GENERATION OF C*-ALGEBRAS AND THE CONCEPT OF A CLOSED QUANTUM SUBGROUP

Piotr M. Sołtan & Adam H. Sołtan Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw

Joint work with Matthew Daws, Paweł Kasprzak & Adam Skalski

Talk based mainly on fundamental work of **S.L. Woronowicz**

Noncommutative Geometry and Quantum Groups
University of Oslo, June 11, 2012

TALK OUTLINE

MULTIPLIERS AND AFFILIATED ELEMENTS

Let A be a C^* -algebra.

DEFINITION

The multiplier algebra of A is

$$M(A) = \mathcal{L}(A)$$

(adjointable operators on A as module over itself, $(a|b) = a^*b$).

DEFINITION

Elements **affiliated** with *A* are closed $T: A \rightarrow A$ such that

- $\operatorname{pr}_1(\operatorname{Gr}(T))$ and $\operatorname{pr}_2(\operatorname{Gr}(T))$ are dense in A,
- $\operatorname{Gr}(T) \oplus \operatorname{Gr}(T)^{\perp} = A \oplus A$

(inner product:
$$\left(\left[\begin{smallmatrix}a_1\\b_1\end{smallmatrix}\right]\middle|\left[\begin{smallmatrix}a_2\\b_2\end{smallmatrix}\right]\right)=a_1^*b_1+a_2^*b_2$$
).

 A^{η} — set of elements affiliated with A. M(A) is precisely the set of **bounded** elements of A^{η} .

EXAMPLES

A	$C_0(X)$	$\mathcal{K}(\mathscr{H})$	C*(G)	$igoplus_{lpha} M_{n_{lpha}}(\mathbb{C}) \ (c_0 ext{-sum})$
M(A)	$C_{\mathrm{b}}(X)$	$\mathrm{B}(\mathscr{H})$	contains universal rep. $g\mapsto U_g$	$igoplus_{lpha} M_{n_{lpha}}(\mathbb{C}) \ (\ell^{\infty} ext{-sum})$
A^{η}	C(X)	all closed operators on ${\mathscr H}$	$\mathfrak{g}\subset \mathrm{C}^*(G)^\eta$ (Lie alg. of G)	$\prod_{lpha} M_{n_{lpha}}(\mathbb{C})$

EXAMPLES FROM QUANTUM GROUPS

Let

- \mathbb{G} be a **compact quantum group** (described by $(C(\mathbb{G}), \Delta)$),
- $(u^{\alpha})_{{\alpha}\in\mathcal{R}}$ be a set of representatives of all equivalence classes of unitary representations of \mathbb{G} .

Then for each $\alpha \in \mathcal{R}$

- we have $u^{\alpha} \in M_{n_{\alpha}}(\mathbb{C}) \otimes C(\mathbb{G})$,
- there is a strictly positive $F_{\alpha} \in M_{n_{\alpha}}(\mathbb{C})$ such that
 - $(\mathrm{id} \otimes \kappa^2)(u^\alpha) = (F_\alpha \otimes 1)u(F_\alpha^{-1} \otimes 1),$
 - $\operatorname{Tr} F_{\alpha} = \operatorname{Tr} F_{\alpha}^{-1}$.

Consider the element $F=(F_{\alpha})_{\alpha\in\mathcal{R}}\in\prod_{\alpha\in\mathcal{R}}M_{n_{\alpha}}(\mathbb{C}).$

Then $F \in c_0(\widehat{\mathbb{G}})^{\eta}$ (or $F \eta \ c_0(\widehat{\mathbb{G}})$), where

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{lpha \in \mathcal{R}} \mathit{M}_{n_lpha}(\mathbb{C}).$$

