Quantum groups from analytic viewpoint

Piotr M. Sołtan
Leipzig, June 2007

(1) From groups to quantum groups - motivation
(2) Examples
(3) Typical problems
(4) Multiplicative unitaries

Topology	

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$

Topology	Algebra
$\mathbb{G} \times \mathbb{G}$	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \operatorname{id}) \Delta=($ id $\otimes \Delta) \Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \operatorname{id}) \Delta=($ id $\otimes \Delta) \Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
Unitary representation U on H	$U \in \mathrm{M}(\mathcal{K}(H) \otimes A)$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
Unitary representation U on H	$U \in \mathrm{M}(\mathcal{K}(H) \otimes A)$
Action on space \mathbb{X}	$\alpha \in \operatorname{Mor}\left(\mathrm{C}_{0}(\mathbb{X}), \mathrm{C}_{0}(\mathbb{X}) \otimes A\right)$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	$\operatorname{Coinverse}$ on A
Unitary representation U on H	$U \in \mathrm{M}(\mathcal{K}(H) \otimes A)$
Action on space \mathbb{X}	$\alpha \in \operatorname{Mor}\left(\mathrm{C}_{0}(\mathbb{X}), \mathrm{C}_{0}(\mathbb{X}) \otimes A\right)$
\vdots	\vdots

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A=\mathrm{C}_{0}(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_{0}(\mathbb{G} \times \mathbb{G})=A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A=\mathrm{C}_{0}(\mathbb{G})$ with morphism
$\mathbb{G} \times \mathbb{G} \ni(s, t) \longmapsto s t \in \mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
$(r s) t=r(s t)$	$(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	$\operatorname{Coinverse}$ on A
Unitary representation U on H	$U \in \mathrm{M}(\mathcal{K}(H) \otimes A)$
Action on space \mathbb{X}	$\alpha \in \operatorname{Mor}\left(\mathrm{C}_{0}(\mathbb{X}), \mathrm{C}_{0}(\mathbb{X}) \otimes A\right)$
\vdots	\vdots

Now let us forget that A was commutative!

Preliminary definition:

Preliminary definition: A quantum group is a pair (A, Δ) consisting of a C^{*}-algebra A and $\Delta \in \operatorname{Mor}(A, A \otimes A)$ such that

Preliminary definition: A quantum group is a pair (A, Δ) consisting of a C^{*}-algebra A and $\Delta \in \operatorname{Mor}(A, A \otimes A)$ such that

$$
\Rightarrow(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta,
$$

$\underline{\text { Preliminary definition: A quantum group is a pair }(A, \Delta) \text { consisting of }}$ a C^{*}-algebra A and $\Delta \in \operatorname{Mor}(A, A \otimes A)$ such that

$$
\begin{aligned}
& \Rightarrow(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta, \\
& \Rightarrow \operatorname{span}\{\Delta(a)(I \otimes b) \mid a, b \in A\} \subset_{\text {dense }} A \otimes A, \\
& \quad \operatorname{span}\{(a \otimes I) \Delta(b) \mid a, b \in A\} \subset_{\text {dense }} A \otimes A
\end{aligned}
$$

Preliminary definition: A quantum group is a pair (A, Δ) consisting of a C^{*}-algebra A and $\Delta \in \operatorname{Mor}(A, A \otimes A)$ such that

$$
\begin{aligned}
& \Rightarrow(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta, \\
& \Rightarrow \operatorname{span}\{\Delta(a)(I \otimes b) \mid a, b \in A\} \subset_{\text {dense }} A \otimes A, \\
& \quad \operatorname{span}\{(a \otimes I) \Delta(b) \mid a, b \in A\} \subset_{\text {dense }} A \otimes A
\end{aligned}
$$

\Rightarrow more . .

