Quantum groups from analytic viewpoint

Piotr M. Sołtan

Leipzig, June 2007

① From groups to quantum groups – motivation

2 Examples

3 Typical problems

4 Multiplicative unitaries

	1
Topology	Algebra
	1

	1
Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} imes \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
	1

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group G	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
	I

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group G	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
	1

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
	I

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} imes \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
Unitary representation U on H	$U \in \mathcal{M}\big(\mathcal{K}(H) \otimes A\big)$
	1

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
Unitary representation U on H	$U \in \mathcal{M}\big(\mathcal{K}(H) \otimes A\big)$
Action on space \mathbb{X}	$\alpha \in \mathrm{Mor}\big(\mathrm{C}_0(\mathbb{X}), \mathrm{C}_0(\mathbb{X}) \otimes A\big)$
	·

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathcal{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group G	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
Unitary representation U on H	$U \in \mathcal{M}\big(\mathcal{K}(H) \otimes A\big)$
Action on space X	$\alpha \in \mathrm{Mor}\big(\mathrm{C}_0(\mathbb{X}), \mathrm{C}_0(\mathbb{X}) \otimes A\big)$
:	:
	'

Topology	Algebra
Topological space \mathbb{G}	Algebra of functions $A = C_0(\mathbb{G})$
$\mathbb{G} \times \mathbb{G}$	$\mathrm{C}_0(\mathbb{G} \times \mathbb{G}) = A \otimes A$
Compact space	Unital algebra
Topological group \mathbb{G}	$A = C_0(\mathbb{G})$ with morphism
$\mathbb{G}\times\mathbb{G}\ni(s,t)\longmapsto st\in\mathbb{G}$	$\Delta \in \operatorname{Mor}(A, A \otimes A)$
(rs)t = r(st)	$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$
Unit $e \in \mathbb{G}$	Counit $A \ni f \longmapsto f(e) \in \mathbb{C}$
Inverse $t \mapsto t^{-1}$	Coinverse on A
Unitary representation U on H	$U \in \mathcal{M}\big(\mathcal{K}(H) \otimes A\big)$
Action on space X	$\alpha \in \mathrm{Mor}\big(\mathrm{C}_0(\mathbb{X}), \mathrm{C}_0(\mathbb{X}) \otimes A\big)$
:	:

Now let us forget that A was commutative!

Preliminary definition:

6

Preliminary definition: A **quantum group** is a pair (A, Δ) consisting of a C*-algebra A and $\Delta \in Mor(A, A \otimes A)$ such that

Preliminary definition: A **quantum group** is a pair (A, Δ) consisting of a C*-algebra A and $\Delta \in Mor(A, A \otimes A)$ such that

 $\Leftrightarrow (\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta,$

Preliminary definition: A **quantum group** is a pair (A, Δ) consisting of a C*-algebra A and $\Delta \in Mor(A, A \otimes A)$ such that

$$\clubsuit \ (\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta,$$

 $\Rightarrow \operatorname{span} \{ \Delta(a)(I \otimes b) | a, b \in A \} \subset_{\operatorname{dense}} A \otimes A,$ $\operatorname{span} \{ (a \otimes I) \Delta(b) | a, b \in A \} \subset_{\operatorname{dense}} A \otimes A$

Preliminary definition: A **quantum group** is a pair (A, Δ) consisting of a C*-algebra A and $\Delta \in Mor(A, A \otimes A)$ such that

$$\clubsuit \ (\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta,$$

 $\Rightarrow \operatorname{span} \{ \Delta(a)(I \otimes b) | a, b \in A \} \subset_{\operatorname{dense}} A \otimes A,$ $\operatorname{span} \{ (a \otimes I) \Delta(b) | a, b \in A \} \subset_{\operatorname{dense}} A \otimes A$

 $r > more \dots$

Motivating example:

Motivating example: Let \mathbb{G} be a locally compact group.

