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¶ From groups to quantum groups – motivation

· Examples

¸ Typical problems

¹ Multiplicative unitaries
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¶
Topology Algebra

Topological space G Algebra of functions A = C0(G)

G×G C0(G×G) = A⊗ A

Compact space Unital algebra

Topological group G

G×G 3 (s, t) 7−→ st ∈ G

A = C0(G) with morphism

∆ ∈ Mor(A, A⊗ A)

(rs)t = r(st) (∆⊗ id)∆ = (id⊗∆)∆

Unit e ∈ G Counit A 3 f 7−→ f(e) ∈ C

Inverse t 7→ t−1 Coinverse on A

Unitary representation U on H U ∈ M
(
K(H)⊗ A

)

Action on space X α ∈ Mor
(
C0(X), C0(X)⊗ A

)

... ...

Now let us forget that A was commutative!
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¶
Motivating example: Let G be a locally compact group. Let:

A = C0(G), ∆ ∈ Mor(A, A⊗ A), ∆(f)(s, t) = f(st).

Then

ê ∆ is coassociative,

ê
(
sr = tr

)
⇒

(
s = t

)
,

(
rs = rt

)
⇒

(
s = t

)
,
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¶
Motivating example: Let G be a locally compact group. Let:

A = C0(G), ∆ ∈ Mor(A, A⊗ A), ∆(f)(s, t) = f(st).

Then

ê ∆ is coassociative,

ê
(
sr = tr

)
⇒

(
s = t

)
,

(
rs = rt

)
⇒

(
s = t

)
,

ê Trouble with algebraic description of inverse
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Question: Why insist on C∗-algebras?
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·
Quantum SU(2)
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·
Quantum SU(2)

ê Choose 0 < q < 1, let A = C∗(α, γ), where

α −qγ∗

γ α∗




is unitary
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Quantum SU(2)

ê Choose 0 < q < 1, let A = C∗(α, γ), where

α −qγ∗

γ α∗




is unitary

ê Comultiplication:





∆(α) = α⊗ α− qγ∗ ⊗ γ,

∆(γ) = γ ⊗ α + α∗ ⊗ γ
←morphism

ê Counit: ε(α) = 1, ε(γ) = 0 ←character

ê Coinverse:





κ(α) = α∗,

κ(γ) = −qγ,

κ(α∗) = α,

κ(γ∗) = −q−1γ∗

←unbounded!
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·
Quantum “az + b” group
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·
Quantum “az + b” group

ê Choose q from the set
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·
Let A be the C∗-algebra generated by a, a−1 and b where

aa∗ = a∗a, bb∗ = b∗b,

ab = q2ba, ab∗ = b∗a.
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Let A be the C∗-algebra generated by a, a−1 and b where

aa∗ = a∗a, bb∗ = b∗b,
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·
Quantum “az + b” group - continued

Note that 
 a b

0 1




is not unitary.
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Quantum “az + b” group - continued

Note that 
 a b

0 1




is not unitary.

The elements a and b do not even belong to A

?
Matrix elements of non unitary reps are not functions vanishing at infinity.
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·
Quantum “az + b” group - continued

Note that 
 a b

0 1




is not unitary.

The elements a and b do not even belong to A

?
Matrix elements of non unitary reps are not functions vanishing at infinity.

ê Need for advanced technical tools of functional analysis
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Quantum “az + b” group - continued
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Quantum “az + b” group - continued

ê We have A and the “generators” a and b
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Quantum “az + b” group - continued

ê We have A and the “generators” a and b

ê Comultiplication:





∆(a) = a⊗ a,

∆(b) = a⊗ b+̇b⊗ I
←morphism

ê Counit: ε(a) = 1, ε(b) = 0 ←character

ê Coinverse:





κ(a) = a−1,

κ(b) = −a−1b
←unbounded!
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Quantum “az + b” group - continued

ê We have A and the “generators” a and b

ê Comultiplication:





∆(a) = a⊗ a,

∆(b) = a⊗ b+̇b⊗ I
←morphism

ê Counit: ε(a) = 1, ε(b) = 0 ←character

ê Coinverse:





κ(a) = a−1,

κ(b) = −a−1b
←unbounded!

We know everything about this quantum group:

ê Haar measure

ê All unitary representations

ê The Pontriagin dual
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ê Coinverse:





κ(a) = a−1,

κ(b) = −a−1b
←unbounded!

We know everything about this quantum group:

ê Haar measure

ê All unitary representations

ê The Pontriagin dual

ê more . . .
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Answer: b is normal (so ∆(b) must be normal), but. . .

