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Cu

0pGq is idempotent if

ω ˇ ω “ ω,

where ˇ is the convolution: µ ˇ ν “ pµ b νq˝∆u.

Let IdempGq be the set of all idempotent states on Cu

0pGq.

THEOREM (KAWADA-ITÔ)

Let G be a locally compact group and let ω P IdempGq. Then there

exists a unique compact subgroup K of G such that

ωp f q “

ż

K

f pkq dhKpkq, f P C0pGq

(hK “ the Haar measure on K, C0pGq “ Cu

0pGq canonically).
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˙
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where s P S3 is any order two element.
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If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

we have an epimorphism π : Cu
0pGq // //CupKq,

ω “ hK˝π is an idempotent state on Cu
0pGq.

However, not every ω P IdempGq arises this way (A. Pal).

EXAMPLE

Let G “ xS3: CpGq “ CrS3s, ∆pgq “ g b g for all g P S3. Define

ω

ˆ ÿ

gPS3

αg g

˙
“ αe ` αs,

where s P S3 is any order two element. Then ω P IdempGq and ω

does not arise from a (compact quantum) subgroup of G.

Given ω P IdempGq we will say that ω corresponds to a

compact quantum quasi-subgroup of G.
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(
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∆pNωq Ă L8pGq b̄ Nω).

The convolution operation x ÞÑ ω ˇ x can be viewed as

ω ˇ x “ pid b ωq
`

Wpx b 1q W
˚
˘
, x P L8pGq,

where WP MpC0ppGq b Cu

0pGqq Ă MpK pL2pGqqq b Cu

0pGqq is the

“half-lifted” Kac-Takesaki operator of G.
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The state ω defines a normal conditional expectation
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is a left coideal in L8pGq (von Neumann subalgebra with
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The coideal Nω is invariant under the scaling group

τ “ pτtqtPR of G and integrable (the right Haar measure of G

is semifinite on Nω.)
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whose range

Nω “
 
x P L8pGq Eωpxq “ x

(

is a left coideal in L8pGq (von Neumann subalgebra with

∆pNωq Ă L8pGq b̄ Nω).

The element

Pω “ pid b ωq WP L8ppGq

is a group-like projection, i.e. it is a projection such that

p∆pPωqp1 b Pωq “ Pω b Pω.
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Let G be a locally compact quantum group. Then there are

bijective correspondences between the sets of

idempotent states ω on Cu

0pGq,

integrable τ -invariant left coideals N Ă L8pGq,

pτ -invariant group-like projections P P L8ppGq

mapping ω P IdempGq to Nω and Pω respectively.

Pω P BpL2pGqq is the (orthogonal) projection onto L2pNωq.

If ω arises as the Haar measure of a compact quantum

subgroup K then

Nω “ L8pG{Kq.
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Let ω, µ P IdempGq. We say that µ dominates ω if

ω ˇ µ “ µ.

Notation: ω ď µ.

For idempotent states ω, µ arising from compact quantum

subgroups H and K we have

´
ω ď µ

¯
ðñ

´
H Ă K

¯

PROPOSITION

Let ω, µ P IdempGq. Then the following are equivalent:

ω ď µ,

Eω˝Eµ “ Eµ,
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Notation: ω ď µ.

For idempotent states ω, µ arising from compact quantum

subgroups H and K we have

´
ω ď µ

¯
ðñ

´
H Ă K

¯

PROPOSITION

Let ω, µ P IdempGq. Then the following are equivalent:

ω ď µ,

Eω˝Eµ “ Eµ,

Nµ Ă Nω,

Pµ ď Pω.
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LATTICE OPERATIONS INTERSECTION

Let ω, µ P IdempGq.

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 8 / 31



LATTICE OPERATIONS INTERSECTION

Let ω, µ P IdempGq. Define

N “ Nω _ Nµ.

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 8 / 31



LATTICE OPERATIONS INTERSECTION

Let ω, µ P IdempGq. Define

N “ Nω _ Nµ.

Then N is an integrable τ-invariant left coideal in L8pGq.

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 8 / 31



LATTICE OPERATIONS INTERSECTION

Let ω, µ P IdempGq. Define

N “ Nω _ Nµ.

Then N is an integrable τ-invariant left coideal in L8pGq.