Motivating example: Let G be a locally compact group. Let:

$$A = C_0(\mathbb{G}), \qquad \Delta \in Mor(A, A \otimes A), \qquad \Delta(f)(s, t) = f(st).$$

Motivating example: Let G be a locally compact group. Let:

$$A = C_0(\mathbb{G}), \qquad \Delta \in Mor(A, A \otimes A), \qquad \Delta(f)(s, t) = f(st).$$

Then

Motivating example: Let \mathbb{G} be a locally compact group. Let:

$$A = C_0(\mathbb{G}), \qquad \Delta \in Mor(A, A \otimes A), \qquad \Delta(f)(s, t) = f(st).$$

Then

 $\Rightarrow \Delta$ is coassociative,

Motivating example: Let \mathbb{G} be a locally compact group. Let:

$$A = C_0(\mathbb{G}), \qquad \Delta \in Mor(A, A \otimes A), \qquad \Delta(f)(s, t) = f(st).$$

Then

 $\Rightarrow \Delta$ is coassociative,

$$\Rightarrow (sr = tr) \Rightarrow (s = t),$$
$$(rs = rt) \Rightarrow (s = t),$$

Motivating example: Let $\mathbb G$ be a locally compact group. Let:

$$A = C_0(\mathbb{G}), \qquad \Delta \in Mor(A, A \otimes A), \qquad \Delta(f)(s, t) = f(st).$$

Then

 $\Rightarrow \Delta$ is coassociative,

$$\Rightarrow (sr = tr) \Rightarrow (s = t),$$
$$(rs = rt) \Rightarrow (s = t),$$

 \blacksquare Trouble with algebraic description of inverse

Question: Why insist on C^* -algebras?

Question: Why insist on C*-algebras? Answer: "Quantum" harmonic analysis

Question: Why insist on C*-algebras? Answer: "Quantum" harmonic analysis

Question: Why insist on C*-algebras? Answer: "Quantum" harmonic analysis

 $\clubsuit {\rm Haar\ measure}$

 \Rightarrow Unitary representations

Question: Why insist on C*-algebras? <u>Answer:</u> "Quantum" harmonic analysis

 \checkmark Haar measure

- \Rightarrow Unitary representations
- ➡ Pontriagin duality, Fourier transforms,

Question: Why insist on C*-algebras? Answer: "Quantum" harmonic analysis

- ⊾> Haar measure
- \Rightarrow Unitary representations
- ➡ Pontriagin duality, Fourier transforms,
- \checkmark Continuous actions on quantum spaces

Question: Why insist on C*-algebras? Answer: "Quantum" harmonic analysis

 ${\tt L}$ Haar measure

 \Rightarrow Unitary representations

➡ Pontriagin duality, Fourier transforms,

 \checkmark Continuous actions on quantum spaces

 $r > more \dots$

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

is unitary

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

is unitary

$$\textbf{S} \text{ Comultiplication:} \quad \begin{cases} \Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \\ \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{cases}$$

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

is unitary

$$\Rightarrow \text{Comultiplication:} \quad \begin{cases} \Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \\ \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{cases} \quad \leftarrow \text{morphism} \end{cases}$$

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

$$\begin{array}{ll} \Rightarrow \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \\ \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{array} \right. \leftarrow \text{morphism} \\ \Rightarrow \text{ Counit:} & \epsilon(\alpha) = 1, \quad \epsilon(\gamma) = 0 \end{array} \right.$$

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \\ \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{array} \right. & \leftarrow \text{morphism} \\ \clubsuit \text{ Counit:} & \epsilon(\alpha) = 1, \quad \epsilon(\gamma) = 0 \end{array} \right. & \leftarrow \text{character} \end{array}$$

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

Quantum SU(2)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ let } A = \mathrm{C}^*(\alpha, \gamma), \text{ where }$

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

$$\Rightarrow \text{ Comultiplication:} \begin{cases} \Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \\ \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{cases} \leftarrow \text{-morphism} \\ \Rightarrow \text{ Counit:} \qquad \epsilon(\alpha) = 1, \quad \epsilon(\gamma) = 0 \qquad \leftarrow \text{-character} \\ \epsilon(\alpha) = \alpha^*, \\ \kappa(\alpha) = \alpha^*, \\ \kappa(\gamma) = -q\gamma, \\ \kappa(\alpha^*) = \alpha, \\ \kappa(\gamma^*) = -q^{-1}\gamma^* \end{cases} \leftarrow \text{unbounded!}$$

