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KNOTS AND LINKS

• A link is a finite family of circles embedded in R
3 (or

S
3).

• A knot is a link with only one component.

• These are knot (link) diagrams.

• We are working in the PL-category.

• It is preferable to work with oriented links (each

circle is oriented).
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BRAIDS

• Braids can be visualized as diagrams:

• The set of braids on n strands forms a group Bn:

• the group operation is juxtaposition of diagrams,
• the unit is the diagram with no crossings,
• the inverse is the reflection in a horizontal line.



BRAIDS



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

,



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,

and

,



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,

and

,

• Let σi = .



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,

and

,

• Let σi = .

• Bn is generated by σ1, . . . , σn−1



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,

and

,

• Let σi = .

• Bn is generated by σ1, . . . , σn−1 with only these
relations



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,

and

,

• Let σi = .

• Bn is generated by σ1, . . . , σn−1 with only these
relations:

• σiσj = σjσi for |i − j| ≥ 2,



BRAIDS

• We identify braids whose diagrams are identical

except for a part containing one of these fragments:

, ,

and

,

• Let σi = .

• Bn is generated by σ1, . . . , σn−1 with only these
relations:

• σiσj = σjσi for |i − j| ≥ 2,
• σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2.
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FROM BRAIDS TO LINKS AND BACK

• From braids to links:

= α= α̂

(the operation of closure).

• From links to braids: any link can be represented as

a closed braid

≈ = σ̂3
1

(this is Alexander’s theorem).
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WHEN CLOSURES OF BRAIDS ARE EQUIVALENT?

• Let α ∈ Bn, β ∈ Bm .

• α̂ ≈ β̂ if and only if β can be obtained from α through
Markov moves:

• conjugation
Bk ∋ γ 7−→ δγδ−1 ∈ Bk

(for some δ ∈ Bk),
• passage to different group via

Bk ∋ δ 7−→ δσ±1
k ∈ Bk+1

and inverses of these operations (this is Markov’s

theorem).

• This shows that we need to consider

B∞ = lim
−→

Bn =
∞⋃

n=1

Bn.
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• Markov move of type I:

≈

• Markov move of type II:

≈
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HOW TO GET LINK INVARIANTS

STRATEGY:

• Take a link L,

• represent L as a closed braid α̂ with α ∈ Bn ⊂ B∞,

• represent B∞ in some algebra H,

• find a function ϕ on H which is invariant for

Markov’s moves (depending on some parameters),

• calculate the value of ϕ on the image of α in H
(e.g. as polynomial expression in the parameters).

QUESTIONS:

• What do we take for H?

• What do we take for ϕ?

• Is our result nontrivial (examples)?

• Is the invariant easily computable in some other

way?
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• Let q be a complex parameter.

• Let Hn be the algebra generated by elements
g1, . . . , gn−1 with relations

1. g2
1 = (1 − q)gi + q for i = 1, . . . , n − 1,

2. gigi+1gi = gi+1gigi+1 for i = 1, . . . , n − 2,
3. gigj = gjgi for |i − j| ≥ 2.

• Let H = lim
−→

Hn =
∞⋃

n=1

Hn.

• Clearly we have representation

Bn ∋ σi 7−→ gi ∈ Hn

which extends to a representation

π : B∞ −→ H.
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THEOREM

For any z ∈ C there exists a unique linear functional

tr : H → C such that

1. tr(ab) = tr(ba) for any a, b ∈ H,

2. tr(1) = 1,

3. for x ∈ Hn ⊂ H we have

tr(xgn) = z tr(x).

• Relations 1.–3. suffice to compute tr of any word on
the generators (gi). For example:

tr(g2g1g3g2) = tr(g2
2g1g3) = z tr(g2

2g1) = z tr
(
((q − 1)g2 + q)g1

)

= z(q − 1)tr(g2g1) + zq tr(g1)

= z2(q − 1)tr(g1) + z2q tr(1)

= z3(q − 1) + z2q.
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THE FIRST INVARIANT

THEOREM

• Let L be a link,

• let α ∈ Bn be such that L = α̂,

• let e be the sum of exponents in α as a word on

σ1, . . . , σn−1,

• let

λ = 1−q+z
qz ,

• let

XL(q, λ) =
(
− 1−λq√

λ(1−q)

)n−1 (√
λ

)e
tr

(
π(α)

)
.

Then XL depends only on the equivalence class of L.
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THE TWO-VARIABLE LINK POLYNOMIAL

THEOREM

There exists a function

{
equivalence classes of

oriented links

}
∋ [L] 7−→ PL ∈ C[t, t−1, x , x−1]

such that if x and t satisfy

x =
√

λ
√

q,

t =
√

q − 1√
q

then

PL(x , t) = XL(q, λ).
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THE SKEIN RELATION

THEOREM

Let L+, L− and L0 be links whose diagrams are identical

except for one crossing where they differ by

Let PL+
, PL−

and PL0
be the corresponding polynomials.

Then we have

t−1PL+
− tPL−

= xPL0
.

• It follows that PL(x , t) is uniquely determined by its

value on the trivial knot:

Ptrivial knot(x , t) = 1.
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• L — link, L ′ — the same link with all orientations

reversed. Then

PL ′(x , t) = PL(x , t).

• L — link, L̃ — mirror image of L. Then

PeL
(x , t) = PL(t−1,−x).

• For

L =

we have

PL(x , t) = t2x2 − t4 + 2t2.

• Corollary: L 6≈ L̃.