It follows that there exists ν P IdempGq such that

N “ Nν .

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 8 / 31



LATTICE OPERATIONS INTERSECTION

Let ω, µ P IdempGq. Define

N “ Nω _ Nµ.
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N “ Nν .
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We denote ν “ ω ^ µ and call it the idempotent state

corresponding to the intersection of quasi-subgroups

related to ω and µ.
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corresponding to the intersection of quasi-subgroups

related to ω and µ.

pω, µq ÞÑ ω ^ µ is commutative and associative.
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LATTICE OPERATIONS INTERSECTION

Let ω, µ P IdempGq. Define

N “ Nω _ Nµ.

Then N is an integrable τ-invariant left coideal in L8pGq.

It follows that there exists ν P IdempGq such that

N “ Nν .

We denote ν “ ω ^ µ and call it the idempotent state

corresponding to the intersection of quasi-subgroups

related to ω and µ.

pω, µq ÞÑ ω ^ µ is commutative and associative.

PROPOSITION

We have

ω ^ µ “ sup
 
ν P IdempGq ν ď ω, ν ď µ

(
.
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LATTICE OPERATIONS GENERATION

For ω, µ P IdempGq
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For ω, µ P IdempGq put
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For ω, µ P IdempGq put
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LATTICE OPERATIONS GENERATION

For ω, µ P IdempGq put

N “ Nω X Nµ.

Then N is a τ-invariant left coideal.

Set Idem0pGq “ IdempGq Y t0u.
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For ω, µ P IdempGq put

N “ Nω X Nµ.

Then N is a τ-invariant left coideal.
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For ω, µ P IdempGq put
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THEOREM

Let ω, µ P IdempGq. Then
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the sequence
`
pω ˇ µqˇn

˘
nPN

is weak˚ convergent to

ν P Idem0pGq,

L2pNωq X L2pNµq ‰ t0u if and only if ν ‰ 0
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˘
nPN

is weak˚ convergent to

ν P Idem0pGq,

L2pNωq X L2pNµq ‰ t0u if and only if ν ‰ 0; moreover, in this

case, ν is the idempotent state corresponding to the

τ -invariant integrable left coideal Nω X Nµ.
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For ω, µ P IdempGq put

N “ Nω X Nµ.

Then N is a τ-invariant left coideal.

Set Idem0pGq “ IdempGq Y t0u.

THEOREM

Let ω, µ P IdempGq. Then

L2pNωq X L2pNµq “ L2pNω X Nµq,

the sequence
`
pω ˇ µqˇn

˘
nPN

is weak˚ convergent to

ν P Idem0pGq,

L2pNωq X L2pNµq ‰ t0u if and only if ν ‰ 0; moreover, in this

case, ν is the idempotent state corresponding to the

τ -invariant integrable left coideal Nω X Nµ.

M Ă L8pGq – coideal. Then L2pMq ‰ t0u iff M is integrable.
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LATTICE OPERATIONS GENERATION

The mapping IdempGq ˆ IdempGq Ñ Idem0pGq

pω, µq ÞÝÑ ω _ µ “ w˚´ lim
nÑ8

pω ˇ µqˇn
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The mapping IdempGq ˆ IdempGq Ñ Idem0pGq

pω, µq ÞÝÑ ω _ µ “ w˚´ lim
nÑ8

pω ˇ µqˇn

is a commutative and associative operation.
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is a commutative and associative operation.
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If ω and µ are Haar measures on compact subgroups H and

K of G then

ω _ µ “

#
Haar measure of xH,Ky

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 10 / 31



LATTICE OPERATIONS GENERATION

The mapping IdempGq ˆ IdempGq Ñ Idem0pGq

pω, µq ÞÝÑ ω _ µ “ w˚´ lim
nÑ8

pω ˇ µqˇn

is a commutative and associative operation.

Putting ω _ µ “ 0 whenever either of the states is zero

extends this operation to a commutative and associative

operation on Idem0pGq.

If ω and µ are Haar measures on compact subgroups H and

K of G then

ω _ µ “

#
Haar measure of xH,Ky xH,Ky is compact,

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 10 / 31



LATTICE OPERATIONS GENERATION

The mapping IdempGq ˆ IdempGq Ñ Idem0pGq

pω, µq ÞÝÑ ω _ µ “ w˚´ lim
nÑ8

pω ˇ µqˇn

is a commutative and associative operation.