Motivating example:
$\underline{\text { Motivating example: }}$ Let \mathbb{G} be a locally compact group.
$\underline{\text { Motivating example: }}$ Let \mathbb{G} be a locally compact group. Let:

$$
A=\mathrm{C}_{0}(\mathbb{G}), \quad \Delta \in \operatorname{Mor}(A, A \otimes A), \quad \Delta(f)(s, t)=f(s t)
$$

$\underline{\text { Motivating example: }}$ Let \mathbb{G} be a locally compact group. Let:

$$
A=\mathrm{C}_{0}(\mathbb{G}), \quad \Delta \in \operatorname{Mor}(A, A \otimes A), \quad \Delta(f)(s, t)=f(s t)
$$

Then
$\underline{\text { Motivating example: }}$ Let \mathbb{G} be a locally compact group. Let:

$$
A=\mathrm{C}_{0}(\mathbb{G}), \quad \Delta \in \operatorname{Mor}(A, A \otimes A), \quad \Delta(f)(s, t)=f(s t)
$$

Then
$\Rightarrow \Delta$ is coassociative,
$\underline{\text { Motivating example: }}$ Let \mathbb{G} be a locally compact group. Let:

$$
A=\mathrm{C}_{0}(\mathbb{G}), \quad \Delta \in \operatorname{Mor}(A, A \otimes A), \quad \Delta(f)(s, t)=f(s t)
$$

Then
$\Rightarrow \Delta$ is coassociative,

$$
\begin{aligned}
\Rightarrow(s r=t r) & \Rightarrow(s=t), \\
(r s=r t) & \Rightarrow(s=t),
\end{aligned}
$$

$\underline{\text { Motivating example: }}$ Let \mathbb{G} be a locally compact group. Let:

$$
A=\mathrm{C}_{0}(\mathbb{G}), \quad \Delta \in \operatorname{Mor}(A, A \otimes A), \quad \Delta(f)(s, t)=f(s t)
$$

Then
$\Rightarrow \Delta$ is coassociative,

$$
\begin{aligned}
\Rightarrow(s r=t r) & \Rightarrow(s=t), \\
(r s=r t) & \Rightarrow(s=t),
\end{aligned}
$$

\Rightarrow Trouble with algebraic description of inverse

Question: Why insist on C*-algebras?

Question: Why insist on C*-algebras?
Answer: "Quantum" harmonic analysis

Question: Why insist on C*-algebras?
Answer: "Quantum" harmonic analysis
\Rightarrow Haar measure

Question: Why insist on C*-algebras?
Answer: "Quantum" harmonic analysis
\Rightarrow Haar measure
\Rightarrow Unitary representations

Question: Why insist on C*-algebras?
Answer: "Quantum" harmonic analysis
\Rightarrow Haar measure
\Rightarrow Unitary representations
\leftrightharpoons Pontriagin duality, Fourier transforms,

Question: Why insist on C*-algebras?
Answer: "Quantum" harmonic analysis
\Rightarrow Haar measure
b Unitary representations
\Rightarrow Pontriagin duality, Fourier transforms,
\Rightarrow Continuous actions on quantum spaces

Question: Why insist on C*-algebras?
Answer: "Quantum" harmonic analysis
\Rightarrow Haar measure
b Unitary representations
\leftrightharpoons Pontriagin duality, Fourier transforms,
\Rightarrow Continuous actions on quantum spaces
\Rightarrow more . . .

Quantum $\mathrm{SU}(2)$

Quantum $\operatorname{SU}(2)$
\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary

Quantum SU(2)
\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array}\right.$

Quantum $\operatorname{SU}(2)$
\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array} \quad \leftarrow\right.$ morphism

Quantum $\operatorname{SU}(2)$
\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array} \quad \leftarrow\right.$ morphism
\Rightarrow Counit: $\quad \epsilon(\alpha)=1, \quad \epsilon(\gamma)=0$

Quantum $\operatorname{SU}(2)$
\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary
\Rightarrow Comultiplication: $\begin{cases}\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{cases}$
\Rightarrow Counit: $\quad \epsilon(\alpha)=1, \quad \epsilon(\gamma)=0$

Quantum $\operatorname{SU}(2)$
\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array} \quad \leftarrow\right.$ morphism
\Rightarrow Counit:

$$
\epsilon(\alpha)=1, \quad \epsilon(\gamma)=0 \quad \leftarrow \text { character }
$$

