*x)+x^*x=0.\end{aligned}$$

We have

1
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$\ \ \, {\bf 2} \ \ \, \Delta({\boldsymbol Q}_{\omega})({\boldsymbol Q}_{\omega}^{\perp}\otimes{\boldsymbol Q}_{\omega}^{\perp})=0,$$

$$\Im$$
 $R(Q_{\omega}) = Q_{\omega}$ and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $1 \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$, so $(id \otimes \omega)(\Delta(x^*x)) = x^*x$. In particular

$$\begin{aligned} (\mathrm{id} \otimes \omega) \big((\Delta(x) - x \otimes \mathbb{1})^* (\Delta(x) - x \otimes \mathbb{1}) \big) \\ &= (\mathrm{id} \otimes \omega) \big(\Delta(x^* x) - \Delta(x^*) (x \otimes \mathbb{1}) - (x^* \otimes \mathbb{1}) \Delta(x) + x^* x \otimes \mathbb{1} \big) \\ &= x^* x - (\omega * x)^* x - x^* (\omega * x) + x^* x = \mathbf{0}. \end{aligned}$$

It follows that $(\mathbbm{1} \otimes Q_{\omega}^{\perp}) (\Delta(x) - x \otimes \mathbbm{1})^* (\Delta(x) - x \otimes \mathbbm{1}) (\mathbbm{1} \otimes Q_{\omega}^{\perp}) = 0$

We have

()
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$\ \ \, {\bf 2} \ \ \, \Delta({\boldsymbol Q}_{\omega})({\boldsymbol Q}_{\omega}^{\perp}\otimes{\boldsymbol Q}_{\omega}^{\perp})=0,$$

$$\Im$$
 $R(Q_{\omega}) = Q_{\omega}$ and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $\mathbb{Q} \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$, so $(id \otimes \omega)(\Delta(x^*x)) = x^*x$. In particular

$$\begin{aligned} (\mathrm{id} \otimes \omega) \big((\Delta(x) - x \otimes \mathbb{1})^* (\Delta(x) - x \otimes \mathbb{1}) \big) \\ &= (\mathrm{id} \otimes \omega) \big(\Delta(x^* x) - \Delta(x^*) (x \otimes \mathbb{1}) - (x^* \otimes \mathbb{1}) \Delta(x) + x^* x \otimes \mathbb{1} \big) \\ &= x^* x - (\omega * x)^* x - x^* (\omega * x) + x^* x = 0. \end{aligned}$$

It follows that $(\mathbb{1} \otimes Q_{\omega}^{\perp}) (\Delta(x) - x \otimes \mathbb{1})^* (\Delta(x) - x \otimes \mathbb{1}) (\mathbb{1} \otimes Q_{\omega}^{\perp}) = 0$, and thus $(\Delta(x) - x \otimes \mathbb{1}) (\mathbb{1} \otimes Q_{\omega}^{\perp}) = 0$

We have

1
$$x \in N_{\omega}$$
 if and only if $\Delta(x)(\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$,

$$\Im$$
 $R(Q_{\omega}) = Q_{\omega}$ and $\tau_t(Q_{\omega}) = Q_{\omega}$ for all $t \in \mathbb{R}$.

Proof of $1 \Rightarrow$

Suppose that $x \in N_{\omega}$. Then $x^*x \in N_{\omega}$, so $(id \otimes \omega)(\Delta(x^*x)) = x^*x$. In particular

$$\begin{aligned} (\mathrm{id} \otimes \omega) \big((\Delta(x) - x \otimes \mathbb{1})^* (\Delta(x) - x \otimes \mathbb{1}) \big) \\ &= (\mathrm{id} \otimes \omega) \big(\Delta(x^* x) - \Delta(x^*) (x \otimes \mathbb{1}) - (x^* \otimes \mathbb{1}) \Delta(x) + x^* x \otimes \mathbb{1} \big) \\ &= x^* x - (\omega * x)^* x - x^* (\omega * x) + x^* x = 0. \end{aligned}$$

It follows that $(\mathbb{1} \otimes Q_{\omega}^{\perp}) (\Delta(x) - x \otimes \mathbb{1})^* (\Delta(x) - x \otimes \mathbb{1}) (\mathbb{1} \otimes Q_{\omega}^{\perp}) = 0$, and thus $(\Delta(x) - x \otimes \mathbb{1}) (\mathbb{1} \otimes Q_{\omega}^{\perp}) = 0$, i.e. $\Delta(x) (\mathbb{1} \otimes Q_{\omega}^{\perp}) = x \otimes Q_{\omega}^{\perp}$.

Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$

Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$

Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$ and S(P) = P.

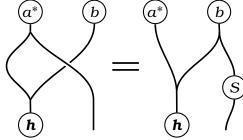
Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$ and S(P) = P. Then P^{\perp} is group-like.

Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$ and S(P) = P. Then P^{\perp} is group-like.

 The proof uses **strong right invariance** of the right Haar measure *h* of ℍ

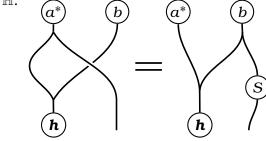
Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$ and S(P) = P. Then P^{\perp} is group-like.

The proof uses strong right invariance of the right Haar measure *h* of ℍ:



Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$ and S(P) = P. Then P^{\perp} is group-like.

The proof uses strong right invariance of the right Haar measure *h* of ℍ:



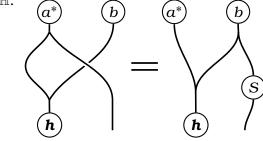
COROLLARY

P.M. SOŁTAN (WARSAW)

LATTICE OF IDEMPOTENT STATES

Let \mathbb{H} be a locally compact quantum group and let $P \in L^{\infty}(\mathbb{H})$ be a projection satisfying $\Delta(P)(P^{\perp} \otimes P^{\perp}) = 0$, $P \in D(S)$ and S(P) = P. Then P^{\perp} is group-like.

The proof uses strong right invariance of the right Haar measure *h* of ℍ:



COROLLARY

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then Q_{ω}^{\perp} is a group-like projection.

P.M. SOŁTAN (WARSAW)

LATTICE OF IDEMPOTENT STATES

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

SKETCH OF PROOF

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

Sketch of proof Take arbitrary $x \in N_{\omega}$.