Quantum "az + b" group

2

Quantum "az + b" group

 $\checkmark Choose \ q \ from \ the \ set$

Let A be the C*-algebra generated by a, a^{-1} and b where

$$aa^* = a^*a, \qquad bb^* = b^*b,$$

$$ab = q^2ba, \qquad ab^* = b^*a.$$

$$aa^* = a^*a,$$
 $bb^* = b^*b,$
 $ab = q^2ba,$ $ab^* = b^*a.$

$$aa^* = a^*a,$$
 $bb^* = b^*b,$
 $ab = q^2ba,$ $ab^* = b^*a.$

To give meaning to the commutation relations we must assume something, e.g. that the spectra of a and b are contained in ...

$$aa^* = a^*a,$$
 $bb^* = b^*b,$
 $ab = q^2ba,$ $ab^* = b^*a.$

To give meaning to the commutation relations we must assume something, e.g. that the spectra of a and b are contained in ...

$$aa^* = a^*a,$$
 $bb^* = b^*b,$
 $ab = q^2ba,$ $ab^* = b^*a.$

To give meaning to the commutation relations we must assume something, e.g. that the spectra of a and b are contained in ...

Note that

$$\left[\begin{array}{rrr}a&b\\0&1\end{array}\right]$$

is not unitary.

Note that

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$$

is not unitary.

The elements a and b do not even **belong** to A

Note that

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$$

is not unitary.

The elements a and b do not even **belong** to A

?

Note that

is not unitary.

The elements a and b do not even **belong** to A

?

Matrix elements of non unitary reps are not functions vanishing at infinity.

Note that

is not unitary.

The elements a and b do not even **belong** to A

?

Matrix elements of non unitary reps are not functions vanishing at infinity.

 \checkmark Need for advanced technical tools of functional analysis

2

 $\Leftrightarrow We have A and the "generators" a and b$

 $\Leftrightarrow We have A and the "generators" a and b$

乓> Comultiplication:

$$\begin{cases} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dot{+} b \otimes I \end{cases}$$

 $\leftarrow \! \mathrm{morphism}$

 $\Leftrightarrow We have A and the "generators" a and b$

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dot{+} b \otimes I \end{array} \right. & \leftarrow \text{morphism} \\ \clubsuit \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 \end{array} \right. & \leftarrow \text{character} \end{array}$$

 $\Leftrightarrow We have A and the "generators" a and b$

$$\Rightarrow \text{ Comultiplication:} \begin{cases} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b + b \otimes I \end{cases} & \leftarrow \text{morphism} \\ \Rightarrow \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 & \leftarrow \text{character} \\ \epsilon(a) = a^{-1}, & \leftarrow \text{unbounded!} \end{cases}$$

 \clubsuit We have A and the "generators" a and b

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \begin{cases} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dot{+} b \otimes I \end{cases} & \leftarrow \text{morphism} \end{cases} \\ \hline \clubsuit \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 & \leftarrow \text{character} \end{cases} \\ \hline \clubsuit \text{ Coinverse:} & \begin{cases} \kappa(a) = a^{-1}, \\ \kappa(b) = -a^{-1}b \end{cases} & \leftarrow \text{unbounded!} \end{cases}$$

We know everything about this quantum group:

 \clubsuit We have A and the "generators" a and b

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dot{+} b \otimes I \end{array} \right. & \leftarrow \text{morphism} \\ \hline \Delta(b) = a \otimes b \dot{+} b \otimes I & \leftarrow \text{character} \\ \hline \Box \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 & \leftarrow \text{character} \\ \hline \Box \text{ Coinverse:} & \left\{ \begin{array}{ll} \kappa(a) = a^{-1}, \\ \kappa(b) = -a^{-1}b \end{array} \right. & \leftarrow \text{unbounded!} \end{array} \right. \end{array}$$

We know everything about this quantum group:

 \checkmark Haar measure

 \clubsuit We have A and the "generators" a and b

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dot{+} b \otimes I \end{array} \right. & \leftarrow \text{morphism} \\ \\ \clubsuit \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 & \leftarrow \text{character} \\ \\ \clubsuit(a) = a^{-1}, & \leftarrow \text{unbounded!} \\ \\ \kappa(b) = -a^{-1}b & \leftarrow \text{unbounded!} \end{array} \right.$$

