COMPACT QUANTUM GROUP ACTIONS ON DISCRETE QUANTUM SPACES AND QUANTUM CLIFFORD THEORY

SPECIAL SESSION ON QUANTUM GROUPS AMS/MAA JOINT MEETING, ATLANTA

Piotr M. Sołtan (joint work with K. De Commer, P. Kasprzak, & A. Skalski)

> Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

January 6, 2017

P.M. SOLTAN (WARSAW)

QUANTUM CLIFFORD THEORY

DEFINITION

Let M be a von Neumann algebra and let \mathbb{G} be a compact quantum group. An **action** of \mathbb{G} on M is an injective normal unital *-homomorphism $\alpha : \mathbb{M} \longrightarrow \mathbb{M} \bar{\otimes} L^{\infty}(\mathbb{G})$ such that

 $(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta_{\mathbb{G}}) \circ \alpha.$

- We will only consider M of the form $M = \prod_{i \in I} M_i$.
- Let p_i be the unit of M_i considered as a projection in M.
- $\boldsymbol{p}_i : \mathsf{M} \longrightarrow \mathsf{M}_i$ will be the canonical surjection.

DEFINITION

For $i, j \in I$ we say that i and j are α -**related** (writing $i \sim_{\alpha} j$) if

$$\exists x \in \mathsf{M}_i \ (\mathbf{p}_j \otimes \mathrm{id}) (\alpha(x)) \neq 0.$$

P.M. SOŁTAN (WARSAW)

• For
$$i, j \in I$$
 define $\alpha_{j,i} : \mathsf{M}_i \longrightarrow \mathsf{M}_j \bar{\otimes} L^{\infty}(\mathbb{G})$ by
 $\alpha_{j,i}(\mathbf{x}) = (\mathbf{p}_j \otimes \mathrm{id})(\alpha(\mathbf{x})), \qquad \mathbf{x} \in \mathsf{M}_i.$

Fact

The following are equivalent:

 $1 i \sim_{\alpha} j,$

2
$$\alpha_{j,i} \neq 0$$
,

A more useful criterion for *i* ~_α *j* can be given when α is implemented.

P.M. SOLTAN (WARSAW)

DEFINITION

An action $\alpha : \mathsf{M} \longrightarrow \mathsf{M} \bar{\otimes} L^{\infty}(\mathbb{G})$ is **implemented** if there exist

- a Hilbert space \mathcal{H} ,
- a faithful representation π of M on \mathcal{H} ,
- a representation U of \mathbb{G} on \mathscr{H}

such that

$$(\pi \otimes \mathrm{id})(\alpha(y)) = U(\mathbb{1} \otimes \pi(y))U^*, \qquad y \in \mathsf{M}.$$

Fact

Any action can be implemented. For example:

• choose a faithful representation π_0 of M on \mathcal{H}_0 ,

• put
$$\mathscr{H} = \mathscr{H}_0 \otimes L^2(\mathbb{G}), \ \pi = (\pi_0 \otimes \mathrm{id}) \circ \alpha$$
,

• let $U = W_{23}^{\mathbb{G}} \in \mathcal{B}(\mathscr{H}_0) \bar{\otimes} \ \ell^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} \ L^{\infty}(\mathbb{G}) \subset \mathcal{B}(\mathscr{H}) \bar{\otimes} \ L^{\infty}(\mathbb{G}).$

• Assume $\alpha : \mathsf{M} \longrightarrow \mathsf{M} \bar{\otimes} L^{\infty}(\mathbb{G})$ is implemented:

$$(\pi \otimes \mathrm{id})(\alpha(y)) = U(\mathbb{1} \otimes \pi(y))U^*, \qquad y \in \mathsf{M}.$$

• Since $M = \prod_{i \in I} M_i$, we have • $\mathscr{H} = \bigoplus_{i \in I} \mathscr{H}_i$, where $\mathscr{H}_i = \pi(p_i)\mathscr{H}$ and • for each $y \in M$ $\pi(y) = \bigoplus \pi_i(y_i)$,

with π_i a faithful representation of M_i on \mathcal{H}_i and $y_i = \mathbf{p}_i(y)$. • For $k, l \in I$ put $U_{k,l} = (\pi(p_k) \otimes \mathbb{1}) U(\pi(p_l) \otimes \mathbb{1})$. Then for each i, j we have

$$(\pi_j \otimes \mathrm{id})(\alpha_{j,i}(\mathbf{x})) = U_{j,i}(\pi_i(\mathbf{x}) \otimes \mathbb{1})U_{j,i}^*, \qquad \mathbf{x} \in \mathsf{M}_i$$

because U implements α .

