
COMPACT QUANTUM GROUP ACTIONS ON

DISCRETE QUANTUM SPACES AND QUANTUM

CLIFFORD THEORY

SPECIAL SESSION ON QUANTUM GROUPS

AMS/MAA JOINT MEETING, ATLANTA

Piotr M. Sołtan

(joint work with K. De Commer, P. Kasprzak, & A. Skalski)

Department of Mathematical Methods in Physics
Faculty of Physics, University of Warsaw

January 6, 2017

P.M. SOŁTAN (WARSAW ) QUANTUM CLIFFORD THEORY JANUARY 6, 2017 1 / 20



ACTIONS OF COMPACT QUANTUM GROUPS ON DISCRETE QUANTUM SPACES

DEFINITION

Let M be a von Neumann algebra and let G be a compact

quantum group. An action of G on M is an injective normal

unital ∗-homomorphism α : M −→ M ⊗̄ L∞(G) such that

(α⊗ id) ◦ α = (id ⊗∆G) ◦ α.

We will only consider M of the form M =
∏
i∈I

Mi.

Let pi be the unit of Mi considered as a projection in M.

pi : M −→ Mi will be the canonical surjection.

DEFINITION

For i, j ∈ I we say that i and j are α-related (writing i ∼α j) if

∃ x ∈ Mi (pj ⊗ id)
(
α(x)

)
6= 0.
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ACTIONS OF COMPACT QUANTUM GROUPS THE RELATION ∼α

For i, j ∈ I define αj,i : Mi −→ Mj ⊗̄ L∞(G) by

αj,i(x) = (pj ⊗ id)
(
α(x)

)
, x ∈ Mi .

FACT

The following are equivalent:

1 i ∼α j,

2 αj,i 6= 0,

3 αj,i(1Mi
) 6= 0.

A more useful criterion for i ∼α j can be given when α is

implemented.
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ACTIONS OF COMPACT QUANTUM GROUPS UNITARY IMPLEMENTATION

DEFINITION

An action α : M −→ M ⊗̄ L∞(G) is implemented if there exist

a Hilbert space H ,

a faithful representation π of M on H ,

a representation U of G on H

such that

(π ⊗ id)
(
α(y)

)
= U

(
1⊗ π(y)

)
U∗, y ∈ M.

FACT

Any action can be implemented. For example:

choose a faithful representation π0 of M on H0,

put H = H0 ⊗ L2(G), π = (π0 ⊗ id) ◦ α,

let U = WG
23 ∈ B(H0) ⊗̄ ℓ∞(Ĝ) ⊗̄ L∞(G) ⊂ B(H ) ⊗̄ L∞(G).
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ACTIONS OF COMPACT QUANTUM GROUPS UNITARY IMPLEMENTATION

Assume α : M −→ M ⊗̄ L∞(G) is implemented:

(π ⊗ id)
(
α(y)

)
= U

(
1⊗ π(y)

)
U∗, y ∈ M.

Since M =
∏
i∈I

Mi, we have

H =
⊕
i∈I

Hi , where Hi = π(pi)H and

for each y ∈ M

π(y) =
⊕

i∈I

πi(yi),

with πi a faithful representation of Mi on Hi and yi = pi(y).

For k, l ∈ I put Uk,l =
(
π(pk)⊗ 1

)
U
(
π(pl)⊗ 1

)
. Then for each

i, j we have

(πj ⊗ id)
(
αj,i(x)

)
= Uj,i

(
πi(x)⊗ 1

)
U∗

j,i , x ∈ Mi

because U implements α.

Clearly (πj ⊗ id)
(
αj,i(1Mi

)
)
= Uj,iU

∗

j,i.
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ACTIONS OF COMPACT QUANTUM GROUPS UNITARY IMPLEMENTATION

Assume α : M → M ⊗̄ L∞(G) is implemented by U .

For all i, j we have (πj ⊗ id)
(
αj,i(1Mi

)
)
= Uj,iU

∗

j,i and
πj is faithful on Mj.

Thus we get

COROLLARY

We have (
i ∼α j

)
⇐⇒

(
Uj,i 6= 0

)
.

This will help in studying properties of ∼α
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RELATION DEFINED BY ACTION SYMMETRY OF ∼α

PROPOSITION

The relation ∼α is symmetric.

PROOF:

Assume α is implemented by U ∈ B(H ) ⊗̄ L∞(G). We have

(
i ∼α j

)
⇐⇒

(
Uj,i 6= 0

)

and this is equivalent to

∃ ξ ∈ Hj, η ∈ Hi (ωξ,η ⊗ id)(U) 6= 0.