\Rightarrow Coinverse:

$$
\left\{\begin{aligned}
\kappa(\alpha) & =\alpha^{*} \\
\kappa(\gamma) & =-q \gamma \\
\kappa\left(\alpha^{*}\right) & =\alpha \\
\kappa\left(\gamma^{*}\right) & =-q^{-1} \gamma^{*}
\end{aligned}\right.
$$

Quantum SU(2)

\Rightarrow Choose $0<q<1$, let $A=\mathrm{C}^{*}(\alpha, \gamma)$, where

$$
\left[\begin{array}{cc}
\alpha & -q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]
$$

is unitary
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha-q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array} \quad \leftarrow\right.$ morphism
\Rightarrow Counit:

$$
\epsilon(\alpha)=1, \quad \epsilon(\gamma)=0 \quad \leftarrow \text { character }
$$

$$
\left\{\begin{aligned}
\kappa(\alpha) & =\alpha^{*} \\
\kappa(\gamma) & =-q \gamma \\
\kappa\left(\alpha^{*}\right) & =\alpha \\
\kappa\left(\gamma^{*}\right) & =-q^{-1} \gamma^{*}
\end{aligned}\right.
$$

\leftarrow unbounded!

Quantum " $a z+b$ " group

Quantum " $a z+b$ " group

\Rightarrow Choose q from the set

Let A be the C^{*}-algebra generated by a, a^{-1} and b where

$$
\begin{aligned}
a a^{*} & =a^{*} a, & b b^{*} & =b^{*} b, \\
a b & =q^{2} b a, & a b^{*} & =b^{*} a .
\end{aligned}
$$

Let A be the C^{*}-algebra generated by a, a^{-1} and b where

$$
\begin{aligned}
a a^{*} & =a^{*} a, & b b^{*} & =b^{*} b, \\
a b & =q^{2} b a, & a b^{*} & =b^{*} a .
\end{aligned}
$$

Careful! This is tricky

Let A be the C^{*}-algebra generated by a, a^{-1} and b where

$$
\begin{aligned}
a a^{*} & =a^{*} a, & b b^{*} & =b^{*} b, \\
a b & =q^{2} b a, & a b^{*} & =b^{*} a .
\end{aligned}
$$

Careful! This is tricky

To give meaning to the commutation relations we must assume something, e.g. that the spectra of a and b are contained in ...

Let A be the C^{*}-algebra generated by a, a^{-1} and b where

$$
\begin{aligned}
a a^{*} & =a^{*} a, & b b^{*} & =b^{*} b, \\
a b & =q^{2} b a, & a b^{*} & =b^{*} a .
\end{aligned}
$$

Careful! This is tricky

To give meaning to the commutation relations we must assume something, e.g. that the spectra of a and b are contained in ...

Let A be the C^{*}-algebra generated by a, a^{-1} and b where

$$
\begin{aligned}
a a^{*} & =a^{*} a, & b b^{*} & =b^{*} b, \\
a b & =q^{2} b a, & a b^{*} & =b^{*} a .
\end{aligned}
$$

Careful! This is tricky

To give meaning to the commutation relations we must assume something, e.g. that the spectra of a and b are contained in \ldots

Quantum " $a z+b$ " group - continued
Note that

$$
\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]
$$

is not unitary.

Quantum " $a z+b$ " group - continued
Note that

$$
\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]
$$

is not unitary.
The elements a and b do not even belong to A

Quantum " $a z+b$ " group - continued
Note that

$$
\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]
$$

is not unitary.
The elements a and b do not even belong to A

Quantum " $a z+b$ " group - continued
Note that

$$
\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]
$$

is not unitary.
The elements a and b do not even belong to A

Matrix elements of non unitary reps are not functions vanishing at infinity.