We know everything about this quantum group:

 \triangleleft Haar measure

 \Rightarrow All unitary representations

 $\clubsuit We have A and the "generators" a and b$

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dotplus b \otimes I \end{array} \right. & \leftarrow \text{morphism} \\ \hline \clubsuit \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 & \leftarrow \text{character} \\ \hline \clubsuit \text{ Coinverse:} & \left\{ \begin{array}{ll} \kappa(a) = a^{-1}, \\ \kappa(b) = -a^{-1}b \end{array} \right. & \leftarrow \text{unbounded!} \end{array} \right. \end{array}$$

We know everything about this quantum group:

 \triangleleft Haar measure

- \Rightarrow All unitary representations
- \backsim The Pontriagin dual

 $\clubsuit We have A and the "generators" a and b$

$$\begin{array}{ll} \clubsuit \text{ Comultiplication:} & \left\{ \begin{array}{ll} \Delta(a) = a \otimes a, \\ \Delta(b) = a \otimes b \dotplus b \otimes I \end{array} \right. & \leftarrow \text{morphism} \\ \hline \clubsuit \text{ Counit:} & \epsilon(a) = 1, \quad \epsilon(b) = 0 & \leftarrow \text{character} \\ \hline \clubsuit \text{ Coinverse:} & \left\{ \begin{array}{ll} \kappa(a) = a^{-1}, \\ \kappa(b) = -a^{-1}b \end{array} \right. & \leftarrow \text{unbounded!} \end{array} \right. \end{array}$$

We know everything about this quantum group:

 \triangleleft Haar measure

- \Rightarrow All unitary representations
- \backsim The Pontriagin dual

 $rac{1}{2}$ more . . .

Question: What is the reason for the dot in

 $\Delta(b) = a \otimes b \dot{+} b \otimes I$

Quantum "az + b" group - continuedQuestion: What is the reason for the dot in $\Delta(b) = a \otimes b + b \otimes I$

 $\Leftrightarrow \text{ the operator } a \otimes b + b \otimes I \text{ is not closed and thus not normal}$

- $\clubsuit \text{ the operator } a \otimes b + b \otimes I \text{ is not closed and thus not normal }$
- \Rightarrow it is closable and its closure $a \otimes b + b \otimes I$ is normal

- $\clubsuit \ \text{the operator} \ a \otimes b + b \otimes I \ \text{is not closed and thus not normal}$
- \Rightarrow it is closable and its closure $a \otimes b + b \otimes I$ is normal
- r it would not have any normal extensions if spectra of a and b were different

Quantum SU(1,1)

8

•

Quantum SU(1,1)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ consider } \alpha, \gamma \text{ such that }$

$$\begin{bmatrix} \alpha & q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} \alpha^* & \gamma^* \\ q\gamma & \alpha \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$$

Quantum SU(1,1)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ consider } \alpha, \gamma \text{ such that }$

$$\begin{bmatrix} \alpha & q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} \alpha^* & \gamma^* \\ q\gamma & \alpha \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$$

 \Rightarrow Comultiplication: $\left\{ \right.$

$$\begin{aligned} \Delta(\alpha) &= \alpha \otimes \alpha + q\gamma^* \otimes \gamma, \\ \Delta(\gamma) &= \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{aligned}$$

•

Quantum SU(1,1)

 $\Leftrightarrow \text{Choose } 0 < q < 1, \text{ consider } \alpha, \gamma \text{ such that }$

$$\begin{bmatrix} \alpha & q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} \alpha^* & \gamma^* \\ q\gamma & \alpha \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$$

$$\Delta(\alpha) = \alpha \otimes \alpha + q\gamma^* \otimes \gamma,$$
$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$$

 \triangleleft Counit:

$$\epsilon(\alpha) = 1, \quad \epsilon(\gamma) = 0$$

Quantum SU(1,1)