EXAMPLES FROM QUANTUM GROUPS CONTINUED

- We have the dual (discrete) quantum group $\widehat{\mathbb{G}}$ (described by $(c_0(\widehat{\mathbb{G}}), \widehat{\Delta})$),
- $\widehat{\mathbb{G}}$ has left and right Haar measures \widehat{h}_{L} , \widehat{h}_{R} (weights on $c_{0}(\widehat{\mathbb{G}})$).
- For $x\in\bigoplus_{lpha\in\mathcal{R}}M_{n_lpha}(\mathbb{C})$ (algebraic sum) we have

$$\begin{aligned} &(\mathrm{id}\otimes\widehat{h}_{\mathrm{L}})\widehat{\Delta}(x) = \widehat{h}_{\mathrm{L}}(x)\mathbb{1},\\ &(\widehat{h}_{\mathrm{R}}\otimes\mathrm{id})\widehat{\Delta}(x) = \widehat{h}_{\mathrm{R}}(x)\mathbb{1},\\ &(\widehat{h}_{\mathrm{L}}\otimes\mathrm{id})\widehat{\Delta}(x) = \widehat{h}_{\mathrm{L}}(x)F^{2},\\ &(\mathrm{id}\otimes\widehat{h}_{\mathrm{R}})\widehat{\Delta}(x) = \widehat{h}_{\mathrm{R}}(x)F^{-2}. \end{aligned}$$

EXAMPLES FROM QUANTUM GROUPS CONTINUED

- Non-compact quantum groups often come equipped with a finite dimensional representation (not unitary).
- The matrix elements of this representation are (unbounded) elements affiliated with $C_0(\mathbb{G})$.
- The quantum E(2) group:
 - $\mathscr{H} = \ell^2(\mathbb{Z}^2)$ with o.n.b. $(e_{i,j})_{i,j\in\mathbb{Z}}$,
 - let $v e_{i,j} = e_{i-1,j}$, $n e_{i,j} = q^i e_{i,j+1}$, (0 < q < 1),
 - $C_0(\mathbb{G})$ is the closure in $B(\mathcal{H})$ of

$$\left\{ \sum f_k(n)v^k \,\middle|\, f_k \in \mathrm{C}_0(\operatorname{Sp} n) \right\}.$$

- We have:
 - $v \in M(C_0(\mathbb{G}))$,
 - $n\eta C_0(\mathbb{G})$,
 - $\begin{bmatrix} v & n \\ 0 & v^* \end{bmatrix}$ is the defining representation of $E_q(2)$.

EXAMPLES FROM QUANTUM GROUPS CONTINUED

• Consider the C*-algebra *B* which is the closure of

$$\left\{\sum f_k(n)v^k\right\},\,$$

where $f_k \in C_0(\operatorname{Sp} n)$ is such that $f(\mu z) = \mu^k f_k(z)$ for any $z \in \operatorname{Sp} n$ and $\mu \in \mathbb{T}$.

- Then $B \subset C_0(\mathbb{G})$ and $\alpha = \Delta \big|_B$ defines an action of \mathbb{G} on B:
 - $\alpha \in \operatorname{Mor}(B, C_0(\mathbb{G}) \otimes B)$,
 - $(id \otimes \alpha) \circ \alpha = (\Delta \otimes id) \circ \alpha$.
 - $[(C_0(\mathbb{G}) \otimes \mathbb{1})\alpha(B)] = C_0(\mathbb{G}) \otimes B$.
- Moreover the operator *vn* is affiliated with *B*.

MORPHISMS OF C*-ALGEBRAS

DEFINITION

Let A and C be C^* -algebras. A **morphism** from A to C is a *-homomorphism

$$\Phi: A \longrightarrow M(C)$$

such that $\Phi(A)C = C$.

Mor(A, C) denotes the set of all morphisms from A to C.

PROPOSITION

Any $\Phi \in \operatorname{Mor}(A,C)$ has a unique extension to a map $A \operatorname{g} T \longmapsto \Phi(T) \operatorname{g} C$ such that

- $D(\Phi(T)) = \Phi(D(T))$,
- $\Phi(T)\Phi(x) = \Phi(Tx)$ for any $x \in D(T)$.