Quantum " $a z+b$ " group - continued
Note that

$$
\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]
$$

is not unitary.
The elements a and b do not even belong to A

Matrix elements of non unitary reps are not functions vanishing at infinity.
\Rightarrow Need for advanced technical tools of functional analysis

Quantum " $a z+b$ " group - continued

Quantum " $a z+b$ " group - continued
\Rightarrow We have A and the "generators" a and b

Quantum " $a z+b$ " group - continued
\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array} \quad \leftarrow\right.$ morphism

Quantum " $a z+b$ " group - continued
\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\leftarrow morphism
\leftarrow character

Quantum " $a z+b$ " group - continued
\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\Rightarrow Counit:

$$
\epsilon(a)=1, \quad \epsilon(b)=0
$$

\leftarrow morphism
\leftarrow character
\leftarrow unbounded!

- Coinverse:

$$
\left\{\begin{array}{l}
\kappa(a)=a^{-1} \\
\kappa(b)=-a^{-1} b
\end{array}\right.
$$

Quantum " $a z+b$ " group - continued

\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\Rightarrow Counit: $\quad \epsilon(a)=1, \quad \epsilon(b)=0$
\Rightarrow Coinverse: $\quad\left\{\begin{array}{l}\kappa(a)=a^{-1}, \\ \kappa(b)=-a^{-1} b\end{array}\right.$
\leftarrow morphism
\leftarrow character
\leftarrow unbounded!

We know everything about this quantum group:

Quantum " $a z+b$ " group - continued

\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\Rightarrow Counit: $\quad \epsilon(a)=1, \quad \epsilon(b)=0$
\Rightarrow Coinverse: $\quad\left\{\begin{array}{l}\kappa(a)=a^{-1}, \\ \kappa(b)=-a^{-1} b\end{array}\right.$
\leftarrow morphism
\leftarrow character
\leftarrow unbounded!

We know everything about this quantum group:
\Rightarrow Haar measure

Quantum " $a z+b$ " group - continued

\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\Rightarrow Counit: $\quad \epsilon(a)=1, \quad \epsilon(b)=0$
\Rightarrow Coinverse: $\quad\left\{\begin{array}{l}\kappa(a)=a^{-1}, \\ \kappa(b)=-a^{-1} b\end{array}\right.$
\leftarrow morphism
\leftarrow character
\leftarrow unbounded!

We know everything about this quantum group:
\Rightarrow Haar measure
\Rightarrow All unitary representations

Quantum " $a z+b$ " group - continued

\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\Rightarrow Counit: $\quad \epsilon(a)=1, \quad \epsilon(b)=0$
\Rightarrow Coinverse: $\quad\left\{\begin{array}{l}\kappa(a)=a^{-1}, \\ \kappa(b)=-a^{-1} b\end{array}\right.$
\leftarrow morphism
\leftarrow character
\leftarrow unbounded!

We know everything about this quantum group:
\Rightarrow Haar measure
\Rightarrow All unitary representations
\Rightarrow The Pontriagin dual

Quantum " $a z+b$ " group - continued

\Rightarrow We have A and the "generators" a and b
\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(a)=a \otimes a, \\ \Delta(b)=a \otimes b \dot{+} b \otimes I\end{array}\right.$
\Rightarrow Counit: $\quad \epsilon(a)=1, \quad \epsilon(b)=0$
\Rightarrow Coinverse: $\quad\left\{\begin{array}{l}\kappa(a)=a^{-1}, \\ \kappa(b)=-a^{-1} b\end{array}\right.$
\leftarrow morphism
\leftarrow character
\leftarrow unbounded!

We know everything about this quantum group:
\Rightarrow Haar measure
\Rightarrow All unitary representations
\Rightarrow The Pontriagin dual
\Rightarrow more . . .

Quantum " $a z+b$ " group - continued

Quantum " $a z+b$ " group - continued
Question: What is the reason for the dot in

$$
\Delta(b)=a \otimes b \dot{+} b \otimes I
$$

Quantum " $a z+b$ " group - continued
Question: What is the reason for the dot in

$$
\Delta(b)=a \otimes b \dot{+} b \otimes I
$$

Quantum " $a z+b$ " group - continued
Question: What is the reason for the dot in

$$
\Delta(b)=a \otimes b \dot{+} b \otimes I
$$

Answer: b is normal (so $\Delta(b)$ must be normal), but...