ê the operator a⊗ b + b⊗ I is not closed and thus not normal
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Question: What is the reason for the dot in

∆(b) = a⊗ b+̇b⊗ I

Answer: b is normal (so ∆(b) must be normal), but. . .

ê the operator a⊗ b + b⊗ I is not closed and thus not normal

ê it is closable and its closure a⊗ b+̇b⊗ I is normal
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·/¸
Quantum “az + b” group - continued

Question: What is the reason for the dot in

∆(b) = a⊗ b+̇b⊗ I

Answer: b is normal (so ∆(b) must be normal), but. . .

ê the operator a⊗ b + b⊗ I is not closed and thus not normal

ê it is closable and its closure a⊗ b+̇b⊗ I is normal

ê it would not have any normal extensions if spectra of a and b were different
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¸
Quantum SU(1, 1)

ê Choose 0 < q < 1, consider α, γ such that

α qγ∗

γ α∗





I 0

0 −I





α∗ γ∗

qγ α


 =


I 0

0 −I


 .
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Quantum SU(1, 1)

ê Choose 0 < q < 1, consider α, γ such that

α qγ∗

γ α∗





I 0

0 −I





α∗ γ∗

qγ α


 =


I 0

0 −I


 .

ê Comultiplication:





∆(α) = α⊗ α + qγ∗ ⊗ γ,

∆(γ) = γ ⊗ α + α∗ ⊗ γ

ê Counit: ε(α) = 1, ε(γ) = 0

ê Coinverse:





κ(α) = α∗,

κ(γ) = −qγ,

κ(α∗) = α,

κ(γ∗) = −q−1γ∗
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ê Choose 0 < q < 1, consider α, γ such that
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
 =


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0 −I


 .

ê Comultiplication:




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∆(γ) = γ ⊗ α + α∗ ⊗ γ

ê Counit: ε(α) = 1, ε(γ) = 0

ê Coinverse:
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κ(α) = α∗,

κ(γ) = −qγ,
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Quantum SU(1, 1)

ê Choose 0 < q < 1, consider α, γ such that

α qγ∗

γ α∗





I 0

0 −I





α∗ γ∗

qγ α


 =


I 0

0 −I


 .

ê Comultiplication:





∆(α) = α⊗ α + qγ∗ ⊗ γ,

∆(γ) = γ ⊗ α + α∗ ⊗ γ

ê Counit: ε(α) = 1, ε(γ) = 0

ê Coinverse:





κ(α) = α∗,

κ(γ) = −qγ,

κ(α∗) = α,

κ(γ∗) = −q−1γ∗
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Fact: Quantum SU(1, 1) does not exist!

If (αi, γi) and act on Hi (i = 1, 2) and

αiγi = qγiαi,

αiγ
∗
i = qγ∗i αi,

γiγ
∗
i = γ∗i γi,

α∗i αi − γ∗i γi = I,

αiα
∗
i − q2γ∗i γi = I.

76



¸
Fact: Quantum SU(1, 1) does not exist!

If (αi, γi) and act on Hi (i = 1, 2) and

αiγi = qγiαi,

αiγ
∗
i = qγ∗i αi,

γiγ
∗
i = γ∗i γi,

α∗i αi − γ∗i γi = I,

αiα
∗
i − q2γ∗i γi = I.

Then there are no operators α, γ on H1⊗H2 satisfying the same relations and

α ⊃ α1 ⊗ α2 + qγ∗1 ⊗ γ2,

α∗ ⊃ α∗1 ⊗ α∗2 + qγ1 ⊗ γ∗2 ,

γ ⊃ γ1 ⊗ α2 + α∗1 ⊗ γ2,

γ∗ ⊃ γ∗1 ⊗ α∗2 + α∗1 ⊗ γ∗2 .
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¸
Fact: Quantum SU(1, 1) does not exist!

If (αi, γi) and act on Hi (i = 1, 2) and

αiγi = qγiαi,

αiγ
∗
i = qγ∗i αi,

γiγ
∗
i = γ∗i γi,

α∗i αi − γ∗i γi = I,

αiα
∗
i − q2γ∗i γi = I.

Then there are no operators α, γ on H1⊗H2 satisfying the same relations and

α ⊃ α1 ⊗ α2 + qγ∗1 ⊗ γ2,

α∗ ⊃ α∗1 ⊗ α∗2 + qγ1 ⊗ γ∗2 ,

γ ⊃ γ1 ⊗ α2 + α∗1 ⊗ γ2,

γ∗ ⊃ γ∗1 ⊗ α∗2 + α∗1 ⊗ γ∗2 .