GENERATING C*-ALGEBRAS BY UNBOUNDED ELEMENTS

DEFINITION

Let *A* be a C*-algebra and $T_1, \ldots, T_n \eta A$. We say that *A* is *generated by* $T_1, \ldots, T_n \eta A$ if for

- any Hilbert space \mathscr{H}
- $\pi \in \operatorname{Mor}(A, \mathcal{K}(\mathcal{H}))$,

(representation of A on \mathcal{H})

• any non-degenerate C*-subalgebra $C \subset B(\mathcal{H})$

we have

$$\left[\pi(T_1),\ldots,\pi(T_n)\,\eta\,C\right]\Longrightarrow\left[\pi\in\operatorname{Mor}(A,C)\right]$$

<u>Comment</u>: Given $C \subset B(\mathcal{H})$ and a closed $S \colon \mathcal{H} \to \mathcal{H}$ the statement " $S \eta C$ " makes sense:

- $D(S) = \{c \in C | S \circ c \text{ extends to an element of } C\},$
- Sc = the extension of $S \circ c$.

EXAMPLES I

- The new notion of generation coincides with the usual one when $T_1, \ldots, T_n \in A$.
- For $A = C_0(X)$ a set of elements $T_1, \dots, T_n \eta A$ generates A iff
 - the functions $T_1, \ldots, T_n \eta A$ separate points of X and
 - $\lim_{x \to \infty} \sum_{i=1}^{n} |T_i(x)|^2 = +\infty$

(e.g. $T: \mathbb{R} \ni t \mapsto t$ generates $C_0(\mathbb{R})$).

- The position and momentum operators ${\pmb p}$ and ${\pmb q}$ on $L^2(\mathbb R)$ generate $\mathcal K\big(L^2(\mathbb R)\big)$ (cf. the Stone-von Neumann theorem).
- If *G* is a connected Lie group and T_1, \ldots, T_n is a basis of \mathfrak{g} then $A = C^*(G)$ is generated by $T_1, \ldots, T_n \eta A$.

EXAMPLES II

• Let \mathbb{G} be the quantum $\mathrm{E}(2)$ group (for some q). Then

$$\mathrm{C}_0(\mathbb{G}) = \left\{ \sum f_k(n) v^k \, \middle| \, f_k \in \mathrm{C}_0(\operatorname{Sp} n)
ight\}^{-\|\cdot\|}$$

is generated by v and n (previously defined).

• Let

$$B = \left\{ \sum f_k(n) v^k \middle| f_k \text{ homogeneous of degree } k \right\}^{-\|\cdot\|}$$

be the C*-algebra with action of \mathbb{G} (defined above). Then B is generated by vn.

• $B = \begin{bmatrix} \mathscr{T} & \mathcal{K} \\ \mathcal{K} & \mathcal{K} \end{bmatrix}$, where \mathscr{T} is the Toeplitz algebra. Why isn't B commutative?

FAMILIES OF AFFILIATED ELEMENTS

Let A be a C^* -algebra. Then

•
$$\left[T_1,\ldots,T_n\,\eta\,A\right]\Longleftrightarrow \left[T=\left[egin{array}{c} T_1 \ dots \ \dot{T}_n \end{array}
ight]\,\eta\,\,\mathbb{C}^n\otimes A\right]$$

(*T* corresponds to a family of affiliated elements indexed by the spectrum of the C^* -algebra \mathbb{C}^n).

• If *X* is a locally compact space then

$$(C_0(X) \otimes A)^{\eta} \cong C(X, A^{\eta})$$

(with a natural topology on A^{η}).

We have

$$\begin{bmatrix} \upsilon & n \\ 0 & \upsilon^* \end{bmatrix} \, \eta \, \, M_2(\mathbb{C}) \otimes C_0\big(E_q(2) \big).$$

C*-ALGEBRA GENERATED BY A QUANTUM FAMILY

Let A and D be C^* -algebras.

• $T \eta D \otimes A$ is called a **quantum family** of elements affiliated with A indexed by (the spectrum of) D.