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

SKETCH OF PROOF

Take arbitrary $x \in N_{\omega}$. Then

$$\Delta(\boldsymbol{x})(\mathbb{1}\otimes \boldsymbol{Q}_{\omega}^{\perp})=\boldsymbol{x}\otimes \boldsymbol{Q}_{\omega}^{\perp}$$

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

SKETCH OF PROOF

Take arbitrary $x \in N_{\omega}$. Then

 $\Delta(x)(\mathbb{1}\otimes Q_{\omega}^{\perp})=x\otimes Q_{\omega}^{\perp}\quad\text{and}\quad(\mathbb{1}\otimes Q_{\omega}^{\perp})\Delta(x)=x\otimes Q_{\omega}^{\perp}.$

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

SKETCH OF PROOF

Take arbitrary $x \in N_{\omega}$. Then

 $\Delta(x)(\mathbbm{1}\otimes Q_{\omega}^{\perp})=x\otimes Q_{\omega}^{\perp}\quad\text{and}\quad(\mathbbm{1}\otimes Q_{\omega}^{\perp})\Delta(x)=x\otimes Q_{\omega}^{\perp}.$

It follows that for any $\mu \in L^{\infty}(\mathbb{G})_*$ we have

$$(\mu \otimes \mathrm{id}) \big(\Delta(x) \big) Q_\omega^\perp = \mu(x) Q_\omega^\perp = Q_\omega^\perp(\mu \otimes \mathrm{id}) \big(\Delta(x) \big).$$

 $Q_{\omega}^{\perp} \in \mathsf{N}_{\omega}.$

• This is immediate from last proposition and corollary.

THEOREM

 Q_{ω}^{\perp} is central and minimal in N $_{\omega}$.

SKETCH OF PROOF

Take arbitrary $x \in N_{\omega}$. Then

 $\Delta(x)(\mathbbm{1}\otimes Q_{\omega}^{\perp})=x\otimes Q_{\omega}^{\perp}\quad\text{and}\quad(\mathbbm{1}\otimes Q_{\omega}^{\perp})\Delta(x)=x\otimes Q_{\omega}^{\perp}.$

It follows that for any $\mu \in L^{\infty}(\mathbb{G})_*$ we have

 $(\mu \otimes \mathrm{id}) \big(\Delta(\mathbf{x}) \big) \mathbf{Q}_{\omega}^{\perp} = \mu(\mathbf{x}) \mathbf{Q}_{\omega}^{\perp} = \mathbf{Q}_{\omega}^{\perp} (\mu \otimes \mathrm{id}) \big(\Delta(\mathbf{x}) \big).$

The result follows from σ -weak linear density of elements of the form $(\mu \otimes id)(\Delta(x))$ in N_{ω} .

The projection Q_{ω}^{\perp} is integrable for the right Haar measure of \mathbb{G} .

The projection Q_{ω}^{\perp} is integrable for the right Haar measure of \mathbb{G} .

• As corollaries of this we have the following:

- As corollaries of this we have the following:
 - the scaling constant of \mathbb{G} must be equal to 1,

- As corollaries of this we have the following:
 - the scaling constant of \mathbb{G} must be equal to 1, $(Q_{\omega}^{\perp} \text{ is a non-zero, positive, } \tau \text{-invariant integrable element});$

- As corollaries of this we have the following:
 - the scaling constant of G must be equal to 1,
 (*Q*[⊥]_ω is a non-zero, positive, *τ*-invariant integrable element);
 if G is discrete

- As corollaries of this we have the following:
 - the scaling constant of \mathbb{G} must be equal to 1, $(Q_{\omega}^{\perp} \text{ is a non-zero, positive, } \tau \text{-invariant integrable element);}$
 - if $\mathbb G$ is discrete then the support of $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb G)$ in

$$\mathrm{c}_{\mathbf{0}}(\mathbb{G}) = \bigoplus_{\alpha \in \mathrm{Irr}\,\widehat{\mathbb{G}}} M_{n_{\alpha}}(\mathbb{C})$$

The projection Q_{ω}^{\perp} is integrable for the right Haar measure of \mathbb{G} .

- As corollaries of this we have the following:
 - the scaling constant of G must be equal to 1,
 (Q[⊥]_ω is a non-zero, positive, *τ*-invariant integrable element);
 if G is discrete then the support of ω ∈ Idom. (G) in
 - if \mathbb{G} is discrete then the support of $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ in

$$\mathrm{c}_{0}(\mathbb{G}) = \bigoplus_{\alpha \in \mathrm{Irr}\,\widehat{\mathbb{G}}} M_{n_{\alpha}}(\mathbb{C})$$

is finite

The projection Q_{ω}^{\perp} is integrable for the right Haar measure of \mathbb{G} .

- As corollaries of this we have the following:
 - the scaling constant of G must be equal to 1, (Q_{α}^{\perp}) is a non-zero, positive, τ -invariant integrable element);
 - if \mathbb{G} is discrete then the support of $\omega \in \text{Idem}_{nor}(\mathbb{G})$ in

$$\mathrm{c}_{0}(\mathbb{G}) = \bigoplus_{\alpha \in \mathrm{Irr}\,\widehat{\mathbb{G}}} M_{n_{\alpha}}(\mathbb{C})$$

is finite (this follows from formula for **h**).

THEOREM

THEOREM

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$

THEOREM

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(\mathbf{x}) = \frac{\mathbf{h}(Q_{\omega}^{\perp} \mathbf{x} Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad \mathbf{x} \in L^{\infty}(\mathbb{G})$$

THEOREM

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(\boldsymbol{x}) = \frac{\boldsymbol{h}(\boldsymbol{Q}_{\omega}^{\perp} \boldsymbol{x} \boldsymbol{Q}_{\omega}^{\perp})}{\boldsymbol{h}(\boldsymbol{Q}_{\omega}^{\perp})}, \qquad \boldsymbol{x} \in L^{\infty}(\mathbb{G}).$$

SKETCH OF PROOF

THEOREM

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{oldsymbol{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{\mathbf{h}(Q_\omega^{\perp} x Q_\omega^{\perp})}{\mathbf{h}(Q_\omega^{\perp})}, \qquad x \in L^\infty(\mathbb{G}).$$

THEOREM

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{oldsymbol{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{\mathbf{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

Then θ is a normal state

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_\omega^{\perp} x Q_\omega^{\perp})}{oldsymbol{h}(Q_\omega^{\perp})}, \qquad x \in L^\infty(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{\mathbf{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

Then θ is a normal state and $\theta * \theta = \theta$

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{\mathbf{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{\mathbf{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

Then θ is a normal state and $\theta * \theta = \theta$ (because Q_{ω}^{\perp} is a group-like projection).