Quantum " $a z+b$ " group - continued

Question: What is the reason for the dot in

$$
\Delta(b)=a \otimes b \dot{+} b \otimes I
$$

Answer: b is normal (so $\Delta(b)$ must be normal), but. . .
\Rightarrow the operator $a \otimes b+b \otimes I$ is not closed and thus not normal

Quantum " $a z+b$ " group - continued

Question: What is the reason for the dot in

$$
\Delta(b)=a \otimes b \dot{+} \overrightarrow{b \otimes I}
$$

Answer: b is normal (so $\Delta(b)$ must be normal), but. . .
\Rightarrow the operator $a \otimes b+b \otimes I$ is not closed and thus not normal
\Rightarrow it is closable and its closure $a \otimes b \dot{+} b \otimes I$ is normal

Quantum " $a z+b$ " group - continued

Question: What is the reason for the dot in

$$
\Delta(b)=a \otimes b+b \otimes I
$$

Answer: b is normal (so $\Delta(b)$ must be normal), but...
\Rightarrow the operator $a \otimes b+b \otimes I$ is not closed and thus not normal
\Rightarrow it is closable and its closure $a \otimes b \dot{+} b \otimes I$ is normal
\Rightarrow it would not have any normal extensions if spectra of a and b were different
$\underline{\text { Quantum } S U(1,1)}$

Quantum $\operatorname{SU}(1,1)$
\Rightarrow Choose $0<q<1$, consider α, γ such that

$$
\left[\begin{array}{cc}
\alpha & q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
\alpha^{*} & \gamma^{*} \\
q \gamma & \alpha
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right] .
$$

Quantum $\operatorname{SU}(1,1)$
\Rightarrow Choose $0<q<1$, consider α, γ such that

$$
\left[\begin{array}{cc}
\alpha & q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
\alpha^{*} & \gamma^{*} \\
q \gamma & \alpha
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right] .
$$

\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha+q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array}\right.$

Quantum $\operatorname{SU}(1,1)$
\Rightarrow Choose $0<q<1$, consider α, γ such that

$$
\left[\begin{array}{cc}
\alpha & q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
\alpha^{*} & \gamma^{*} \\
q \gamma & \alpha
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right] .
$$

\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha+q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array}\right.$
\Rightarrow Counit:

$$
\epsilon(\alpha)=1, \quad \epsilon(\gamma)=0
$$

Quantum $\operatorname{SU}(1,1)$
\Rightarrow Choose $0<q<1$, consider α, γ such that

$$
\left[\begin{array}{cc}
\alpha & q \gamma^{*} \\
\gamma & \alpha^{*}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
\alpha^{*} & \gamma^{*} \\
q \gamma & \alpha
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right] .
$$

\Rightarrow Comultiplication: $\left\{\begin{array}{l}\Delta(\alpha)=\alpha \otimes \alpha+q \gamma^{*} \otimes \gamma, \\ \Delta(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\end{array}\right.$
\Rightarrow Counit:

$$
\epsilon(\alpha)=1, \quad \epsilon(\gamma)=0
$$

$$
\left\{\begin{aligned}
\kappa(\alpha) & =\alpha^{*} \\
\kappa(\gamma) & =-q \gamma \\
\kappa\left(\alpha^{*}\right) & =\alpha \\
\kappa\left(\gamma^{*}\right) & =-q^{-1} \gamma^{*}
\end{aligned}\right.
$$

Fact: Quantum $\operatorname{SU}(1,1)$ does not exist!

