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O From groups to quantum groups — motivation
® Examples
® Typical problems

® Multiplicative unitaries
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(rs)t = r(st)

(A®id)A = (id ® A)A
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Counit A > fr+— f(e) € C

Inverse ¢ — t—!
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Action on space X

o € Mor (C()(X), C()(X> 029 A)

Now let us forget that A was commutative!
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Motivating example: Let G be a locally compact group. Let:

A = Cy(G), A € Mor(A, A® A), A(f)(s,t) = f(st).
Then

> A is coassociative,

= (sr:tr) = (S:t),
(rs :’rt) = <8 :t),

> Trouble with algebraic description of inverse
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Quantum SU(2)
> Choose 0 < ¢ < 1, let A = C*(«, ), where

a —qy"

1S unitary

> Comultiplication:

= Counit: ela) =1, €(v)=
( kla) = a,
R - )
> Coinverse; ¢ () 7
k(o) = a,
k(YY) = -

«—morphism

«—character

«—unbounded!



Quantum “az + 0’ group




Quantum “az + 0’ group

> Choose ¢ from the set




Let A be the C*-algebra generated by a,a™! and b where

aa* = a”a, bb* = b*b,

ab = ¢*ba, ab® = b*a.



Let A be the C*-algebra generated by a,a™! and b where

aa* = a”a, bb* = b*b,

ab = ¢*ba, ab® = b*a.

Careful! This is tricky



Let A be the C*-algebra generated by a,a™! and b where

aa* = a”a, bb* = b*b,
ab = ¢*ba, ab® = b*a.
Careful! This is tricky

To give meaning to the commutation relations we must assume something,

e.g. that the spectra of a and b are contained in . ..



Let A be the C*-algebra generated by a,a™! and b where

aa* = a”a, bb* = b*b,
ab = ¢*ba, ab® = b*a.
Careful! This is tricky

To give meaning to the commutation relations we must assume something,

e.g. that the spectra of a and b are contained in . ..

),

! Ny
t >
4 5

!
T t
1 2 3

(S

(




Let A be the C*-algebra generated by a,a™! and b where

aa* = a”a, bb* = b*b,
ab = ¢*ba, ab® = b*a.
Careful! This is tricky

To give meaning to the commutation relations we must assume something,

e.g. that the spectra of a and b are contained in . ..




Quantum “az 4+ b” group - continued

Note that

Is not unitary:.



Quantum “az 4+ b” group - continued

Note that

Is not unitary:.

The elements a and b do not even belong to A



Quantum “az 4+ b” group - continued

Note that

Is not unitary:.

The elements a and b do not even belong to A

?



Quantum “az 4+ b” group - continued

Note that

Is not unitary:.

The elements a and b do not even belong to A

?

Matrix elements of non unitary reps are not functions vanishing at infinity.



Quantum “az 4+ b” group - continued

Note that

Is not unitary:.

The elements a and b do not even belong to A

?

°
Matrix elements of non unitary reps are not functions vanishing at infinity.

> Need for advanced technical tools of functional analysis



Quantum “az 4+ b” group - continued




Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b




Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

L Ala) =a®a, .
> Comultiplication: . —morphism
AD)=a@b+b® I



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

(a) =a®a, |
) «—morphism

b)=a®@b+b® I
> Counit: e(a) =1, €(b)=0 «—character

A
> Comultiplication:
A



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

L Aa) = a® a,
> Comultiplication: .
AD)=a@b+b® I
> Counit: ela) =1, €b) =
k(a) = a™ !,

> Colnverse:

«—morphism

«—character

«—unbounded!



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

L Ala) = a® a,
> Comultiplication: .
AD)=a@b+b® I
= Counit: ela) =1, €b) =
. K(a) = a™,
> Coinverse:
k(b) = —a~ b

We know everything about this quantum group:

«—morphism

«—character

«—unbounded!