P.M. SOŁTAN (WARSAW)

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_\omega^{\perp} x Q_\omega^{\perp})}{oldsymbol{h}(Q_\omega^{\perp})}, \qquad x \in L^\infty(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{\mathbf{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

Then θ is a normal state and $\theta * \theta = \theta$ (because Q_{ω}^{\perp} is a group-like projection). Easy to see: $Q_{\theta} = Q_{\omega}$

P.M. SOŁTAN (WARSAW)

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_\omega^{\perp} x Q_\omega^{\perp})}{oldsymbol{h}(Q_\omega^{\perp})}, \qquad x \in L^\infty(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{\mathbf{h}(Q_{\omega}^{\perp} x Q_{\omega}^{\perp})}{\mathbf{h}(Q_{\omega}^{\perp})}, \qquad x \in L^{\infty}(\mathbb{G}).$$

Then θ is a normal state and $\theta * \theta = \theta$ (because Q_{ω}^{\perp} is a group-like projection).

Easy to see: $Q_{\theta} = Q_{\omega}$, and since Q_{θ} determines N_{θ}

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_\omega^{\perp} x Q_\omega^{\perp})}{oldsymbol{h}(Q_\omega^{\perp})}, \qquad x \in L^\infty(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{oldsymbol{h}(Q_\omega^\perp x Q_\omega^\perp)}{oldsymbol{h}(Q_\omega^\perp)}, \qquad x \in L^\infty(\mathbb{G}).$$

Then θ is a normal state and $\theta * \theta = \theta$ (because Q_{ω}^{\perp} is a group-like projection). Easy to see: $Q_{\theta} = Q_{\omega}$, and since Q_{θ} determines N_{θ} , we have

 $N_{\theta} = N_{\omega}.$

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$ then

$$\omega(x) = rac{oldsymbol{h}(Q_\omega^{\perp} x Q_\omega^{\perp})}{oldsymbol{h}(Q_\omega^{\perp})}, \qquad x \in L^\infty(\mathbb{G}).$$

SKETCH OF PROOF

Define θ by

$$heta(x) = rac{oldsymbol{h}(Q_\omega^\perp x Q_\omega^\perp)}{oldsymbol{h}(Q_\omega^\perp)}, \qquad x \in L^\infty(\mathbb{G}).$$

Then θ is a normal state and $\theta * \theta = \theta$ (because Q_{ω}^{\perp} is a group-like projection).

Easy to see: $Q_{\theta} = Q_{\omega}$, and since Q_{θ} determines N_{θ} , we have $N_{\theta} = N_{\omega}$. Therefore $\omega = \theta$.

PROPOSITION

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then

$$P_{\omega} = (\mathrm{id} \otimes \omega)(\mathrm{W}) \in L^{\infty}(\widehat{\mathbb{G}})$$

is integrable with respect to $\hat{\mathbf{h}}$.

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then

$$P_{\omega} = (\mathrm{id} \otimes \omega)(\mathrm{W}) \in L^{\infty}(\widehat{\mathbb{G}})$$

is integrable with respect to \hat{h} .

• The proof relies on modular theory and results of Faal-Kasprzak.

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then

$$P_{\omega} = (\mathrm{id} \otimes \omega)(\mathrm{W}) \in L^{\infty}(\widehat{\mathbb{G}})$$

is integrable with respect to \hat{h} .

- The proof relies on modular theory and results of Faal-Kasprzak.
- The next theorem uses **co-duality** for coideals.

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then

$$P_{\omega} = (\mathrm{id} \otimes \omega)(\mathrm{W}) \in L^{\infty}(\widehat{\mathbb{G}})$$

is integrable with respect to \hat{h} .

- The proof relies on modular theory and results of Faal-Kasprzak.
- The next theorem uses **co-duality** for coideals. Let $N \subset L^{\infty}(\mathbb{G})$ be a left coideal.

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then

$$P_{\omega} = (\mathrm{id} \otimes \omega)(\mathrm{W}) \in L^{\infty}(\widehat{\mathbb{G}})$$

is integrable with respect to \hat{h} .

- The proof relies on modular theory and results of Faal-Kasprzak.
- The next theorem uses **co-duality** for coideals. Let $N \subset L^{\infty}(\mathbb{G})$ be a left coideal. Then

$$\widetilde{\mathsf{N}} = \mathsf{N}' \cap L^{\infty}(\widehat{\mathbb{G}})$$

is a left coideal in $L^{\infty}(\widehat{\mathbb{G}})$.

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then

$$P_{\omega} = (\mathrm{id} \otimes \omega)(\mathrm{W}) \in L^{\infty}(\widehat{\mathbb{G}})$$

is integrable with respect to \hat{h} .

- The proof relies on modular theory and results of Faal-Kasprzak.
- The next theorem uses **co-duality** for coideals. Let $N \subset L^{\infty}(\mathbb{G})$ be a left coideal. Then

$$\widetilde{\mathsf{N}} = \mathsf{N}' \cap L^{\infty}(\widehat{\mathbb{G}})$$

is a left coideal in $L^{\infty}(\widehat{\mathbb{G}})$. We have $\widetilde{\widetilde{\mathbb{N}}} = \mathbb{N}$.

THEOREM

THEOREM

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$.