Putting ω _ µ “ 0 whenever either of the states is zero

extends this operation to a commutative and associative

operation on Idem0pGq.

If ω and µ are Haar measures on compact subgroups H and

K of G then

ω _ µ “

#
Haar measure of xH,Ky xH,Ky is compact,

0

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 10 / 31



LATTICE OPERATIONS GENERATION

The mapping IdempGq ˆ IdempGq Ñ Idem0pGq

pω, µq ÞÝÑ ω _ µ “ w˚´ lim
nÑ8

pω ˇ µqˇn

is a commutative and associative operation.

Putting ω _ µ “ 0 whenever either of the states is zero

extends this operation to a commutative and associative

operation on Idem0pGq.

If ω and µ are Haar measures on compact subgroups H and

K of G then

ω _ µ “

#
Haar measure of xH,Ky xH,Ky is compact,

0 xH,Ky is not compact.
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LATTICE OPERATIONS GENERATION

The mapping IdempGq ˆ IdempGq Ñ Idem0pGq

pω, µq ÞÝÑ ω _ µ “ w˚´ lim
nÑ8

pω ˇ µqˇn

is a commutative and associative operation.

Putting ω _ µ “ 0 whenever either of the states is zero

extends this operation to a commutative and associative

operation on Idem0pGq.

If ω and µ are Haar measures on compact subgroups H and

K of G then

ω _ µ “

#
Haar measure of xH,Ky xH,Ky is compact,

0 xH,Ky is not compact.

We say that ω _ µ corresponds to the quasi-subgroup of G

generated by the quasi-subgroups related to ω and µ.
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LATTICE OPERATIONS GENERATION

We extend the order ď from IdempGq to Idem0pGq by

declaring that 0 is the largest element.
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We extend the order ď from IdempGq to Idem0pGq by

declaring that 0 is the largest element.

PROPOSITION

We have

ω _ µ “ inf
 
ν P Idem0pGq ω ď ν, µ ď ν

(
.
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We extend the order ď from IdempGq to Idem0pGq by

declaring that 0 is the largest element.

PROPOSITION

We have

ω _ µ “ inf
 
ν P Idem0pGq ω ď ν, µ ď ν

(
.

PROOF

Nω_µ is the largest integrable τ-invariant coideal contained both

in Nω and Nµ
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We have

ω _ µ “ inf
 
ν P Idem0pGq ω ď ν, µ ď ν
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Nω_µ is the largest integrable τ-invariant coideal contained both

in Nω and Nµ (it is t0u if Nω X Nµ is not integrable).

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 11 / 31



LATTICE OPERATIONS GENERATION

We extend the order ď from IdempGq to Idem0pGq by

declaring that 0 is the largest element.

PROPOSITION

We have

ω _ µ “ inf
 
ν P Idem0pGq ω ď ν, µ ď ν

(
.

PROOF

Nω_µ is the largest integrable τ-invariant coideal contained both

in Nω and Nµ (it is t0u if Nω X Nµ is not integrable). l

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 11 / 31



LATTICE OPERATIONS MODULAR LAW

THEOREM
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Let ω, µ, ρ P IdempGq be such that
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LATTICE OPERATIONS MODULAR LAW

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..
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Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,
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P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 12 / 31



LATTICE OPERATIONS MODULAR LAW

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms
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Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms:
ρ _ µ “ ρ ˇ µ,
µ ˇ ρ ˇ µ “ ρ ˇ µ,

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 12 / 31



LATTICE OPERATIONS MODULAR LAW

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms:
ρ _ µ “ ρ ˇ µ,
µ ˇ ρ ˇ µ “ ρ ˇ µ,
µ ˇ ρ “ ρ ˇ µ.

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 12 / 31
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THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms:
ρ _ µ “ ρ ˇ µ,
µ ˇ ρ ˇ µ “ ρ ˇ µ,
µ ˇ ρ “ ρ ˇ µ.

In terms of quasi-subgroups one could say that this

assumption says that those corresponding to ρ and ω

normalize one another.
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LATTICE OPERATIONS MODULAR LAW

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms:
ρ _ µ “ ρ ˇ µ,
µ ˇ ρ ˇ µ “ ρ ˇ µ,
µ ˇ ρ “ ρ ˇ µ.