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

o Ala) = a®a,
> Comultiplication: .
AD)=a@b+b® I
= Counit: ela) =1, €b) =
, k(a) = a™ !,
o> Coinverse:
k(b) = —a~ b

We know everything about this quantum group:

> Haar measure

«—morphism

«—character

«—unbounded!



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

L Aa) = a® a,
> Comultiplication: .
AD)=a@b+b® I
> Counit: ela) =1, €b) =
. K(a) = a™,
> Coinverse:
k(b) = —a~ b

We know everything about this quantum group:

> Haar measure

> All unitary representations

«—morphism

«—character

«—unbounded!



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

L Aa) = a® a,
> Comultiplication: .
AD)=a@b+b® I
> Counit: ela) =1, €b) =
. K(a) = a™,
> Coinverse:
k(b) = —a~ b

We know everything about this quantum group:

> Haar measure

> All unitary representations

v The Pontriagin dual

«—morphism

«—character

«—unbounded!



Quantum “az 4+ b” group - continued

> We have A and the “generators” a and b

L Aa) = a® a,
> Comultiplication: .
AD)=a@b+b® I
> Counit: ela) =1, €b) =
. K(a) = a™,
> Coinverse:
k(b) = —a~ b

We know everything about this quantum group:

o> Haar measure
> All unitary representations

v The Pontriagin dual

> more ...
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Question: What is the reason for the dot in

Ab)=a®@b+b® [

Answer: b is normal (so A(b) must be normal), but. ..

o> the operator a ® b + b ® I is not closed and thus not normal
> it is closable and its closure @ ® b+b ® I is normal

o> it would not have any normal extensions if spectra of a and b were different
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o Choose 0 < ¢ < 1, consider a;, vy such that
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v oo

> Comultiplication:

> Counit:
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I 0
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If (av;, ;) and act on H; (i = 1,2) and

Q7Y = 470,
i = q;

ViY; = Vi Vi

oo — i = 1,

7

*

aio — iy =1

Then there are no operators a, v on H; ® Hs satisfying the same relations and

@D ar®ay+ gy @
af Dol ®as+ gy @7,
YD YR a4+ a] ® s,
VOV ®ayt+ o) ®7.
The problem has since been (partially) solved by Korogodsky, Woronowicz,

Kustermans, Koelink.
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> From a multiplicative unitary we may try to make (A, A):

A = {@V< w € B(H)*}
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> We get a quantum group if W is modular:
3 unitary W and positive () = (Q* such that

)

) &
(@)

(plus some other technical conditions)
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Classical groups

> (G — a locally compact group
> H=1L*G) (so H® H=L*GxG))
= (W[)ls,t) = fst,t)
> WosWioaWas = WiuWhs <= s(tr) = (st)r
> W is modular and

A={woi(W)we B(H)*}dosure _ Cy(G) C B(H)
oo The map

A:Asar— W)W e M(A® A)

is the standard comultiplication on Cy(G).
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Duality

o If W € B(H ® H) is a modular multiplicative unitary then W given by

is also a modular multiplicative unitary.

o If W comes from a locally compact Abelian group G then W produces
the dual group G.

> This works for general quantum groups.
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Duality

> In general W gives two quantum groups

(A,A) and  (AA)
= (g, &) is called the dual of (A, A)
= the dual of (A, A) is (4, A)

= the dual of quantum SU(2) is a well known discrete quantum group

encoding representation theory of quantum SU(2)

o> the dual of quantum “az + 0" is its opposite quantum group
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Final remarks

oo Modular multiplicative unitaries give all quantum groups

o Most interesting examples were constructed by producing an appropriate

modular multiplicative unitary

> Standard methods of constructing new examples from old ones can be ap-

plied on the level of multiplicative unitaries
o> Representation theory can be studied in this language (Woronowicz, P.M.S.)

> Modularity gives a new framework to study existence of Haar measures (Haar

weights)



Thank you