Fact: Quantum $\operatorname{SU}(1,1)$ does not exist!
If $\left(\alpha_{i}, \gamma_{i}\right)$ and act on $H_{i}(i=1,2)$ and

$$
\begin{array}{rlrl}
\alpha_{i} \gamma_{i} & =q \gamma_{i} \alpha_{i}, & \alpha_{i}^{*} \alpha_{i}-\gamma_{i}^{*} \gamma_{i} & =I, \\
\alpha_{i} \gamma_{i}^{*} & =q \gamma_{i}^{*} \alpha_{i}, & \alpha_{i} \alpha_{i}^{*}-q^{2} \gamma_{i}^{*} \gamma_{i} & =I . \\
\gamma_{i} \gamma_{i}^{*} & =\gamma_{i}^{*} \gamma_{i}, &
\end{array}
$$

Fact: Quantum $\operatorname{SU}(1,1)$ does not exist!
If $\left(\alpha_{i}, \gamma_{i}\right)$ and act on $H_{i}(i=1,2)$ and

$$
\begin{array}{rlrl}
\alpha_{i} \gamma_{i} & =q \gamma_{i} \alpha_{i}, & \alpha_{i}^{*} \alpha_{i}-\gamma_{i}^{*} \gamma_{i} & =I, \\
\alpha_{i} \gamma_{i}^{*} & =q \gamma_{i}^{*} \alpha_{i}, & \alpha_{i} \alpha_{i}^{*}-q^{2} \gamma_{i}^{*} \gamma_{i} & =I . \\
\gamma_{i} \gamma_{i}^{*} & =\gamma_{i}^{*} \gamma_{i}, &
\end{array}
$$

Then there are no operators α, γ on $H_{1} \otimes H_{2}$ satisfying the same relations and

$$
\begin{aligned}
& \alpha \supset \alpha_{1} \otimes \alpha_{2}+q \gamma_{1}^{*} \otimes \gamma_{2}, \\
& \alpha^{*} \supset \alpha_{1}^{*} \otimes \alpha_{2}^{*}+q \gamma_{1} \otimes \gamma_{2}^{*}, \\
& \gamma \supset \gamma_{1} \otimes \alpha_{2}+\alpha_{1}^{*} \otimes \gamma_{2}, \\
& \gamma^{*} \supset \gamma_{1}^{*} \otimes \alpha_{2}^{*}+\alpha_{1}^{*} \otimes \gamma_{2}^{*} .
\end{aligned}
$$

Fact: Quantum $\operatorname{SU}(1,1)$ does not exist!
If $\left(\alpha_{i}, \gamma_{i}\right)$ and act on $H_{i}(i=1,2)$ and

$$
\begin{array}{rlrl}
\alpha_{i} \gamma_{i} & =q \gamma_{i} \alpha_{i}, & \alpha_{i}^{*} \alpha_{i}-\gamma_{i}^{*} \gamma_{i} & =I, \\
\alpha_{i} \gamma_{i}^{*} & =q \gamma_{i}^{*} \alpha_{i}, & \alpha_{i} \alpha_{i}^{*}-q^{2} \gamma_{i}^{*} \gamma_{i} & =I . \\
\gamma_{i} \gamma_{i}^{*} & =\gamma_{i}^{*} \gamma_{i}, &
\end{array}
$$

Then there are no operators α, γ on $H_{1} \otimes H_{2}$ satisfying the same relations and

$$
\begin{aligned}
& \alpha \supset \alpha_{1} \otimes \alpha_{2}+q \gamma_{1}^{*} \otimes \gamma_{2}, \\
& \alpha^{*} \supset \alpha_{1}^{*} \otimes \alpha_{2}^{*}+q \gamma_{1} \otimes \gamma_{2}^{*}, \\
& \gamma \supset \gamma_{1} \otimes \alpha_{2}+\alpha_{1}^{*} \otimes \gamma_{2}, \\
& \gamma^{*} \supset \gamma_{1}^{*} \otimes \alpha_{2}^{*}+\alpha_{1}^{*} \otimes \gamma_{2}^{*} .
\end{aligned}
$$

The problem has since been (partially) solved by Korogodsky, Woronowicz, Kustermans, Koelink.
$\underline{\text { Multiplicative unitaries }}$

Multiplicative unitaries

\Rightarrow Multiplicative unitary is a unitary $W \in \mathrm{~B}(H \otimes H)$ such that

$$
W_{23} W_{12} W_{23}^{*}=W_{12} W_{13}
$$

on $H \otimes H \otimes H$

Multiplicative unitaries

\Rightarrow Multiplicative unitary is a unitary $W \in \mathrm{~B}(H \otimes H)$ such that

$$
W_{23} W_{12} W_{23}^{*}=W_{12} W_{13}
$$

on $H \otimes H \otimes H$:

\Rightarrow From a multiplicative unitary we may try to make (A, Δ)
\Rightarrow From a multiplicative unitary we may try to make (A, Δ) :

$$
A=\left\{\Im^{W} \mid \omega \in \mathrm{B}(H)_{*}\right\}
$$

\Rightarrow From a multiplicative unitary we may try to make (A, Δ) :

\Rightarrow We get a quantum group if W is modular
\Rightarrow We get a quantum group if W is modular:
\exists unitary \widetilde{W} and positive $Q=Q^{*}$ such that

(plus some other technical conditions)

Classical groups

Classical groups
$\Rightarrow \mathbb{G}$ - a locally compact group

Classical groups

) \mathbb{G} - a locally compact group
c. $H=L^{2}(\mathbb{G}) \quad\left(\right.$ so $\left.H \otimes H=L^{2}(\mathbb{G} \times \mathbb{G})\right)$

Classical groups

) \mathbb{G} - a locally compact group
c) $H=L^{2}(\mathbb{G}) \quad\left(\right.$ so $\left.H \otimes H=L^{2}(\mathbb{G} \times \mathbb{G})\right)$
$\Rightarrow(W f)(s, t)=f(s t, t)$

Classical groups

弓 \mathbb{G} - a locally compact group
$\Rightarrow H=L^{2}(\mathbb{G}) \quad\left(\right.$ so $\left.H \otimes H=L^{2}(\mathbb{G} \times \mathbb{G})\right)$
$\Rightarrow(W f)(s, t)=f(s t, t)$
$\Rightarrow W_{23} W_{12} W_{23}^{*}=W_{12} W_{13} \quad \Longleftrightarrow \quad s(t r)=(s t) r$

Classical groups

$\Rightarrow \mathbb{G}$ - a locally compact group
ch $H=L^{2}(\mathbb{G}) \quad\left(\right.$ so $\left.H \otimes H=L^{2}(\mathbb{G} \times \mathbb{G})\right)$
$\Rightarrow(W f)(s, t)=f(s t, t)$
$\Rightarrow W_{23} W_{12} W_{23}^{*}=W_{12} W_{13} \quad \Longleftrightarrow \quad s(t r)=(s t) r$
$\Rightarrow W$ is modular and

$$
A=\left\{(\omega \otimes \mathrm{id})(W) \mid \omega \in \mathrm{B}(H)_{*}\right\}^{\text {closure }}=\mathrm{C}_{0}(\mathbb{G}) \subset \mathrm{B}(H)
$$

Classical groups

c) \mathbb{G} - a locally compact group
$\Rightarrow H=L^{2}(\mathbb{G}) \quad\left(\right.$ so $\left.H \otimes H=L^{2}(\mathbb{G} \times \mathbb{G})\right)$
$\Rightarrow(W f)(s, t)=f(s t, t)$
$\Rightarrow W_{23} W_{12} W_{23}^{*}=W_{12} W_{13} \quad \Longleftrightarrow \quad s(t r)=(s t) r$
$\Rightarrow W$ is modular and

$$
A=\left\{(\omega \otimes \mathrm{id})(W) \mid \omega \in \mathrm{B}(H)_{*}\right\}^{\text {closure }}=\mathrm{C}_{0}(\mathbb{G}) \subset \mathrm{B}(H)
$$

\Rightarrow The map

$$
\Delta: A \ni a \longmapsto W(a \otimes I) W^{*} \in \mathrm{M}(A \otimes A)
$$

is the standard comultiplication on $C_{0}(\mathbb{G})$.

Duality

Duality

c) If $W \in \mathrm{~B}(H \otimes H)$ is a modular multiplicative unitary then \widehat{W} given by

is also a modular multiplicative unitary.