 \Rightarrow Choose 0 < q < 1, consider α, γ such that $\begin{vmatrix} \alpha & q\gamma^* \\ \gamma & \alpha^* \end{vmatrix} \begin{vmatrix} I & 0 \\ 0 & -I \end{vmatrix} \begin{vmatrix} \alpha^* & \gamma^* \\ q\gamma & \alpha \end{vmatrix} = \begin{vmatrix} I & 0 \\ 0 & -I \end{vmatrix}.$ $\Rightarrow \text{Comultiplication:} \quad \begin{cases} \Delta(\alpha) = \alpha \otimes \alpha + q\gamma^* \otimes \gamma, \\ \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma \end{cases}$ $\epsilon(\alpha) = 1, \quad \epsilon(\gamma) = 0$ \Box Counit: $\begin{cases} \kappa(\alpha) = \alpha^*, \\ \kappa(\gamma) = -q\gamma, \\ \kappa(\alpha^*) = \alpha, \\ \kappa(\gamma^*) = -q^{-1}\gamma^* \end{cases}$ ⊾ Coinverse:

<u>Fact</u>: Quantum SU(1, 1) does not exist!

6

<u>Fact</u>: Quantum SU(1, 1) does not exist! If (α_i, γ_i) and act on H_i (i = 1, 2) and

$$\begin{aligned} \alpha_i \gamma_i &= q \gamma_i \alpha_i, \\ \alpha_i \gamma_i^* &= q \gamma_i^* \alpha_i, \\ \gamma_i \gamma_i^* &= \gamma_i^* \gamma_i, \end{aligned} \qquad \begin{aligned} \alpha_i^* \alpha_i - \gamma_i^* \gamma_i &= I, \\ \alpha_i \alpha_i^* - q^2 \gamma_i^* \gamma_i &= I. \end{aligned}$$

<u>Fact</u>: Quantum SU(1, 1) does not exist! If (α_i, γ_i) and act on H_i (i = 1, 2) and

$$\begin{aligned} \alpha_i \gamma_i &= q \gamma_i \alpha_i, \\ \alpha_i \gamma_i^* &= q \gamma_i^* \alpha_i, \\ \gamma_i \gamma_i^* &= \gamma_i^* \gamma_i, \end{aligned} \qquad \begin{aligned} \alpha_i^* \alpha_i - \gamma_i^* \gamma_i &= I, \\ \alpha_i \alpha_i^* - q^2 \gamma_i^* \gamma_i &= I. \end{aligned}$$

Then there are no operators α, γ on $H_1 \otimes H_2$ satisfying the same relations and

 $\alpha \supset \alpha_1 \otimes \alpha_2 + q\gamma_1^* \otimes \gamma_2,$ $\alpha^* \supset \alpha_1^* \otimes \alpha_2^* + q\gamma_1 \otimes \gamma_2^*,$ $\gamma \supset \gamma_1 \otimes \alpha_2 + \alpha_1^* \otimes \gamma_2,$ $\gamma^* \supset \gamma_1^* \otimes \alpha_2^* + \alpha_1^* \otimes \gamma_2^*.$

<u>Fact</u>: Quantum SU(1, 1) does not exist! If (α_i, γ_i) and act on H_i (i = 1, 2) and

$$\begin{aligned} \alpha_i \gamma_i &= q \gamma_i \alpha_i, \\ \alpha_i \gamma_i^* &= q \gamma_i^* \alpha_i, \\ \gamma_i \gamma_i^* &= \gamma_i^* \gamma_i, \end{aligned} \qquad \begin{aligned} \alpha_i^* \alpha_i - \gamma_i^* \gamma_i &= I, \\ \alpha_i \alpha_i^* - q^2 \gamma_i^* \gamma_i &= I. \end{aligned}$$

Then there are no operators α, γ on $H_1 \otimes H_2$ satisfying the same relations and

$$\alpha \supset \alpha_1 \otimes \alpha_2 + q\gamma_1^* \otimes \gamma_2,$$

$$\alpha^* \supset \alpha_1^* \otimes \alpha_2^* + q\gamma_1 \otimes \gamma_2^*,$$

$$\gamma \supset \gamma_1 \otimes \alpha_2 + \alpha_1^* \otimes \gamma_2,$$

$$\gamma^* \supset \gamma_1^* \otimes \alpha_2^* + \alpha_1^* \otimes \gamma_2^*.$$

The problem has since been (partially) solved by Korogodsky, Woronowicz, Kustermans, Koelink.