• Clearly $(\pi_j \otimes \mathrm{id}) (\alpha_{j,i}(\mathbb{1}_{\mathsf{M}_i})) = U_{j,i} U_{j,i}^*$.

• Assume $\alpha : \mathsf{M} \to \mathsf{M} \bar{\otimes} L^{\infty}(\mathbb{G})$ is implemented by *U*.

• For all i, j we have $(\pi_j \otimes id)(\alpha_{j,i}(\mathbb{1}_{M_i})) = U_{j,i}U_{j,i}^*$ and • π_j is faithful on M_j .

Thus we get

COROLLARY

We have

$$\left(i \sim_{\alpha} j \right) \iff \left(U_{j,i} \neq 0 \right).$$

• This will help in studying properties of \sim_{α}

PROPOSITION

The relation \sim_{α} is symmetric.

PROOF:

Assume α is implemented by $U \in B(\mathscr{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$. We have

$$\left(\ {\it i}\sim_{lpha} j \
ight) \Longleftrightarrow \left(\ U_{\!j,i}
eq 0 \
ight)$$

and this is equivalent to

$$\exists \, \xi \in \mathscr{H}_{j}, \, \eta \in \mathscr{H}_{i} \, (\omega_{\xi,\eta} \otimes \mathrm{id})(U) \neq 0.$$

Now $(\omega_{\xi,\eta} \otimes \mathrm{id})(U) \in \mathrm{D}(\mathbf{S})$ and

$$0 \neq \mathbf{S}((\omega_{\xi,\eta} \otimes \mathrm{id})(U)) = (\omega_{\xi,\eta} \otimes \mathrm{id})(U^*).$$

This means that $U_{i,j}^* = (U^*)_{j,i} \neq 0$, so $U_{i,j} \neq 0$ and $j \sim_{\alpha} i$.

REMARK

The relation \sim_{α} need not be transitive. For example take

• $M = L^{\infty}(\{1, 2, 3, 4\}) = L^{\infty}(\{1\}) \oplus L^{\infty}(\{2, 3\}) \oplus L^{\infty}(\{4\})$ • $\mathbb{G} = \mathbb{Z}_2$ acting by

• Then $\{1\} \sim_{\alpha} \{2,3\}$ and $\{2,3\} \sim_{\alpha} \{4\}$, but $\{1\} \not\sim_{\alpha} \{4\}$.

PROPOSITION

If for each $i \in I$ the algebra M_i is a factor then \sim_{α} is an equivalence relation.

PROOF:

From $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta_{\mathbb{G}}) \circ \alpha$ it follows that

$$(\mathrm{id}\otimes\Delta_{\mathbb{G}})\big(\alpha_{j,i}(x)\big)=\sum_{k\in I}(\alpha_{j,k}\otimes\mathrm{id})\big(\alpha_{k,i}(x)\big),\qquad i,j\in I,\ x\in\mathsf{M}_i.$$

Moreover, since each M_i is a factor and α is normal, we have

$$(\mathbf{k} \sim_{\alpha} \mathbf{l}) \iff (\ker \alpha_{\mathbf{k}, \mathbf{l}} = \{\mathbf{0}\})$$

for any $k, l \in I$.

PROOF (CONTD.):

Assume $i \sim_{\alpha} l$ and $l \sim_{\alpha} j$. Then

$$\begin{aligned} (\mathbf{id} \otimes \Delta_{\mathbb{G}}) \big(\alpha_{j,i}(\mathbb{1}_{\mathsf{M}_{i}}) \big) &= \sum_{k \in I} (\alpha_{j,k} \otimes \mathbf{id}) \big(\alpha_{k,i}(\mathbb{1}_{\mathsf{M}_{i}}) \big) \\ &\geq (\alpha_{j,l} \otimes \mathbf{id}) \big(\alpha_{l,i}(\mathbb{1}_{\mathsf{M}_{i}}) \big) \neq \mathbf{0}. \end{aligned}$$

Since the above sum is a sum of orthogonal projections, we obtain $(id \otimes \Delta_{\mathbb{G}})(\alpha_{j,i}(\mathbb{1}_{M_i})) \neq 0$, so $\alpha_{j,i}(\mathbb{1}_{M_i}) \neq 0$ and thus $i \sim_{\alpha} j$. Now for each *i* there exists *j* such that $i \sim_{\alpha} j$ (otherwise ker $\alpha \neq \{0\}$). This implies reflexivity of \sim_{α} .