Duality

\Rightarrow If $W \in \mathrm{~B}(H \otimes H)$ is a modular multiplicative unitary then \widehat{W} given by

is also a modular multiplicative unitary.
\Rightarrow If W comes from a locally compact Abelian group \mathbb{G} then \widehat{W} produces the dual group $\widehat{\mathbb{G}}$.

Duality

\Rightarrow If $W \in \mathrm{~B}(H \otimes H)$ is a modular multiplicative unitary then \widehat{W} given by

is also a modular multiplicative unitary.
\Rightarrow If W comes from a locally compact Abelian group \mathbb{G} then \widehat{W} produces the dual group $\widehat{\mathbb{G}}$.
\Rightarrow This works for general quantum groups.

Duality

\Rightarrow In general W gives two quantum groups

$$
(A, \Delta) \quad \text { and } \quad(\widehat{A}, \widehat{\Delta})
$$

Duality

$\boldsymbol{\succ}$ In general W gives two quantum groups

$$
(A, \Delta) \quad \text { and } \quad(\widehat{A}, \widehat{\Delta})
$$

$\Rightarrow(\widehat{A}, \widehat{\Delta})$ is called the dual of (A, Δ)

Duality

$\boldsymbol{\succ}$ In general W gives two quantum groups

$$
(A, \Delta) \quad \text { and } \quad(\widehat{A}, \widehat{\Delta})
$$

$\Rightarrow(\widehat{A}, \widehat{\Delta})$ is called the dual of (A, Δ)
\Rightarrow the dual of $(\widehat{A}, \widehat{\Delta})$ is (A, Δ)

Duality

\Rightarrow In general W gives two quantum groups

$$
(A, \Delta) \quad \text { and } \quad(\widehat{A}, \widehat{\Delta})
$$

$\Rightarrow(\widehat{A}, \widehat{\Delta})$ is called the dual of (A, Δ)
\Rightarrow the dual of $(\widehat{A}, \widehat{\Delta})$ is (A, Δ)
\Rightarrow the dual of quantum $\mathrm{SU}(2)$ is a well known discrete quantum group encoding representation theory of quantum $\operatorname{SU}(2)$

Duality

\Rightarrow In general W gives two quantum groups

$$
(A, \Delta) \quad \text { and } \quad(\widehat{A}, \widehat{\Delta})
$$

$\Rightarrow(\widehat{A}, \widehat{\Delta})$ is called the dual of (A, Δ)
\Rightarrow the dual of $(\widehat{A}, \widehat{\Delta})$ is (A, Δ)
\Rightarrow the dual of quantum $\mathrm{SU}(2)$ is a well known discrete quantum group encoding representation theory of quantum $\mathrm{SU}(2)$
\triangleleft the dual of quantum " $a z+b$ " is its opposite quantum group

Final remarks

Final remarks

\Rightarrow Modular multiplicative unitaries give all quantum groups

Final remarks

\Rightarrow Modular multiplicative unitaries give all quantum groups
$\boldsymbol{4}$ Most interesting examples were constructed by producing an appropriate modular multiplicative unitary

Final remarks

\Rightarrow Modular multiplicative unitaries give all quantum groups
\Rightarrow Most interesting examples were constructed by producing an appropriate modular multiplicative unitary
\Rightarrow Standard methods of constructing new examples from old ones can be applied on the level of multiplicative unitaries

Final remarks

\Rightarrow Modular multiplicative unitaries give all quantum groups
¢ Most interesting examples were constructed by producing an appropriate modular multiplicative unitary
\Rightarrow Standard methods of constructing new examples from old ones can be applied on the level of multiplicative unitaries
\Rightarrow Representation theory can be studied in this language (Woronowicz, P.M.S.)

Final remarks

\Rightarrow Modular multiplicative unitaries give all quantum groups
\Rightarrow Most interesting examples were constructed by producing an appropriate modular multiplicative unitary
\Rightarrow Standard methods of constructing new examples from old ones can be applied on the level of multiplicative unitaries
\Rightarrow Representation theory can be studied in this language (Woronowicz, P.M.S.)
\Rightarrow Modularity gives a new framework to study existence of Haar measures (Haar weights)

Thank
 you