Now (ωξ,η ⊗ id)(U) ∈ D(S) and

0 6= S
(
(ωξ,η ⊗ id)(U)

)
= (ωξ,η ⊗ id)(U∗).

This means that U∗

i,j = (U∗)j,i 6= 0, so Ui,j 6= 0 and j ∼α i. �
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RELATION DEFINED BY ACTION TRANSITIVITY OF ∼α

REMARK

The relation∼α need not be transitive. For example take

M = L∞({1,2,3,4}) = L∞({1}) ⊕ L∞({2,3}) ⊕ L∞({4})

G = Z2 acting by

1 2 3 4

1 2 3 4

Then {1} ∼α {2,3} and {2,3} ∼α {4}, but {1} 6∼α {4}.

P.M. SOŁTAN (WARSAW ) QUANTUM CLIFFORD THEORY JANUARY 6, 2017 8 / 20



RELATION DEFINED BY ACTION TRANSITIVITY AND REFLEXIVITY OF ∼α

PROPOSITION

If for each i ∈ I the algebra Mi is a factor then ∼α is an

equivalence relation.

PROOF:

From (α⊗ id) ◦ α = (id ⊗∆G) ◦ α it follows that

(id ⊗∆G)
(
αj,i(x)

)
=

∑

k∈I

(αj,k ⊗ id)
(
αk,i(x)

)
, i, j ∈ I , x ∈ Mi .

Moreover, since each Mi is a factor and α is normal, we have

(
k ∼α l

)
⇐⇒

(
kerαk,l = {0}

)

for any k, l ∈ I.
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RELATION DEFINED BY ACTION TRANSITIVITY AND REFLEXIVITY OF ∼α

PROOF (CONTD.):

Assume i ∼α l and l ∼α j. Then

(id ⊗∆G)
(
αj,i(1Mi

)
)
=

∑

k∈I

(αj,k ⊗ id)
(
αk,i(1Mi

)
)

≥ (αj,l ⊗ id)
(
αl,i(1Mi

)
)
6= 0.

Since the above sum is a sum of orthogonal projections, we

obtain (id ⊗∆G)
(
αj,i(1Mi

)
)
6= 0, so αj,i(1Mi

) 6= 0 and thus i ∼α j.

Now for each i there exists j such that i ∼α j (otherwise

kerα 6= {0}). This implies reflexivity of ∼α. �

We will call equivalence classes of ∼α orbits of the action α.
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RELATION DEFINED BY ACTION RESTRICTING TO A CLASS

REMARK

Let A ⊂ I be an equivalence class of ∼α. Then

α : M −→ M ⊗̄ L∞(G) restricts to
∏
i∈A

Mi giving an action of G on
∏
i∈A

Mi. In particular setting

1A =
∑

i∈A

pi

we get an invariant element:

α(1A) = 1A ⊗ 1.

COROLLARY

If α is ergodic then ∼α is a total relation.
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RELATION DEFINED BY ACTION FINITENESS OF ORBITS

THEOREM

Let β be an ergodic action of a compact quantum group on a

von Neumann algebra N = Mn(C)⊕ Ñ. Then dim N < +∞.

COROLLARY

Let α be an action of a compact quantum group on

M =
∏
i∈I

Mni
(C). Then all orbits of α (equivalence classes of ∼α)

are finite.

STEPS OF PROOF:

Restrict to one class: assume i ∼α j for all i, j,

take p – a minimal projection in
{
m ∈ M α(m) = m ⊗ 1

}
,

α restricts to an action on pMp which is ergodic,
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RELATION DEFINED BY ACTION FINITENESS OF ORBITS

STEPS OF PROOF (CONTD.):

pMp is itself a product of matrix algebras, so by Theorem,

dim pMp < +∞,

it follows that Ip = {i ∈ I pip 6= 0} is finite,

take i ∈ Ip and j ∈ I \ Ip; we have pip 6= 0, but

αj,i(pip) = (pj ⊗ id)
(
α(pip)

)
≤ (pj ⊗ id)

(
α(p)

)

= (pj ⊗ id)(p ⊗ 1) = pj(p)⊗ 1 = 0

(because pjp = 0),

however, we have i ∼α j, so kerαj,i 6= {0} and hence we

arrive at a contradiction. �
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QUANTUM CLIFFORD THEORY DISCRETE QUANTUM GROUP WITH A QUANTUM SUBGROUP

Let Γ be a discrete quantum group:

ℓ∞(Γ) =
∏

γ∈Irr Γ̂

Mnγ
(C).

and let Λ be a quantum subgroup of Γ

L∞(Λ̂) ⊂ L∞(Γ̂), (Λ is closed)
π : ℓ∞(Γ) −→ ℓ∞(Λ). (Λ is open)

Put ℓ∞(Λ\Γ) =
{
x ∈ ℓ∞(Γ) (π ⊗ id)∆Γ(x) = 1⊗ x

}
.