DEFINITION

We say that *A* is *generated by* $T \eta D \otimes A$ if for

- any Hilbert space \mathcal{H}
- $\pi \in \operatorname{Mor}(A, \mathcal{K}(\mathcal{H}))$,
- any non-degenerate C*-subalgebra $C \subset B(\mathcal{H})$

we have

$$\left\lceil \left(\operatorname{id} \otimes \pi\right)(T) \, \eta \, D \otimes C \right\rceil \Longrightarrow \left\lceil \pi \in \operatorname{Mor}(A,C) \right\rceil$$

C*-ALGEBRAS GENERATED BY QUANTUM FAMILIES

- Consider for each $s \in \mathbb{R}$ the function $e_s : \mathbb{R} \ni t \mapsto e^{its}$.
- Then $E=(e_s)_s\in\mathbb{R}$ is a family of elements of $C_b(X)=M\bigl(C_0(\mathbb{R})\bigr)\subset C_0(\mathbb{R})^\eta.$ Thus

$$E \in M(C_0(\mathbb{R}) \otimes C_0(\mathbb{R})).$$

- $C_0(\mathbb{R})$ is generated by the family $E \in M(C_0(\mathbb{R}) \otimes C_0(\mathbb{R}))$.
- Let G be a locally compact quantum group and let

$$W\in M\big(C_0(\widehat{\mathbb{G}})\otimes C_0(\mathbb{G})\big)$$

be the reduced bicharacter (multiplicative unitary).

• $C_0(\mathbb{G})$ is generated by $W \in M(C_0(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{G}))$.

HOMOMORPHISMS OF QUANTUM GROUPS

Let \mathbb{G} and \mathbb{H} be locally compact quantum groups. There is a one to one correspondence between

1. strong quantum homomorphisms: morphisms

$$\pi \in \text{Mor} ig(C_0^{\mathrm{u}}(\mathbb{G}), C_0^{\mathrm{u}}(\mathbb{H}) ig)$$
 such that $(\pi \otimes \pi) \circ \Delta_{\mathbb{C}}^{\mathrm{u}} = \Delta_{\mathbb{H}}^{\mathrm{u}} \circ \pi$,

2. bicharacters (from \mathbb{H} to \mathbb{G}): unitaries

$$egin{aligned} V \in \mathrm{M}ig(\mathrm{C}_0(\widehat{\mathbb{G}}) \otimes \mathrm{C}_0(\mathbb{H})ig) \ & \mathrm{such\ that} \qquad (\Delta_{\widehat{\mathbb{G}}} \otimes \mathrm{id}_{\mathrm{C}_0(\mathbb{H})})(V) = V_{23}V_{13}, \ & (\mathrm{id}_{\mathrm{C}_0(\widehat{\mathbb{G}})} \otimes \Delta_{\mathbb{H}})(V) = V_{12}V_{13}, \end{aligned}$$

3. right quantum homomorphisms: morphisms

$$\begin{split} \rho \in \text{Mor}\big(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes C_0(\mathbb{H})\big) \\ \text{such that} & (\Delta_{\mathbb{G}} \otimes \text{id}) \circ \rho = (\text{id} \otimes \rho) \circ \Delta_{\mathbb{G}}, \\ & (\text{id} \otimes \Delta_{\mathbb{H}}) \circ \rho = (\rho \otimes \text{id}) \circ \rho. \end{split}$$

HOMOMORPHISMS OF QUANTUM GROUPS

 \mathbb{G} , \mathbb{H} — locally compact quantum groups.

Strong quantum homomorphisms

$$\pi \in Mor(C_0^{\mathrm{u}}(\mathbb{G}), C_0^{\mathrm{u}}(\mathbb{H})),$$

bicharacters

$$V \in M(C_0(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{H})),$$

• right quantum homomorphisms

$$\rho \in Mor(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes C_0(\mathbb{H}))$$

(as defined above) describe homomorphisms $\mathbb{H} \to \mathbb{G}$.