Multiplicative unitaries

Multiplicative unitaries

 \rightleftharpoons Multiplicative unitary is a unitary $W\in \mathcal{B}(H\otimes H)$ such that

 $W_{23}W_{12}W_{23}^* = W_{12}W_{13}$

on $H\otimes H\otimes H$

Multiplicative unitaries

 \leftrightarrows Multiplicative unitary is a unitary $W\in \mathcal{B}(H\otimes H)$ such that

 $W_{23}W_{12}W_{23}^* = W_{12}W_{13}$

on $H \otimes H \otimes H$:

 \Rightarrow From a multiplicative unitary we may try to make (A, Δ) :

 $A = \left\{ \text{integral} \ | \ \omega \in \mathcal{B}(H)_* \right\}$

 \Rightarrow From a multiplicative unitary we may try to make (A, Δ) :

 $A = \left\{ \text{int} \ | \omega \in \mathcal{B}(H)_* \right\}$ W^* $\langle W$ Ŵ

 \Rightarrow We get a quantum group if W is **modular**

- \Rightarrow We get a quantum group if W is **modular**:
 - \exists unitary \widetilde{W} and positive $Q = Q^*$ such that

(plus some other technical conditions)

Classical groups

 $\clubsuit \mathbb{G} - a \text{ locally compact group}$

 $\clubsuit \mathbb{G} - a \text{ locally compact group}$

 $\Rightarrow H = L^2(\mathbb{G}) \quad (\text{so } H \otimes H = L^2(\mathbb{G} \times \mathbb{G}))$

 $\clubsuit \mathbb{G} - a \text{ locally compact group}$

$$\Rightarrow H = L^2(\mathbb{G}) \quad (\text{so } H \otimes H = L^2(\mathbb{G} \times \mathbb{G}))$$

 $\Leftrightarrow (Wf)(s,t)=f(st,t)$

 $\clubsuit \mathbb{G} - a \text{ locally compact group}$

$$\Rightarrow H = L^2(\mathbb{G}) \quad (\text{so } H \otimes H = L^2(\mathbb{G} \times \mathbb{G}))$$

$$\Rightarrow (Wf)(s,t) = f(st,t)$$

$$\Rightarrow W_{23}W_{12}W_{23}^* = W_{12}W_{13} \quad \Longleftrightarrow \quad s(tr) = (st)r$$

Classical groups

 $\Rightarrow \mathbb{G} - \text{ a locally compact group}$ $\Rightarrow H = L^2(\mathbb{G}) \quad (\text{so } H \otimes H = L^2(\mathbb{G} \times \mathbb{G}))$ $\Rightarrow (Wf)(s,t) = f(st,t)$ $\Rightarrow W_{23}W_{12}W_{23}^* = W_{12}W_{13} \iff s(tr) = (st)r$

 $\clubsuit W \text{ is modular and}$

$$A = \left\{ (\omega \otimes \mathrm{id})(W) \middle| \omega \in \mathrm{B}(H)_* \right\}^{\mathrm{closure}} = \mathrm{C}_0(\mathbb{G}) \subset \mathrm{B}(H)$$

Classical groups

$$\Rightarrow \mathbb{G} - \text{ a locally compact group}$$
$$\Rightarrow H = L^2(\mathbb{G}) \quad (\text{so } H \otimes H = L^2(\mathbb{G} \times \mathbb{G}))$$
$$\Rightarrow (Wf)(s,t) = f(st,t)$$
$$\Rightarrow W_{23}W_{12}W_{23}^* = W_{12}W_{13} \quad \Longleftrightarrow \quad s(tr) = (st)r$$

 $\clubsuit W \text{ is modular and}$

$$A = \left\{ (\omega \otimes \mathrm{id})(W) \middle| \omega \in \mathrm{B}(H)_* \right\}^{\mathrm{closure}} = \mathrm{C}_0(\mathbb{G}) \subset \mathrm{B}(H)$$

 \blacksquare The map

$$\Delta: A \ni a \longmapsto W(a \otimes I)W^* \in \mathcal{M}(A \otimes A)$$

is the standard comultiplication on $C_0(\mathbb{G})$.