• We will call equivalence classes of \sim_{α} **orbits** of the action α .

Remark

Let $A \subset I$ be an equivalence class of \sim_{α} . Then $\alpha : \mathsf{M} \longrightarrow \mathsf{M} \,\bar{\otimes} \, L^{\infty}(\mathbb{G})$ restricts to $\prod_{i \in A} \mathsf{M}_i$ giving an action of \mathbb{G} on $\prod_{i \in A} \mathsf{M}_i$. In particular setting

$$\mathbb{1}_A = \sum_{i \in A} p_i$$

we get an **invariant element**:

$$\alpha(\mathbb{1}_A) = \mathbb{1}_A \otimes \mathbb{1}.$$

COROLLARY

If α is ergodic then \sim_{α} is a total relation.

P.M. SOŁTAN (WARSAW)

THEOREM

Let β be an ergodic action of a compact quantum group on a von Neumann algebra $N = M_n(\mathbb{C}) \oplus \widetilde{N}$. Then dim $N < +\infty$.

COROLLARY

Let α be an action of a compact quantum group on $M = \prod_{i \in I} M_{n_i}(\mathbb{C})$. Then all orbits of α (equivalence classes of \sim_{α}) are finite.

STEPS OF PROOF:

- Restrict to one class: assume $i \sim_{\alpha} j$ for all i, j,
- take *p* a minimal projection in $\{m \in \mathsf{M} \mid \alpha(m) = m \otimes \mathbb{1}\},\$
- α restricts to an action on *p*M*p* which is ergodic,

STEPS OF PROOF (CONTD.):

- pMp is itself a product of matrix algebras, so by Theorem, dim $pMp < +\infty$,
- it follows that $I_p = \{i \in I \mid p_i p \neq 0\}$ is finite,
- take $i \in I_p$ and $j \in I \setminus I_p$; we have $p_i p \neq 0$, but

$$egin{aligned} lpha_{j,i}(p_ip) &= (oldsymbol{p}_j \otimes \mathrm{id}) ig(lpha(p_ip) ig) &\leq (oldsymbol{p}_j \otimes \mathrm{id}) ig(lpha(p) ig) \ &= (oldsymbol{p}_j \otimes \mathrm{id})(p \otimes \mathbb{1}) = oldsymbol{p}_j(p) \otimes \mathbb{1} = 0 \end{aligned}$$

(because $p_j p = 0$),

• however, we have $i \sim_{\alpha} j$, so ker $\alpha_{j,i} \neq \{0\}$ and hence we arrive at a contradiction.

• Let $\[\]$ be a discrete quantum group:

$$\ell^\infty(\mathbb{\Gamma}) = \prod_{\gamma \in \operatorname{Irr} \widehat{\Gamma}} M_{n_\gamma}(\mathbb{C}).$$

- and let \mathbb{A} be a quantum subgroup of \mathbb{F}
- Put $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \{x \in \ell^{\infty}(\mathbb{F}) \mid (\pi \otimes \mathrm{id})\Delta_{\mathbb{F}}(x) = \mathbb{1} \otimes x\}.$
- Let $\mathbb{G} = \widehat{\mathbb{F}}$. We have

$$\mathbf{W}^{\mathbb{G}}\big(\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})\otimes\mathbb{1}\big)\mathbf{W}^{\mathbb{G}^{*}}\subset\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})\,\bar{\otimes}\,L^{\infty}(\widehat{\mathbb{F}})$$

which yields an action of \mathbb{G} on $\ell^\infty(\mathbb{A}\backslash\mathbb{F})$:

$$\alpha(\boldsymbol{x}) = \mathbf{W}^{\mathbb{G}}(\boldsymbol{x} \otimes \mathbb{1}) \mathbf{W}^{\mathbb{G}^*}, \qquad \boldsymbol{x} \in \ell^{\infty}(\mathbb{A} \backslash \mathbb{F}).$$

EXAMPLE

Consider a special case:

• let $\mathbb{H} \subset \mathbb{G}$ be a normal closed quantum subgroup,

• let
$$\Gamma = \widehat{\mathbb{G}}$$
 and $\Lambda = \widehat{\mathbb{G}}/\widehat{\mathbb{H}}$.

Then \mathbb{G} acts on $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \ell^{\infty}(\mathbb{F}/\mathbb{A}) = \ell^{\infty}(\widehat{\mathbb{H}}).$

• $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})$ is a product of matrix algebras:

$$\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \prod_{i\in I}\mathsf{M}_i$$

with each $M_i = M_{m_i}(\mathbb{C})$.