PROPOSITION

Any homomorphism from $\mathbb H$ to $\mathbb G$ defines uniquely a homomorphism $\widehat{\mathbb G}\to\widehat{\mathbb H}$ via

$$M(C_0(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{H})) \ni V \longmapsto \widehat{V} = \sigma(V)^* \in M(C_0(\mathbb{H}) \otimes C_0(\widehat{\mathbb{G}})).$$

This defines a transformation

$$\operatorname{Mor}(\operatorname{C}^{\operatorname{u}}_0(\mathbb{G}),\operatorname{C}^{\operatorname{u}}_0(\mathbb{H}))\ni\pi\longmapsto\widehat{\pi}\in\operatorname{Mor}(\operatorname{C}^{\operatorname{u}}_0(\widehat{\mathbb{H}}),\operatorname{C}^{\operatorname{u}}_0(\widehat{\mathbb{G}}))$$

DEFINITION AND ITS MOTIVATION

DEFINITION (S.L. WORONOWICZ)

Let $\mathbb G$ and $\mathbb H$ be locally compact quantum groups. A homomorphism from $\mathbb H$ to $\mathbb G$ corresponding to a bicharacter $V \in M \big(C_0(\widehat{\mathbb G}) \otimes C_0(\mathbb H) \big)$ identifies $\mathbb H$ with **closed quantum subgroup** of $\mathbb G$ if

• $C_0(\mathbb{H})$ is generated by $V \in M(C_0(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{H}))$.

THEOREM

Let G and H be locally compact groups. Consider G and H as locally compact quantum groups. Then H is a closed quantum subgroup of G if and only if there is a (classical) homomorphism mapping H homeomorphically onto a closed subgroup of G.

FIRST MAJOR RESULT

THEOREM

Let \mathbb{G} , \mathbb{H} be locally compact quantum groups and consider a homomorphism from \mathbb{H} to \mathbb{G} described by

- a bicharacter $V \in M(C_0(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{H}))$,
- a strong q. homomorphism $\pi \in \mathrm{Mor} \big(\mathrm{C}^\mathrm{u}_0(\mathbb{G}), \mathrm{C}^\mathrm{u}_0(\mathbb{H}) \big)$,
- a right q. homomorphism $\rho \in \text{Mor}(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes C_0(\mathbb{H}))$.

Then the following conditions are equivalent:

- 1. \mathbb{H} is a closed quantum subgroup of \mathbb{G} (i.e. $V \in M(C_0(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{H}))$ generates $C_0(\mathbb{H})$),
- 2. the right quantum homomorphism ρ satisfies

$$\big[\rho\big(C_0(\mathbb{G})\big)\big(C_0(\mathbb{G})\otimes 1\!\!1_{C_0(\mathbb{H})}\big)\big]=C_0(\mathbb{G})\otimes C_0(\mathbb{H}),$$

3. $\pi(C_0^u(\mathbb{G})) = C_0^u(\mathbb{H})$.

FOR DUALS OF GROUPS

THEOREM

Let G and H be locally compact groups. Let π be a strong quantum homomorphism describing a homomorphism $\widehat{H} \to \widehat{G}$ and let $\widehat{\pi}$ correspond to the dual homomorphism $G \to H$, so that

$$\widehat{\pi} \colon \mathsf{C}_0(H) \ni f \longmapsto f \circ \theta \in \mathsf{M}\big(\mathsf{C}_0(G)\big)$$

for some continuous homomorphism $\theta \colon G \to H$. Then the following conditions are equivalent:

- 1. \widehat{H} is a closed quantum subgroup of \widehat{G} (via the homomorphism corresponding to π);
- **2**. θ maps G onto H and the induced map

$$\tilde{\theta} \colon G/_{\ker \theta} \longrightarrow H$$

is a homeomorphism.

ANOTHER NOTION OF QUANTUM SUBGROUP

- S. Vaes defined and used a notion of a closed quantum subgroup (c.q.s.) of a locally compact quantum group utilizing both dual homomorphism and von Neumann algebraic picture of L.C.Q.G.s.
- If \mathbb{H} is a c.q.s. of \mathbb{G} in the sense of Vaes then it is also a c.q.s. of \mathbb{G} in the sense described above.
- For classical groups and duals of classical groups the two definitions of a c.q.s. are equivalent.
- If $\mathbb H$ is compact then both notions of a c.q.s. are equivalent.
- If \mathbb{G} is discrete then both notions of a c.q.s. are equivalent.
- Let H be a c.q.s. of G. Then H is a c.q.s. in the sense of Vaes if and only if the quantum Herz restriction theorem holds for the pair (G, H).
 (More details in the talk of P. Kasprzak.)