The problem has since been (partially) solved by Korogodsky, Woronowicz,

Kustermans, Koelink.
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¹
Multiplicative unitaries

ê Multiplicative unitary is a unitary W ∈ B(H ⊗H) such that

W23W12W
∗
23 = W12W13

on H ⊗H ⊗H
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¹
Multiplicative unitaries

ê Multiplicative unitary is a unitary W ∈ B(H ⊗H) such that

W23W12W
∗
23 = W12W13

on H ⊗H ⊗H :

W ∗

W

W

=
W

W
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ê From a multiplicative unitary we may try to make (A, ∆)
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ê From a multiplicative unitary we may try to make (A, ∆):

A = { Wω |ω ∈ B(H)∗}
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¹
ê From a multiplicative unitary we may try to make (A, ∆):

A = { Wω |ω ∈ B(H)∗}

∆
(

Wω

)
=

W ∗

Wω

W
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¹
ê We get a quantum group if W is modular
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¹
ê We get a quantum group if W is modular:

∃ unitary W̃ and positive Q = Q∗ such that

Wω =

Q−1

W̃ω

Q

(plus some other technical conditions)
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¹
Classical groups

ê G — a locally compact group

ê H = L2(G) (so H ⊗H = L2(G×G))

ê (Wf)(s, t) = f(st, t)

ê W23W12W
∗
23 = W12W13 ⇐⇒ s(tr) = (st)r

ê W is modular and

A =
{

(ω ⊗ id)(W ) ω ∈ B(H)∗

}closure

= C0(G) ⊂ B(H)

ê The map

∆ : A 3 a 7−→ W (a⊗ I)W ∗ ∈ M(A⊗ A)

is the standard comultiplication on C0(G).
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Duality

ê If W ∈ B(H ⊗H) is a modular multiplicative unitary then Ŵ given by

Ŵ = W ∗

is also a modular multiplicative unitary.
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Duality

ê If W ∈ B(H ⊗H) is a modular multiplicative unitary then Ŵ given by

Ŵ = W ∗

is also a modular multiplicative unitary.

ê If W comes from a locally compact Abelian group G then Ŵ produces

the dual group Ĝ.
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¹
Duality

ê If W ∈ B(H ⊗H) is a modular multiplicative unitary then Ŵ given by

Ŵ = W ∗

is also a modular multiplicative unitary.

ê If W comes from a locally compact Abelian group G then Ŵ produces

the dual group Ĝ.

ê This works for general quantum groups.
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Duality

ê In general W gives two quantum groups

(A, ∆) and
(
Â, ∆̂

)
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Â, ∆̂

)

ê
(
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Duality

ê In general W gives two quantum groups

(A, ∆) and
(
Â, ∆̂

)

ê
(
Â, ∆̂

)
is called the dual of (A, ∆)

ê the dual of
(
Â, ∆̂

)
is (A, ∆)

ê the dual of quantum SU(2) is a well known discrete quantum group

encoding representation theory of quantum SU(2)
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¹
Duality

ê In general W gives two quantum groups

(A, ∆) and
(
Â, ∆̂

)

ê
(
Â, ∆̂

)
is called the dual of (A, ∆)

ê the dual of
(
Â, ∆̂

)
is (A, ∆)

ê the dual of quantum SU(2) is a well known discrete quantum group

encoding representation theory of quantum SU(2)

ê the dual of quantum “az + b” is its opposite quantum group

102



¹
Final remarks

103



¹
Final remarks

ê Modular multiplicative unitaries give all quantum groups

104



¹
Final remarks

ê Modular multiplicative unitaries give all quantum groups

ê Most interesting examples were constructed by producing an appropriate

modular multiplicative unitary

105



¹
Final remarks

ê Modular multiplicative unitaries give all quantum groups

ê Most interesting examples were constructed by producing an appropriate

modular multiplicative unitary

ê Standard methods of constructing new examples from old ones can be ap-

plied on the level of multiplicative unitaries

106



¹
Final remarks

ê Modular multiplicative unitaries give all quantum groups

ê Most interesting examples were constructed by producing an appropriate

modular multiplicative unitary

ê Standard methods of constructing new examples from old ones can be ap-

plied on the level of multiplicative unitaries

ê Representation theory can be studied in this language (Woronowicz, P.M.S.)

107



¹
Final remarks

ê Modular multiplicative unitaries give all quantum groups

ê Most interesting examples were constructed by producing an appropriate

modular multiplicative unitary

ê Standard methods of constructing new examples from old ones can be ap-

plied on the level of multiplicative unitaries

ê Representation theory can be studied in this language (Woronowicz, P.M.S.)

ê Modularity gives a new framework to study existence of Haar measures (Haar

weights)
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Thank you
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