• The action of $\mathbb{G} = \widehat{\mathbb{F}}$ on $\ell^{\infty}(\mathbb{A} \setminus \mathbb{F})$ defines the equivalence relation \sim_{α} on *I*.

• Denote by $\mathbb{1}_j$ the unit of $M_j \subset \ell^{\infty}(\mathbb{A} \setminus \mathbb{F})$ viewed as a projection in $\ell^{\infty}(\mathbb{F})$.

THEOREM

For any $i \in I$ the element

$$\sum_{j\sim_{\alpha}i}\mathbb{1}_{j}\in\ell^{\infty}(\mathbb{A}\backslash\mathbb{F})\subset\ell^{\infty}(\mathbb{F})$$

is the central support $z(\mathbb{1}_i)$ in $\ell^{\infty}(\Gamma)$ of the projection $\mathbb{1}_i$. Moreover $z(\mathbb{1}_i)$ is orthogonal to $z(\mathbb{1}_j)$ if *i* is not equivalent to *j*.

In particular for any κ ∈ Irr Ê there exists i ∈ I such that
① for all j ∈ I we have p_κ 1_j ≠ 0 if and only if j ~_α i,
② we have p_κ (∑_{j~αi} 1_j) = p_κ.

EXAMPLE REVISITED

- When $\mathbb{A} = \widehat{\mathbb{G}/\mathbb{H}}$ for a closed normal subgroup \mathbb{H} of \mathbb{G} , the theorem says that for an irrep κ of \mathbb{G} (or $\ell^{\infty}(\widehat{\mathbb{G}})$) the restriction of κ to \mathbb{H} (or $\ell^{\infty}(\widehat{\mathbb{H}})$) is a direct sum of irreps of \mathbb{H} constituting one class of the equivalence relation \sim_{α} on $I = \operatorname{Irr} \mathbb{H}$.
- for classical groups *G* and *H* the irreps of *H* in one orbit of the action of *G* (by conjugation) all have the same dimension.

THEOREM

Let \mathbb{G} be a compact quantum group of Kac type and let \mathbb{H} be a closed normal quantum subgroup of \mathbb{G} . Then any two irreducible representations σ and τ of \mathbb{H} in the same orbit have the same dimension. Moreover, if π is any irreducible representation of \mathbb{G} with $\pi(\mathbb{1}_{\sigma}) \neq 0$, then also the multiplicity of σ in π is the same as the multiplicity of τ in π .

THEOREM

Consider the following three conditions

- **(1)** $\widehat{\mathbb{G}}$ is torsion free,
- **2** \mathbb{G} is satisfies the (TO)-condition,
- ③ G is connected.

All actions of \mathbb{G} on finite dimensional \mathbb{C}^* -algebras are direct sums of actions Morita equivalent to trivial action on \mathbb{C}

For any action of $\mathbb G$ on a product of matrix algebras the orbits are trivial

There is no finite quantum group $\mathbb H$ such that $Pol(\mathbb H) \subset Pol(\mathbb G)$ as a Hopf *-subalgebra

Then

$$\mathbf{1} \Longrightarrow \mathbf{2} \Longrightarrow \mathbf{3}.$$

In general neither of the implications can be reversed.

DEFINITION

Let \mathbb{A} be a quantum subgroup of a discrete quantum group \mathbb{F} . For $\sigma, \tau \in \operatorname{Irr} \widehat{\mathbb{F}}$ we say that σ and τ are \mathbb{A} -**related** if there exists $\gamma \in \operatorname{Irr} \widehat{\mathbb{A}}$ such that $\tau \subset \sigma \otimes \gamma$.

- Recall that in this situation we have an action α of \mathbb{G} on $\ell^{\infty}(\mathbb{A}\backslash\mathbb{F}) = \prod_{i \in I} M_i$.
- For $i \in I$ define \mathbb{F} -supp $(\mathbb{1}_i) = \{ \kappa \in \operatorname{Irr} \widehat{\mathbb{F}} \mid p_{\kappa} \mathbb{1}_i \neq 0 \}.$

THEOREM

- **(**) For $i, j \in I$ we have $i \sim_{\alpha} j$ iff \mathbb{F} -supp $(\mathbb{1}_i) = \mathbb{F}$ -supp $(\mathbb{1}_j)$,
- 2 two elements $\sigma, \tau \in \operatorname{Irr} \widehat{\Gamma}$ are \wedge -related iff there exists $i \in I$ such that $\sigma, \tau \in \Gamma$ -supp $(\mathbb{1}_i)$.