4

 $\Rightarrow \text{ If } W \in \mathcal{B}(H \otimes H) \text{ is a modular multiplicative unitary then } \widehat{W} \text{ given by }$

is also a modular multiplicative unitary.

 $\Rightarrow \text{ If } W \in \mathcal{B}(H \otimes H) \text{ is a modular multiplicative unitary then } \widehat{W} \text{ given by}$

is also a modular multiplicative unitary.

 $\Rightarrow If W comes from a locally compact Abelian group G then \widehat{W} produces the dual group \widehat{G}.$

 $\Rightarrow \text{ If } W \in \mathcal{B}(H \otimes H) \text{ is a modular multiplicative unitary then } \widehat{W} \text{ given by }$

is also a modular multiplicative unitary.

- $\Rightarrow \text{ If } W \text{ comes from a locally compact Abelian group } \mathbb{G} \text{ then } \widehat{W} \text{ produces}$ the **dual group** $\widehat{\mathbb{G}}$.
- \clubsuit This works for general quantum groups.

Duality

 \Rightarrow In general W gives two quantum groups

$$(A, \Delta)$$
 and $(\widehat{A}, \widehat{\Delta})$

Duality

 \leftrightarrows In general W gives two quantum groups

$$(A, \Delta)$$
 and $(\widehat{A}, \widehat{\Delta})$

 $\Rightarrow (\widehat{A}, \widehat{\Delta})$ is called the **dual** of (A, Δ)

Duality

 \vartriangleleft In general W gives two quantum groups

$$(A, \Delta)$$
 and $(\widehat{A}, \widehat{\Delta})$

 $\Rightarrow (\widehat{A}, \widehat{\Delta}) \text{ is called the$ **dual** $of } (A, \Delta)$ $\Rightarrow \text{ the dual of } (\widehat{A}, \widehat{\Delta}) \text{ is } (A, \Delta)$

 \clubsuit In general W gives two quantum groups

$$(A, \Delta)$$
 and $(\widehat{A}, \widehat{\Delta})$

- $\Rightarrow (\widehat{A}, \widehat{\Delta}) \text{ is called the$ **dual** $of } (A, \Delta)$ $\Rightarrow \text{ the dual of } (\widehat{A}, \widehat{\Delta}) \text{ is } (A, \Delta)$
- ➡ the dual of quantum SU(2) is a well known **discrete quantum group** encoding representation theory of quantum SU(2)

 \clubsuit In general W gives two quantum groups

$$(A, \Delta)$$
 and $(\widehat{A}, \widehat{\Delta})$

- $\Rightarrow (\widehat{A}, \widehat{\Delta}) \text{ is called the$ **dual** $of } (A, \Delta)$ $\Rightarrow \text{ the dual of } (\widehat{A}, \widehat{\Delta}) \text{ is } (A, \Delta)$
- ➡ the dual of quantum SU(2) is a well known **discrete quantum group** encoding representation theory of quantum SU(2)
- \Rightarrow the dual of quantum "az + b" is its opposite quantum group

4

 \checkmark Modular multiplicative unitaries give all quantum groups

- \clubsuit Modular multiplicative unitaries give all quantum groups
- ➡ Most interesting examples were constructed by producing an appropriate modular multiplicative unitary

- \clubsuit Modular multiplicative unitaries give all quantum groups
- ➡ Most interesting examples were constructed by producing an appropriate modular multiplicative unitary
- Standard methods of constructing new examples from old ones can be applied on the level of multiplicative unitaries

- \clubsuit Modular multiplicative unitaries give all quantum groups
- ➡ Most interesting examples were constructed by producing an appropriate modular multiplicative unitary
- Standard methods of constructing new examples from old ones can be applied on the level of multiplicative unitaries
- \clubsuit Representation theory can be studied in this language (Woronowicz, P.M.S.)

- \clubsuit Modular multiplicative unitaries give all quantum groups
- ➡ Most interesting examples were constructed by producing an appropriate modular multiplicative unitary
- Standard methods of constructing new examples from old ones can be applied on the level of multiplicative unitaries
- \clubsuit Representation theory can be studied in this language (Woronowicz, P.M.S.)
- ➡ Modularity gives a new framework to study existence of Haar measures (Haar weights)

Thank you