In terms of quasi-subgroups one could say that this

assumption says that those corresponding to ρ and ω

normalize one another.

Assumption 3 is of technical nature

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 12 / 31



LATTICE OPERATIONS MODULAR LAW

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms:
ρ _ µ “ ρ ˇ µ,
µ ˇ ρ ˇ µ “ ρ ˇ µ,
µ ˇ ρ “ ρ ˇ µ.

In terms of quasi-subgroups one could say that this

assumption says that those corresponding to ρ and ω

normalize one another.

Assumption 3 is of technical nature (“σ´c.l.s.” means

σ-weakly closed linear span).

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 12 / 31



LATTICE OPERATIONS MODULAR LAW

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 ρ _ µ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

Assumption 2 has several equivalent forms:
ρ _ µ “ ρ ˇ µ,
µ ˇ ρ ˇ µ “ ρ ˇ µ,
µ ˇ ρ “ ρ ˇ µ.

In terms of quasi-subgroups one could say that this

assumption says that those corresponding to ρ and ω

normalize one another.

Assumption 3 is of technical nature (“σ´c.l.s.” means

σ-weakly closed linear span). It is fulfilled in case of actual

compact quantum subgroups.
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OPEN QUASI-SUBGROUPS

The space L8pGq˚ embeds naturally into Cu

0pGq˚.
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Normal functionals form a closed ideal in Cu

0pGq˚.

A compact quantum subgroup K of a locally compact

quantum group G is open in G iff the Haar measure of K is

normal.

(K Ă G is open if apart form the epimorphism

π : Cu

0pGq // //CupKq

we have a compatible σ-weakly continuous

rπ : L8pGq // //L8pKq

– both commuting with comultiplications.)

Let IdemnorpGq “ IdempGq X L8pGq˚. The corresponding

quasi-subgroups will be called open.

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 13 / 31



OPEN QUASI-SUBGROUPS
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PROPOSITION

For any ω, µ P IdempGq we haveˆ
ω ď µ

ω P IdemnorpGq

˙
ùñ

´
µ P IdemnorpGq

¯
.

PROOF

L8pGq˚ is an ideal in Cu

0pGq˚, so µ “ ω ˇ µ P L8pGq˚ and hence

µ P IdemnorpGq. l

COROLLARY

If G is a discrete quantum group then IdemnorpGq “ IdempGq.

PROOF

The counit ε of G is normal. Consequently any ω P IdempGq
satisfies ε ď ω, so ω P IdemnorpGq by proposition above. l

In other words any compact quasi-subgroup of a discrete

quantum group is open.
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Take ω P IdemnorpGq.
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ω “ 1 ´ Qω is a group like projection.

The proof proceeds in several steps.
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The σ-weakly closed left ideal
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x P L8pGq ωpx˚xq “ 0
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is of the form Jω “ L8pGqQω for a projection Qω P L8pGq.
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ω “ 1 ´ Qω is a group like projection.

The proof proceeds in several steps.
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We have

1 x P Nω if and only if ∆pxqp1 b QK
ω q “ x b QK

ω ,
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PROPOSITION

We have

1 x P Nω if and only if ∆pxqp1 b QK
ω q “ x b QK

ω ,

2 ∆pQωqpQK
ω b QK

ω q “ 0,

3 RpQωq “ Qω and τtpQωq “ Qω for all t P R.

PROOF OF 1 ð

Assume that ∆pxqp1 b QK
ω q “ x b QK

ω .
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Assume that ∆pxqp1 b QK
ω q “ x b QK

ω . Apply pid b ωq to both sides

to get

ω ˇ x “ ωpQK
ω qx “ x
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ω q “ x b QK
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ω ,
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ω b QK
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pµ b idq
`
∆pxq

˘
QK

ω “ µpxqQK
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ω pµ b idq
`
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˘
.

The result follows from σ-weak linear density of elements of the

form pµ b idq
`
∆pxq

˘
in Nω.
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if G is discrete then the support of ω P IdemnorpGq in

c0pGq “
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have a bijective correspondence between

normal open quantum subgroups of a l.c.q.g. G,

normal compact quantum subgroups of pG.

Our theorem gives a bijection between

compact open quasi-subgroups of G,

compact open quasi-subgroups of pG.