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. Moreover

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. Moreover

the mapping

 $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) \ni \omega \longmapsto \widetilde{\omega} \in \mathrm{Idem}_{\mathrm{nor}}(\widehat{\mathbb{G}})$

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. Moreover

the mapping

$$\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G}) \ni \omega \longmapsto \widetilde{\omega} \in \mathrm{Idem}_{\mathrm{nor}}(\widehat{\mathbb{G}})$$

satisfies $\tilde{\widetilde{\omega}} = \omega$ for all ω ,

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. Moreover

the mapping

$$\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \ni \omega \longmapsto \widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$$

satisfies $\tilde{\widetilde{\omega}} = \omega$ for all ω ,

$$ullet$$
 we have $Q_{\widetilde{\omega}}^{\perp}=P_{\omega}$ and $P_{\widetilde{\omega}}=Q_{\omega}^{\perp}.$

Let $\omega \in \text{Idem}_{nor}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \text{Idem}_{nor}(\widehat{\mathbb{G}})$ such that $\widetilde{N_{\omega}} = N_{\widetilde{\omega}}$. Moreover

the mapping

$$\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \ni \omega \longmapsto \widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$$

satisfies $\tilde{\widetilde{\omega}} = \omega$ for all ω ,

• we have
$$Q_{\widetilde{\omega}}^{\perp}=P_{\omega}$$
 and $P_{\widetilde{\omega}}=Q_{\omega}^{\perp}.$

• We have

$$\widetilde{\omega}(\boldsymbol{y}) = rac{\widehat{\boldsymbol{h}}(P_{\omega}\,\boldsymbol{y}\,P_{\omega})}{\widehat{\boldsymbol{h}}(P_{\omega})}, \qquad \boldsymbol{y} \in L^{\infty}(\widehat{\mathbb{G}}).$$

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. Moreover

the mapping

$$\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \ni \omega \longmapsto \widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$$

satisfies $\tilde{\widetilde{\omega}} = \omega$ for all ω ,

• we have
$$Q_{\widetilde{\omega}}^{\perp}=P_{\omega}$$
 and $P_{\widetilde{\omega}}=Q_{\omega}^{\perp}.$

• We have

$$\widetilde{\omega}(\boldsymbol{y}) = rac{\widehat{\boldsymbol{h}}(P_{\omega}\,\boldsymbol{y}\,P_{\omega})}{\widehat{\boldsymbol{h}}(P_{\omega})}, \qquad \boldsymbol{y} \in L^{\infty}(\widehat{\mathbb{G}}).$$

• Important ingredient of the proof:

$$\widetilde{\mathsf{N}_{\omega}} = \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \big| \, \widehat{\Delta}(y)(\mathbb{1} \otimes P_{\omega}) = y \otimes P_{\omega} \right\}$$

Let $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$. Then there exists a unique $\widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$ such that $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. Moreover

the mapping

$$\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G}) \ni \omega \longmapsto \widetilde{\omega} \in \operatorname{Idem}_{\operatorname{nor}}(\widehat{\mathbb{G}})$$

satisfies $\tilde{\widetilde{\omega}} = \omega$ for all ω ,

• we have
$$Q_{\widetilde{\omega}}^{\perp}=P_{\omega}$$
 and $P_{\widetilde{\omega}}=Q_{\omega}^{\perp}.$

• We have

$$\widetilde{\omega}(\boldsymbol{y}) = rac{\widehat{\boldsymbol{h}}(P_{\omega}\,\boldsymbol{y}P_{\omega})}{\widehat{\boldsymbol{h}}(P_{\omega})}, \qquad \quad \boldsymbol{y} \in L^{\infty}(\widehat{\mathbb{G}}).$$

• Important ingredient of the proof:

$$\widetilde{\mathsf{N}_{\omega}} = \left\{ y \in L^{\infty}(\widehat{\mathbb{G}}) \, \big| \, \widehat{\Delta}(y)(\mathbb{1} \otimes P_{\omega}) = y \otimes P_{\omega} \right\}$$

(Faal-Kasprzak).

• By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between

- By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between
 - normal open quantum subgroups of a l.c.q.g. G,

- By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between
 - normal open quantum subgroups of a l.c.q.g. G,
 - normal compact quantum subgroups of $\widehat{\mathbb{G}}$.

- By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between
 - normal open quantum subgroups of a l.c.q.g. G,
 - normal compact quantum subgroups of $\widehat{\mathbb{G}}$.
- Our theorem gives a bijection between

- By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between
 - normal open quantum subgroups of a l.c.q.g. G,
 - normal compact quantum subgroups of $\widehat{\mathbb{G}}$.
- Our theorem gives a bijection between
 - ${\ensuremath{\,\circ}}$ compact open quasi-subgroups of ${\ensuremath{\mathbb G}},$

- By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between
 - normal open quantum subgroups of a l.c.q.g. G,
 - normal compact quantum subgroups of $\widehat{\mathbb{G}}$.
- Our theorem gives a bijection between
 - compact open quasi-subgroups of G,
 - compact open quasi-subgroups of $\widehat{\mathbb{G}}$.

- By the work of Kalantar-Kasprzak-Skalski on open quantum subgroups of locally compact quantum groups we have a bijective correspondence between
 - normal open quantum subgroups of a l.c.q.g. G,
 - normal compact quantum subgroups of $\widehat{\mathbb{G}}$.
- Our theorem gives a bijection between
 - ${\ensuremath{\,\circ}}$ compact open quasi-subgroups of ${\ensuremath{\mathbb G}},$
 - compact open quasi-subgroups of $\widehat{\mathbb{G}}$.
- The latter is, in fact, an extension of a special case of the former.

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN)

Theorem (De Commer-Kasprzak-Skalski-Sołtan) Let $\mathbb G$ be a compact quantum group acting ergodically on a von Neumann algebra N

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN) Let \mathbb{G} be a compact quantum group acting ergodically on a von Neumann algebra N with a finite-dimensional direct summand.

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN) Let \mathbb{G} be a compact quantum group acting ergodically on a von Neumann algebra N with a finite-dimensional direct summand. Then dim N < + ∞ .

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN) Let \mathbb{G} be a compact quantum group acting ergodically on a von

Neumann algebra N with a finite-dimensional direct summand. Then $\dim N < +\infty$.

• An action $\alpha : \mathbb{N} \to L^{\infty}(\mathbb{G}) \bar{\otimes} \mathbb{N}$

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN) Let \mathbb{G} be a compact quantum group acting ergodically on a von Neumann algebra N with a finite-dimensional direct summand. Then dim N < + ∞ .

• An action $\alpha : \mathbb{N} \to L^{\infty}(\mathbb{G}) \bar{\otimes} \mathbb{N}$ is **ergodic**

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN)

Let \mathbb{G} be a compact quantum group acting ergodically on a von Neumann algebra N with a finite-dimensional direct summand. Then $\dim N < +\infty$.

