Quantum Bohr compactification

Piotr Mikołaj Sołtan

Depatrment of Mathematical Methods in Physics Faculty of Physics University of Warsaw **Classical Bohr compactification**

G — locally compact group

<u>Thm.</u>: \exists ! compact group \overline{G} and a continuous homomorphism

 $\alpha\colon G\longrightarrow \overline{G}$

such that for any continuous homomorphism

 $\beta \colon G \longrightarrow K$

from G to a compact group K there is a unique

 $\overline{\beta} \colon \overline{G} \longrightarrow K$

such that

 $\left\{\begin{array}{l} \text{almost periodic} \\ \text{functions on } G \end{array}\right\} = \left\{\begin{array}{l} \text{functions on } \overline{G}\right\}$

Algebraic Discrete Quantum Groups

$$\mathscr{A} = \bigoplus_{\alpha \in \mathscr{R}} M_N^{\alpha}$$
 (algebraic)

 $\delta \colon \mathscr{A} \to \mathscr{M}(\mathscr{A} \otimes_{\mathrm{alg}} \mathscr{A}) \quad \text{(non degenerate)}$

The maps

$$T_1: a \otimes b \longmapsto \delta(a)(I \otimes b)$$
$$T_2: a \otimes b \longmapsto (a \otimes I)\delta(b)$$

are bijections $\mathscr{A} \otimes_{\mathrm{alg}} \mathscr{A} \longrightarrow \mathscr{A} \otimes_{\mathrm{alg}} \mathscr{A}$

 δ is coassociative, i.e.

 $(T_2 \otimes \mathrm{id})(a \otimes b \otimes c) = (\mathrm{id} \otimes T_1)(a \otimes b \otimes c)$

<u>Thm</u>: $\exists h_{\mathbf{R}}, h_{\mathbf{L}}, e \colon \mathscr{A} \to \mathbb{C}, \kappa \colon \mathscr{A} \to \mathscr{A}$

Dual quantum group is compact

C*-Algebraic Discrete Quantum Groups

$$A = \bigoplus_{\alpha \in \mathscr{R}} M_N^{\alpha} \qquad (C^*-algebraic)$$

 $\delta \in \operatorname{Mor}(A, A \otimes A)$

The sets

$$\{ \delta(a)(I \otimes b) : a, b \in A \}$$
$$\{ (a \otimes I)\delta(b) : a, b \in A \}$$

are linearly dense in $A \otimes A$

 δ is coassociative, i.e.

 $(\delta \otimes \mathrm{id}) \circ \delta = (\mathrm{id} \otimes \delta) \circ \delta$

<u>Thm</u>: $\exists h_{\mathbf{R}}, h_{\mathbf{L}}, e \colon \mathscr{A} \to \mathbb{C}, \kappa \colon \mathscr{A} \to \mathscr{A}$

Dual quantum group is compact

Quantum Bohr compactification (algebraic)

 (\mathscr{A}, δ) — algebraic discrete quantum group

<u>Def.</u>: Almost Periodic Elements

 $x \in \mathscr{M}(\mathscr{A})$ is almost periodic if

 $\delta(x) \in \mathscr{M}(\mathscr{A}) \otimes_{\mathrm{alg}} \mathscr{M}(\mathscr{A})$

The set of almost periodic elements is denoted by \mathscr{AP}

Thm.:

- **1.** \mathscr{AP} is a unital *-subalgebra of $\mathscr{M}(\mathscr{A})$
- 2. $\delta(\mathscr{AP}) \subset \mathscr{AP} \otimes_{\mathrm{alg}} \mathscr{AP}$

3. $\kappa(\mathscr{A}\mathscr{P}) = \mathscr{A}\mathscr{P}$

4. with δ , e and κ from $\mathcal{M}(\mathcal{A})$, \mathcal{AP} is a Hopf *-algebra

- \bullet expected universal property $\ddot{-}$
- no mean for almost periodic elements $\ddot{\sim}$

Problem

Lack of mean, no hope for a compact quantum group in passage to C*-algebraic level.

Solution

Use bounded almost periodic elements:

 (A, δ) — C*-algebraic discrete quantum group

 (\mathscr{A}, δ) — Pedersen ideal (algebraic discrete quantum group)

 (\mathscr{AP}, δ) — (algebraic) Bohr compactification of (\mathscr{A}, δ)

 $\mathbb{AP} = \textbf{closure of } \mathcal{M}(A) \cap \mathscr{AP}$

makes sense, since

$$\mathcal{AP} \subset \mathcal{M}(\mathcal{A}) = A^{\eta}$$
$$\mathbf{M}(A) \subset A^{\eta}$$

Unimodular Case

<u>Thm.</u>: (A, δ) — unimodular

1. \mathbb{AP} is a unital *-subalgebra of M(A)

2. $\delta(\mathbb{AP}) \subset \mathbb{AP} \otimes \mathbb{AP}$

3. (\mathbb{AP}, δ) is a compact quantum group 4. \mathbb{AP} is the closed linear span of matrix elements of finite dimensional unitary representations of (A, δ)

Genearal Case

<u>Thm.</u>: We define \mathbb{AP} as the closed linear span of matrix elements of finite dimensional unitary representations of (A, δ)

1. \mathbb{AP} is a unital *-subalgebra of M(A)

- 2. $\delta(\mathbb{AP}) \subset \mathbb{AP} \otimes \mathbb{AP}$
- **3.** (\mathbb{AP}, δ) is a compact quantum group

Features

- proof uses new tool the Canonical Kac Quotient
- the expected universal property
- \exists a number of simple examples
- construction leads to "profinite quantum groups"
- notion of Maximal Almost Periodicity investigated