The latter is, in fact, an extension of a special case of the

former.
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with Ωh – the cyclic vector in the GNS representation of L8pGq.
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Next we show that P is integrable (it has “finite support”), so

that
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G — locally compact quantum group.

If ω, µ P IdemnorpGq and ω _ µ ‰ 0then ω _ µ P IdemnorpGq.

If H and K are compact open quantum subgroups of G then

H X K is open, so if ω and µ are Haar measures on H and K

then ω ^ µ is normal.

However, ω ^ µ is not necessarily normal.
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Cu

0pLq (both are normal). Then, first of all, we have
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Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi
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generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 30 / 31



OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

EXAMPLE

Let L be a non-compact locally compact quantum group

generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.
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and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2
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Let L be a non-compact locally compact quantum group

generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2, we have

Nω1^ω2
“ Nω1

_ Nω2
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0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2, we have

Nω1^ω2
“ Nω1

_ Nω2
“ L8pxH1q _ L8pxH2q “ L8pGq,
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Let L be a non-compact locally compact quantum group

generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2, we have

Nω1^ω2
“ Nω1

_ Nω2
“ L8pxH1q _ L8pxH2q “ L8pGq,

so ω1 ^ ω2 must be the counit of G.
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EXAMPLE

Let L be a non-compact locally compact quantum group

generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2, we have

Nω1^ω2
“ Nω1

_ Nω2
“ L8pxH1q _ L8pxH2q “ L8pGq,

so ω1 ^ ω2 must be the counit of G. However, the latter is

normal if and only if G is discrete
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Let L be a non-compact locally compact quantum group

generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2, we have

Nω1^ω2
“ Nω1

_ Nω2
“ L8pxH1q _ L8pxH2q “ L8pGq,

so ω1 ^ ω2 must be the counit of G. However, the latter is

normal if and only if G is discrete which is not the case since L

is not compact.
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

EXAMPLE

Let L be a non-compact locally compact quantum group

generated by two compact open subgroups H1 and H2. Let µ1

and µ2 be the corresponding idempotent states of Haar type on

Cu

0pLq (both are normal). Then, first of all, we have

Nµi
“ L8pL{Hiq, i “ 1,2.

Put G “ pL and ωi “ rµi for i “ 1,2. Then ω1, ω2 P IdemnorpGq and

Nωi
“ ĄNµi

“ ČL8pL{Hiq “ L8pxHiq, i “ 1,2.

Furthermore, since L “ pG is generated by H1 and H2, we have

Nω1^ω2
“ Nω1

_ Nω2
“ L8pxH1q _ L8pxH2q “ L8pGq,

so ω1 ^ ω2 must be the counit of G. However, the latter is

normal if and only if G is discrete which is not the case since L

is not compact. It follows that ω1 ^ ω2 is not normal.
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION

Let ω, µ P IdemnorpGq.
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0.
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if
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ω ^ µ “ Črω _ rµ.
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF
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PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state.
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then
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PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,
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PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.
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PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.

Conversely, if rω _ rµ ‰ 0

P.M. SOŁTAN (WARSAW ) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 31 / 31



OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.

Conversely, if rω _ rµ ‰ 0 then rω _ rµ P IdemnorppGq
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PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.

Conversely, if rω _ rµ ‰ 0 then rω _ rµ P IdemnorppGq, so

ω ^ µ “ Črω _ rµ
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.

Conversely, if rω _ rµ ‰ 0 then rω _ rµ P IdemnorppGq, so

ω ^ µ “ Črω _ rµ
belongs to IdemnorpGq
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.

Conversely, if rω _ rµ ‰ 0 then rω _ rµ P IdemnorppGq, so

ω ^ µ “ Črω _ rµ
belongs to IdemnorpGq, i.e. it is normal.
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Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.

PROOF

Assume first that ω ^ µ is a normal state. Then

NĆω^µ “ ČNω^µ “ ČNω _ Nµ “ ĂNω X ĂNµ “ Nrω_rµ,

so that rω _ rµ “ Čω ^ µ ‰ 0.

Conversely, if rω _ rµ ‰ 0 then rω _ rµ P IdemnorppGq, so

ω ^ µ “ Črω _ rµ
belongs to IdemnorpGq, i.e. it is normal. l
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