• An action $\alpha : \mathbb{N} \to L^{\infty}(\mathbb{G}) \bar{\otimes} \mathbb{N}$ is **ergodic** if

$$\left(\alpha(\mathbf{x}) = \mathbb{1} \otimes \mathbf{x} \right) \Longrightarrow \left(\mathbf{x} \in \mathbb{C} \mathbb{1} \right)$$

for all $x \in N$.

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOŁTAN)

Let \mathbb{G} be a compact quantum group acting ergodically on a von Neumann algebra N with a finite-dimensional direct summand. Then $\dim N < +\infty$.

• An action $\alpha : \mathbb{N} \to L^{\infty}(\mathbb{G}) \bar{\otimes} \mathbb{N}$ is **ergodic** if

$$\left(\alpha(\mathbf{x}) = \mathbb{1} \otimes \mathbf{x} \right) \Longrightarrow \left(\mathbf{x} \in \mathbb{C} \mathbb{1} \right)$$

for all $x \in N$.

• The natural action of \mathbb{G} on a coideal $\mathsf{N} \subset L^{\infty}(\mathbb{G})$ is ergodic.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

 $PROOF \Rightarrow$

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

 $PROOF \Rightarrow$

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then N_{ω} admits a minimal central projection

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$PROOF \Rightarrow$

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then N_{ω} admits a minimal central projection, so it has a finite dimensional direct summand.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$PROOF \Rightarrow$

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then N_{ω} admits a minimal central projection, so it has a finite dimensional direct summand. Also the action of \mathbb{G} on N_{ω} is ergodic.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$PROOF \Rightarrow$

If $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$ then N_{ω} admits a minimal central projection, so it has a finite dimensional direct summand. Also the action of \mathbb{G} on N_{ω} is ergodic. By theorem on ergodic actions of c.q.g.'s on such von Neumann algebras we have $\dim N_{\omega} < +\infty$.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

 $Proof \leftarrow$

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$PROOF \Leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$Proof \Leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$, so $\hat{h}(P_{\omega}) < +\infty$.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$Proof \Leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$, so $\hat{h}(P_{\omega}) < +\infty$. Therefore

$$\widetilde{\omega}(y) = rac{\widehat{\mathbf{h}}(P_{\omega} y P_{\omega})}{\widehat{\mathbf{h}}(P_{\omega})}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal idempotent state

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$PROOF \Leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$, so $\hat{h}(P_{\omega}) < +\infty$. Therefore

$$\widetilde{\omega}(y) = rac{\widehat{oldsymbol{h}}(P_{\omega} \, y \, P_{\omega})}{\widehat{oldsymbol{h}}(P_{\omega})}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal idempotent state and $\widetilde{N_{\omega}} = N_{\widetilde{\omega}}$.

Let \mathbb{G} be a compact quantum group and $\omega \in \mathrm{Idem}(\mathbb{G})$. Then $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$Proof \leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$, so $\hat{h}(P_{\omega}) < +\infty$. Therefore

$$\widetilde{\omega}(y) = rac{\widehat{oldsymbol{h}}(P_{\omega} \, y \, P_{\omega})}{\widehat{oldsymbol{h}}(P_{\omega})}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal idempotent state and $\widetilde{N_{\omega}} = N_{\widetilde{\omega}}$. It follows that $\omega = \widetilde{\widetilde{\omega}}$

Let \mathbb{G} be a compact quantum group and $\omega \in \mathrm{Idem}(\mathbb{G})$. Then $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$Proof \leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$, so $\hat{h}(P_{\omega}) < +\infty$. Therefore

$$\widetilde{\omega}(y) = rac{\widehat{oldsymbol{h}}(P_{\omega} \, y \, P_{\omega})}{\widehat{oldsymbol{h}}(P_{\omega})}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal idempotent state and $\widetilde{N_{\omega}} = N_{\widetilde{\omega}}$. It follows that $\omega = \widetilde{\widetilde{\omega}}$ and so $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then $\omega \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\dim N_{\omega} < +\infty$.

$Proof \leftarrow$

 P_{ω} is a projection onto the finite-dimensional space $L^2(N_{\omega})$, so $\hat{h}(P_{\omega}) < +\infty$. Therefore

$$\widetilde{\omega}(y) = rac{\widehat{oldsymbol{h}}(P_{\omega} y P_{\omega})}{\widehat{oldsymbol{h}}(P_{\omega})}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal idempotent state and $\widetilde{\mathsf{N}_{\omega}} = \mathsf{N}_{\widetilde{\omega}}$. It follows that $\omega = \widetilde{\widetilde{\omega}}$ and so $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$.

COROLLARY Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$, so N_{ω} is a direct sum of matrix algebras.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$, so N_{ω} is a direct sum of matrix algebras. Conversely

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$, so N_{ω} is a direct sum of matrix algebras. Conversely, if N_{ω} has a finite dimensional direct summand

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$, so N_{ω} is a direct sum of matrix algebras. Conversely, if N_{ω} has a finite dimensional direct summand then by theorem on ergodic actions we have $\dim N_{\omega} < +\infty$

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$, so N_{ω} is a direct sum of matrix algebras. Conversely, if N_{ω} has a finite dimensional direct summand then by theorem on ergodic actions we have $\dim N_{\omega} < +\infty$, so $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ previous theorem.

Let \mathbb{G} be a compact quantum group and $\omega \in \text{Idem}(\mathbb{G})$. Then N_{ω} has a finite dimensional direct summand if and only if $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

If $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ then $\dim N_{\omega} < +\infty$, so N_{ω} is a direct sum of matrix algebras. Conversely, if N_{ω} has a finite dimensional direct summand then by theorem on ergodic actions we have $\dim N_{\omega} < +\infty$, so $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ previous theorem.

PROPOSITION Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \mathrm{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$.

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \mathrm{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

We know that the coideal N_{ω} is integrable

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

We know that the coideal N_ω is integrable, so as $\dim N_\omega<+\infty,$ we have $\bm{h}(1)<+\infty$

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

We know that the coideal N_{ω} is integrable, so as $\dim N_{\omega} < +\infty$, we have $h(1) < +\infty$, so that \mathbb{G} is compact.

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

We know that the coideal N_{ω} is integrable, so as $\dim N_{\omega} < +\infty$, we have $h(1) < +\infty$, so that \mathbb{G} is compact. The last statement follows from characterization of normal idempotent states on compact quantum groups.