Let G = Γ̂. We have

WG
(
ℓ∞(Λ\Γ)⊗ 1

)
WG∗

⊂ ℓ∞(Λ\Γ) ⊗̄ L∞(Γ̂)

which yields an action of G on ℓ∞(Λ\Γ):

α(x) = WG(x ⊗ 1)WG∗

, x ∈ ℓ∞(Λ\Γ).
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QUANTUM CLIFFORD THEORY DISCRETE QUANTUM GROUP WITH A QUANTUM SUBGROUP

EXAMPLE

Consider a special case:

let H ⊂ G be a normal closed quantum subgroup,

let Γ = Ĝ and Λ = Ĝ/H.

Then G acts on ℓ∞(Λ\Γ) = ℓ∞(Γ/Λ) = ℓ∞(Ĥ).

ℓ∞(Λ\Γ) is a product of matrix algebras:

ℓ∞(Λ\Γ) =
∏

i∈I

Mi

with each Mi = Mmi
(C).

The action of G = Γ̂ on ℓ∞(Λ\Γ) defines the equivalence

relation ∼α on I.
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QUANTUM CLIFFORD THEORY QUANTUM CLIFFORD’S THEOREM

Denote by 1j the unit of Mj ⊂ ℓ∞(Λ\Γ) viewed as a projection

in ℓ∞(Γ).

THEOREM

For any i ∈ I the element

∑

j∼αi

1j ∈ ℓ∞(Λ\Γ) ⊂ ℓ∞(Γ)

is the central support z(1i) in ℓ∞(Γ) of the projection 1i . Moreover

z(1i) is orthogonal to z(1j) if i is not equivalent to j.

In particular for any κ ∈ Irr Γ̂ there exists i ∈ I such that
1 for all j ∈ I we have pκ1j 6= 0 if and only if j ∼α i,

2 we have pκ

( ∑
j∼αi

1j

)
= pκ.
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QUANTUM CLIFFORD THEORY QUANTUM CLIFFORD’S THEOREM

EXAMPLE REVISITED

When Λ = Ĝ/H for a closed normal subgroup H of G, the

theorem says that for an irrep κ of G (or ℓ∞(Ĝ)) the

restriction of κ to H (or ℓ∞(Ĥ)) is a direct sum of irreps of H

constituting one class of the equivalence relation ∼α on

I = IrrH.

for classical groups G and H the irreps of H in one orbit of

the action of G (by conjugation) all have the same

dimension.
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QUANTUM CLIFFORD THEORY DIMENSIONS IN KAC CASE

THEOREM

Let G be a compact quantum group of Kac type and let H be a

closed normal quantum subgroup of G. Then any two irreducible

representations σ and τ of H in the same orbit have the same

dimension. Moreover, if π is any irreducible representation of G

with π(1σ) 6= 0, then also the multiplicity of σ in π is the same as

the multiplicity of τ in π.
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OTHER APPLICATIONS TORSION FREENESS AND CONNECTEDNESS

THEOREM

Consider the following three conditions

1 Ĝ is torsion free,
All actions of G on finite dimensional
C∗-algebras are direct sums of actions
Morita equivalent to trivial action on C

2 G is satisfies the (TO)-condition, For any action of G on a product of ma-
trix algebras the orbits are trivial

3 G is connected.
There is no finite quantum group H such
that Pol(H) ⊂ Pol(G) as a Hopf ∗-
subalgebra

Then
1 =⇒ 2 =⇒ 3 .

In general neither of the implications can be reversed.
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OTHER APPLICATIONS VERGNIOUX RELATION

DEFINITION

Let Λ be a quantum subgroup of a discrete quantum group Γ.

For σ, τ ∈ Irr Γ̂ we say that σ and τ are Λ-related if there exists

γ ∈ Irr Λ̂ such that τ ⊂ σ ⊗ γ.

Recall that in this situation we have an action α of G on

ℓ∞(Λ\Γ) =
∏
i∈I

Mi.

For i ∈ I define Γ-supp(1i) =
{
κ ∈ Irr Γ̂ pκ1i 6= 0

}
.

THEOREM

1 For i, j ∈ I we have i ∼α j iff Γ-supp(1i) = Γ-supp(1j),

2 two elements σ, τ ∈ Irr Γ̂ are Λ-related iff there exists i ∈ I

such that σ, τ ∈ Γ-supp(1i).
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