Let \mathbb{G} be a locally compact quantum group and let $\omega \in \text{Idem}(\mathbb{G})$ be such that $\dim N_{\omega} < +\infty$. Then \mathbb{G} is compact and consequently $\omega \in \text{Idem}_{nor}(\mathbb{G})$.

Proof

We know that the coideal N_{ω} is integrable, so as $\dim N_{\omega} < +\infty$, we have $h(1) < +\infty$, so that \mathbb{G} is compact. The last statement follows from characterization of normal idempotent states on compact quantum groups.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(N)$.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like

 $\hat{\Delta}^{\operatorname{op}}(P)(P\otimes \mathbb{1})=P\otimes P.$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

 $\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

$$\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$$

This follows from the calculation

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

 $\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes\mathbb{1})=P\otimes P.$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

 $\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

 $\mathbf{W}^*(\mathbb{1}\otimes P)\mathbf{W}(P\otimes\mathbb{1})\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big)$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

 $\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

 $\mathbf{W}^*(\mathbb{1}\otimes P)\mathbf{W}(P\otimes\mathbb{1})\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) = \mathbf{W}^*(\mathbb{1}\otimes P)\mathbf{W}\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big)$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

 $\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

$$\begin{split} \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}(P\otimes\mathbbm{1})\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) &= \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) \\ &= \mathbf{W}^*(\mathbbm{1}\otimes P)\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi})\big) \end{split}$$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

$$\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

$$\begin{split} \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}(P\otimes\mathbbm{1})\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) &= \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) \\ &= \mathbf{W}^*(\mathbbm{1}\otimes P)\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi})\big) \\ &= \mathbf{W}^*\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes P\boldsymbol{\xi})\big) \end{split}$$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

$$\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1}) = P\otimes P.$$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

$$\begin{split} \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}(P\otimes\mathbbm{1})\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) &= \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big)\\ &= \mathbf{W}^*(\mathbbm{1}\otimes P)\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi})\big)\\ &= \mathbf{W}^*\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes P\boldsymbol{\xi})\big) = \mathbf{x}\Omega_{\mathbf{h}}\otimes P\boldsymbol{\xi}, \end{split}$$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let *P* be the projection onto $L^{\infty}(\mathbb{N})$. One can demonstrate that $P \in \ell^{\infty}(\widehat{\mathbb{G}})$. Then we show that *P* is group-like: it is enough to see that

$$\widehat{\Delta}^{\mathrm{op}}(P)(P\otimes \mathbb{1})=P\otimes P.$$

This follows from the calculation: take $\xi \in L^2(\mathbb{G})$ and $x \in \mathbb{N}$

$$\begin{split} \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}(P\otimes\mathbbm{1})\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big) &= \mathbf{W}^*(\mathbbm{1}\otimes P)\mathbf{W}\big(\mathbf{x}\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi}\big)\\ &= \mathbf{W}^*(\mathbbm{1}\otimes P)\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes\boldsymbol{\xi})\big)\\ &= \mathbf{W}^*\big(\Delta(\mathbf{x})(\Omega_{\mathbf{h}}\otimes P\boldsymbol{\xi})\big) = \mathbf{x}\Omega_{\mathbf{h}}\otimes P\boldsymbol{\xi}, \end{split}$$

with Ω_h – the cyclic vector in the GNS representation of $L^{\infty}(\mathbb{G})$.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable (it has "finite support")

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that P is integrable (it has "finite support"), so that

$$\mu(\boldsymbol{y}) = \frac{\boldsymbol{h}(P \boldsymbol{y} P)}{\hat{\boldsymbol{h}}(P)}, \qquad \boldsymbol{y} \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that P is integrable (it has "finite support"), so that

$$\mu(\boldsymbol{y}) = \frac{\widehat{\boldsymbol{h}}(P \, \boldsymbol{y} P)}{\widehat{\boldsymbol{h}}(P)}, \qquad \boldsymbol{y} \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state. Moreover μ is idempotent because P is a group-like projection

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable (it has "finite support"), so that

$$u(y) = rac{\hat{h}(PyP)}{\hat{h}(P)}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state. Moreover μ is idempotent because P is a group-like projection and $P = Q_{\mu}^{\perp}$.

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable (it has "finite support"), so that

$$\mu(\boldsymbol{y}) = \frac{\widehat{\boldsymbol{h}}(P \, \boldsymbol{y} P)}{\widehat{\boldsymbol{h}}(P)}, \qquad \boldsymbol{y} \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state. Moreover μ is idempotent because *P* is a group-like projection and $P = Q_{\mu}^{\perp}$. Thus $P = P_{\tilde{\mu}}$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \text{Idem}_{nor}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable (it has "finite support"), so that

$$u(y) = rac{\hat{h}(PyP)}{\hat{h}(P)}, \qquad y \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state. Moreover μ is idempotent because *P* is a group-like projection and $P = Q_{\mu}^{\perp}$. Thus $P = P_{\tilde{\mu}}$ and consequently

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable (it has "finite support"), so that

$$\mu(\boldsymbol{y}) = rac{\widehat{\boldsymbol{h}}(P\,\boldsymbol{y}P)}{\widehat{\boldsymbol{h}}(P)}, \qquad \boldsymbol{y} \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state. Moreover μ is idempotent because P is a group-like projection and $P = Q_{\mu}^{\perp}$. Thus $P = P_{\tilde{\mu}}$ and consequently, setting $\omega = \tilde{\mu}$

Let \mathbb{G} be a compact quantum group and $N \subset L^{\infty}(\mathbb{G})$ a finite dimensional coideal. Then there exists $\omega \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ such that $N = N_{\omega}$. In particular N is τ -invariant.

IDEA OF PROOF

Next we show that *P* is integrable (it has "finite support"), so that

$$\mu(\boldsymbol{y}) = rac{\widehat{\boldsymbol{h}}(P\,\boldsymbol{y}\,P)}{\widehat{\boldsymbol{h}}(P)}, \qquad \boldsymbol{y} \in \ell^{\infty}(\widehat{\mathbb{G}})$$

is a normal state. Moreover μ is idempotent because *P* is a group-like projection and $P = Q_{\mu}^{\perp}$. Thus $P = P_{\tilde{\mu}}$ and consequently, setting $\omega = \tilde{\mu}$, we obtain $N = N_{\omega}$.

• \mathbb{G} — locally compact quantum group.

• \mathbb{G} — locally compact quantum group.

• If $\omega, \mu \in \text{Idem}_{\text{nor}}(\mathbb{G})$ and $\omega \lor \mu \neq \mathbf{0}$

- \mathbb{G} locally compact quantum group.
- If $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$ and $\omega \lor \mu \neq \text{Othen } \omega \lor \mu \in \text{Idem}_{nor}(\mathbb{G})$.

- \mathbb{G} locally compact quantum group.
- If $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$ and $\omega \lor \mu \neq \text{Othen } \omega \lor \mu \in \text{Idem}_{nor}(\mathbb{G})$.
- If $\mathbb H$ and $\mathbb K$ are compact open quantum subgroups of $\mathbb G$ then $\mathbb H \cap \mathbb K$ is open

- \mathbb{G} locally compact quantum group.
- If $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$ and $\omega \lor \mu \neq \text{Othen } \omega \lor \mu \in \text{Idem}_{nor}(\mathbb{G})$.
- If \mathbb{H} and \mathbb{K} are compact open quantum subgroups of \mathbb{G} then $\mathbb{H} \cap \mathbb{K}$ is open, so if ω and μ are Haar measures on \mathbb{H} and \mathbb{K}

- \mathbb{G} locally compact quantum group.
- If $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$ and $\omega \lor \mu \neq \text{Othen } \omega \lor \mu \in \text{Idem}_{nor}(\mathbb{G})$.
- If H and K are compact open quantum subgroups of G then H ∩ K is open, so if ω and μ are Haar measures on H and K then ω ∧ μ is normal.

- \mathbb{G} locally compact quantum group.
- If $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$ and $\omega \lor \mu \neq \text{Othen } \omega \lor \mu \in \text{Idem}_{nor}(\mathbb{G})$.
- If H and K are compact open quantum subgroups of G then H ∩ K is open, so if ω and μ are Haar measures on H and K then ω ∧ μ is normal.
- However, $\omega \wedge \mu$ is not necessarily normal.

Let \mathbbm{L} be a non-compact locally compact quantum group

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 .

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal).

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \hat{\mathbb{L}}$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu}_i$ for i = 1, 2.

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i=1,2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{nor}(\mathbb{G})$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{nor}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_i} = \widetilde{\mathsf{N}_{\mu_i}} = L^{\infty}(\widetilde{\mathbb{L}/\mathbb{H}_i}) = L^{\infty}(\widehat{\mathbb{H}_i}), \qquad i = 1, 2.$$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{nor}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_i} = \widetilde{\mathsf{N}_{\mu_i}} = L^{\infty}(\widetilde{\mathbb{L}}/\mathbb{H}_i) = L^{\infty}(\widehat{\mathbb{H}}_i), \qquad i = 1, 2.$$

Furthermore, since $\mathbb{L}=\widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_{i}} = \widetilde{\mathsf{N}_{\mu_{i}}} = L^{\widetilde{\infty}}(\widetilde{\mathbb{L}/\mathbb{H}}_{i}) = L^{\infty}(\widehat{\mathbb{H}_{i}}), \qquad \quad i = 1, \mathbf{2}.$$

Furthermore, since $\mathbb{L} = \widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2 , we have

$$\mathsf{N}_{\omega_1 \wedge \omega_2} = \mathsf{N}_{\omega_1} \vee \mathsf{N}_{\omega_2}$$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_{i}} = \widetilde{\mathsf{N}_{\mu_{i}}} = L^{\widetilde{\infty}}(\widetilde{\mathbb{L}/\mathbb{H}}_{i}) = L^{\infty}(\widehat{\mathbb{H}}_{i}), \qquad \quad i = 1, \mathbf{2}.$$

Furthermore, since $\mathbb{L} = \widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2 , we have

$$\mathsf{N}_{\omega_1 \wedge \omega_2} = \mathsf{N}_{\omega_1} \vee \mathsf{N}_{\omega_2} = L^{\infty}(\widehat{\mathbb{H}_1}) \vee L^{\infty}(\widehat{\mathbb{H}_2}) = L^{\infty}(\mathbb{G}),$$

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{nor}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_{i}} = \widetilde{\mathsf{N}_{\mu_{i}}} = L^{\widetilde{\infty}}(\widetilde{\mathbb{L}/\mathbb{H}}_{i}) = L^{\infty}(\widehat{\mathbb{H}}_{i}), \qquad \quad i = 1, \mathbf{2}.$$

Furthermore, since $\mathbb{L} = \widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2 , we have

$$\mathsf{N}_{\omega_1 \wedge \omega_2} = \mathsf{N}_{\omega_1} \vee \mathsf{N}_{\omega_2} = L^{\infty}(\widehat{\mathbb{H}_1}) \vee L^{\infty}(\widehat{\mathbb{H}_2}) = L^{\infty}(\mathbb{G}),$$

so $\omega_1 \wedge \omega_2$ must be the counit of \mathbb{G} .

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{nor}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_i} = \widetilde{\mathsf{N}_{\mu_i}} = L^{\infty}(\widetilde{\mathbb{L}/\mathbb{H}}_i) = L^{\infty}(\widehat{\mathbb{H}}_i), \qquad \quad i = 1, \mathbf{2}.$$

Furthermore, since $\mathbb{L} = \widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2 , we have

$$\mathsf{N}_{\omega_1 \wedge \omega_2} = \mathsf{N}_{\omega_1} \vee \mathsf{N}_{\omega_2} = L^{\infty}(\widehat{\mathbb{H}_1}) \vee L^{\infty}(\widehat{\mathbb{H}_2}) = L^{\infty}(\mathbb{G}),$$

so $\omega_1 \wedge \omega_2$ must be the counit of \mathbb{G} . However, the latter is normal if and only if \mathbb{G} is discrete

P.M. SOŁTAN (WARSAW)

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{\text{nor}}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_i} = \widetilde{\mathsf{N}_{\mu_i}} = L^{\infty}(\widetilde{\mathbb{L}/\mathbb{H}}_i) = L^{\infty}(\widehat{\mathbb{H}}_i), \qquad \quad i = 1, 2.$$

Furthermore, since $\mathbb{L} = \widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2 , we have

$$\mathsf{N}_{\omega_1 \wedge \omega_2} = \mathsf{N}_{\omega_1} \vee \mathsf{N}_{\omega_2} = L^{\infty}(\widehat{\mathbb{H}_1}) \vee L^{\infty}(\widehat{\mathbb{H}_2}) = L^{\infty}(\mathbb{G}),$$

so $\omega_1 \wedge \omega_2$ must be the counit of \mathbb{G} . However, the latter is normal if and only if \mathbb{G} is discrete which is not the case since \mathbb{L} is not compact.

Let \mathbb{L} be a non-compact locally compact quantum group generated by two compact open subgroups \mathbb{H}_1 and \mathbb{H}_2 . Let μ_1 and μ_2 be the corresponding idempotent states of Haar type on $C_0^u(\mathbb{L})$ (both are normal). Then, first of all, we have

$$\mathsf{N}_{\mu_i} = L^\infty(\mathbb{L}/\mathbb{H}_i), \qquad \quad i = 1, 2.$$

Put $\mathbb{G} = \widehat{\mathbb{L}}$ and $\omega_i = \widetilde{\mu_i}$ for i = 1, 2. Then $\omega_1, \omega_2 \in \text{Idem}_{\text{nor}}(\mathbb{G})$ and

$$\mathsf{N}_{\omega_i} = \widetilde{\mathsf{N}_{\mu_i}} = L^{\infty}(\widetilde{\mathbb{L}/\mathbb{H}}_i) = L^{\infty}(\widehat{\mathbb{H}}_i), \qquad \quad i = 1, \mathbf{2}.$$

Furthermore, since $\mathbb{L} = \widehat{\mathbb{G}}$ is generated by \mathbb{H}_1 and \mathbb{H}_2 , we have

$$\mathsf{N}_{\omega_1 \wedge \omega_2} = \mathsf{N}_{\omega_1} \vee \mathsf{N}_{\omega_2} = L^{\infty}(\widehat{\mathbb{H}_1}) \vee L^{\infty}(\widehat{\mathbb{H}_2}) = L^{\infty}(\mathbb{G}),$$

so $\omega_1 \wedge \omega_2$ must be the counit of \mathbb{G} . However, the latter is normal if and only if \mathbb{G} is discrete which is not the case since \mathbb{L} is not compact. It follows that $\omega_1 \wedge \omega_2$ is not normal.

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$.

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$.

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

$$\mathsf{N}_{\widetilde{\omega \wedge \mu}} = \widetilde{\mathsf{N}_{\omega \wedge \mu}}$$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

$$\mathsf{N}_{\widetilde{\omega \wedge \mu}} = \widetilde{\mathsf{N}_{\omega \wedge \mu}} = \mathsf{N}_{\omega} \vee \mathsf{N}_{\mu}$$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}}$$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

$$N_{\widetilde{\omega \land \mu}} = \widetilde{N_{\omega \land \mu}} = \widetilde{N_{\omega} \lor N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \lor \widetilde{\mu}},$$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \vee \widetilde{\mu}},$$

so that $\widetilde{\omega} \vee \widetilde{\mu} = \widetilde{\omega \wedge \mu} \neq 0$.

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \vee \widetilde{\mu}},$$

so that $\widetilde{\omega} \lor \widetilde{\mu} = \widetilde{\omega \land \mu} \neq 0$. Conversely, if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \land \mu}} = \widetilde{N_{\omega \land \mu}} = \widetilde{N_{\omega} \lor N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \lor \widetilde{\mu}},$$

so that $\widetilde{\omega} \vee \widetilde{\mu} = \widetilde{\omega \wedge \mu} \neq 0$. Conversely, if $\widetilde{\omega} \vee \widetilde{\mu} \neq 0$ then $\widetilde{\omega} \vee \widetilde{\mu} \in \text{Idem}_{nor}(\widehat{\mathbb{G}})$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \vee \widetilde{\mu}},$$

so that $\widetilde{\omega} \vee \widetilde{\mu} = \widetilde{\omega \wedge \mu} \neq 0$. Conversely, if $\widetilde{\omega} \vee \widetilde{\mu} \neq 0$ then $\widetilde{\omega} \vee \widetilde{\mu} \in \text{Idem}_{nor}(\widehat{\mathbb{G}})$, so

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}$$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \vee \widetilde{\mu}},$$

so that $\widetilde{\omega} \vee \widetilde{\mu} = \widetilde{\omega \wedge \mu} \neq 0$. Conversely, if $\widetilde{\omega} \vee \widetilde{\mu} \neq 0$ then $\widetilde{\omega} \vee \widetilde{\mu} \in \text{Idem}_{nor}(\widehat{\mathbb{G}})$, so

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}$$

belongs to $\mathrm{Idem}_{\mathrm{nor}}(\mathbb{G})$

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \vee \widetilde{\mu}},$$

so that $\widetilde{\omega} \vee \widetilde{\mu} = \widetilde{\omega \wedge \mu} \neq 0$. Conversely, if $\widetilde{\omega} \vee \widetilde{\mu} \neq 0$ then $\widetilde{\omega} \vee \widetilde{\mu} \in \text{Idem}_{nor}(\widehat{\mathbb{G}})$, so

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}$$

belongs to $\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$, i.e. it is normal.

Let $\omega, \mu \in \text{Idem}_{nor}(\mathbb{G})$. Then $\omega \land \mu \in \text{Idem}_{nor}(\mathbb{G})$ if and only if $\widetilde{\omega} \lor \widetilde{\mu} \neq 0$. In this case we have

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}.$$

Proof

Assume first that $\omega \wedge \mu$ is a normal state. Then

$$N_{\widetilde{\omega \wedge \mu}} = \widetilde{N_{\omega \wedge \mu}} = \widetilde{N_{\omega} \vee N_{\mu}} = \widetilde{N_{\omega}} \cap \widetilde{N_{\mu}} = N_{\widetilde{\omega} \vee \widetilde{\mu}},$$

so that $\widetilde{\omega} \vee \widetilde{\mu} = \widetilde{\omega \wedge \mu} \neq 0$. Conversely, if $\widetilde{\omega} \vee \widetilde{\mu} \neq 0$ then $\widetilde{\omega} \vee \widetilde{\mu} \in \text{Idem}_{nor}(\widehat{\mathbb{G}})$, so

$$\omega \wedge \mu = \widetilde{\widetilde{\omega} \vee \widetilde{\mu}}$$

belongs to $\operatorname{Idem}_{\operatorname{nor}}(\mathbb{G})$, i.e. it is normal.