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ACTIONS OF COMPACT QUANTUM GROUPS ON DISCRETE QUANTUM SPACES

DEFINITION

Let M be a von Neumann algebra and let G be a compact
quantum group. An action of G on M is an injective normal
unital x-homomorphism «: M — M ® L*°(G) such that

(a®id)oa = (id ® Ag) o a.

o We will only consider M of the form M = [[ M;.

iel
o Let p; be the unit of M; considered as a projection in M.
o p;: M — M; will be the canonical surjection.

DEFINITION
For i,j € I we say that i and j are a-related (writing i ~,, j) if

Ix e M; (p; ®id) (a(x)) # 0.
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ACTIONS OF COMPACT QUANTUM GROUPS THE RELATION ~ ¢

o For i,j € I define ¢;; : M; — M;® L*(G) by

aji(x) = (p; @1d)(a(x)), x € My
FacT
The following are equivalent:
@ iNO{jy
@ Oéji 75 O,

@ aji(lm,) # 0.

o A more useful criterion for i ~, j can be given when « is
implemented.
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ACTIONS OF COMPACT QUANTUM GROUPS UNITARY IMPLEMENTATION

DEFINITION

An action a: M — M® L*>°(G) is implemented if there exist
o a Hilbert space .77,
o a faithful representation = of M on /7,
o arepresentation U of G on 7

such that

(r®id)(a(y)) = U(L @ 7(y)) U*, yeM.

FAcCT
Any action can be implemented. For example:
o choose a faithful representation 7o of M on .,
0 put S = % @ L*(G), T = (mro ®1id) o a,
o let U =WS, € B(s4) @ £°(G) & L™(G) C B(#) & L¥(G).
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ACTIONS OF COMPACT QUANTUM GROUPS UNITARY IMPLEMENTATION

o Assume a: M — M® L>®(G) is implemented:

(r®id)(a(y)) = Ul @ 7(y)) U, yeM.
o Since M = [[ M;, we have
iel
o K =@ A, where 54 = n(p;)# and
i€l

o foreachye M
m(y) = @Wi(yi)a

i€l
with 7; a faithful representation of M; on % and y; = p;(y).

o For k,l €I put Uy = (7(pi) ® 1)U(7(p1) ® 1). Then for each
i,j we have

(7Tj & 1d) (OéJ"i(X)) = []jﬂ'(ﬂ'i(X) & ]I)U]Tl’ X € Mi

because U implements «.
o Clearly (m; ® id)(ey,i(1m,)) = Uil
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ACTIONS OF COMPACT QUANTUM GROUPS UNITARY IMPLEMENTATION

o Assume a: M — M® L*°(G) is implemented by U.
o For all i,j we have (m; ® id) (;.:(1y,)) = Uj.Uj; and
o 7 is faithful on M;.

o Thus we get

COROLLARY
We have
(1) = (s 0)

o This will help in studying properties of ~,
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RELATION DEFINED BY ACTION SYMMETRY OF ~ o

PROPOSITION
The relation ~, is symmetric.

PROOF:
Assume « is implemented by U € B(J#) ® L>°(G). We have

(208 = (1 0)
and this is equivalent to
€ € 4, n € 4 (we,, @id)(U) # O.
Now (we¢,, ®id)(U) € D(S) and
0 # S((we,, ®1d)(U)) = (we,, ® id)(U™).
This means that U;; = (U*);: # 0, so Uy; # 0 and j ~q 1.
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RELATION DEFINED BY ACTION TRANSITIVITY OF ~ ¢

REMARK
The relation~,, need not be transitive. For example take
o M=1>{1,2,3,4}) = L*({1}) ® L>({2,3}) ® L™({4})

o G = Zy acting by
R
24

o Then {1} ~, {2,3} and {2,3} ~, {4}, but {1} £, {4}.
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RELATION DEFINED BY ACTION TRANSITIVITY AND REFLEXIVITY OF ~ o

PROPOSITION

If for each i € I the algebra M; is a factor then ~,, is an
equivalence relation.

PROOF:
From (a ®id) o a = (id ® Ag) o « it follows that

(id ® Ag) (ei(x%) =D (e ® id) (e 1(x)), ijel, xecM.
kel

Moreover, since each M; is a factor and « is normal, we have
(kwa l) — (keraklz {0})

for any k,l € I.
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RELATION DEFINED BY ACTION TRANSITIVITY AND REFLEXIVITY OF ~ o

PROOF (CONTD.):
Assume i ~, l and | ~, j. Then

(id ® Ac) (aji(Im,) = D (g1 ®1d) (oi(Tp,))
kel

> (aj; @ id) (ei(1wm,)) # O.

Since the above sum is a sum of orthogonal projections, we
obtain (id ® Ag)(aj,i(Lm,)) # 0, S0 a;ji(Ly,) # O and thus i ~q j.
Now for each i there exists j such that i ~, j (otherwise

ker a # {0}). This implies reflexivity of ~,,. O

o We will call equivalence classes of ~, orbits of the action «a.
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RELATION DEFINED BY ACTION RESTRICTING TO A CLASS

REMARK

Let A C I be an equivalence class of ~,. Then

a: M — M® L*(G) restricts to [[ M; giving an action of G on
icA
[I M;. In particular setting

€A
Ia= Zpt
icA
we get an invariant element:

Oé(ﬂA) =1a®1.

COROLLARY
If « is ergodic then ~,, is a total relation.
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RELATION DEFINED BY ACTION FINITENESS OF ORBITS

THEOREM

Let 5 be an ergodic action of a compact quantum group on a
von Neumann algebra N = M,(C) & N. Then dim N < +o0.

COROLLARY

Let a be an action of a compact quantum group on
M = [[ My, (C). Then all orbits of a (equivalence classes of ~,)

iel

are finite.

STEPS OF PROOF:
o Restrict to one class: assume i ~, j for all i,j,
o take p — a minimal projection in {m € M|a(m) =m® 1},
o «a restricts to an action on pMp which is ergodic,
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RELATION DEFINED BY ACTION FINITENESS OF ORBITS

STEPS OF PROOF (CONTD.):
o pMp is itself a product of matrix algebras, so by Theorem,
dim pMp < +o0,
o it follows that I, = {i € I| p;p # O} is finite,
o take i€ I, and j € I'\ I,; we have p;p # 0, but

aji(pip) = (p; @ id)(a(pip)) < (p; ®id)((p))
= (p;®id)(p®1)=pj(p)®1 =0

(because p;p = 0),

o however, we have i ~ j, so kero;; # {0} and hence we
arrive at a contradiction. O
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QUANTUM CLIFFORD THEORY DISCRETE QUANTUM GROUP WITH A QUANTUM SUBGROUP
o Let [ be a discrete quantum group:
e e} —
(M) = [ Mn,(C).
yelrr I

o and let A be a quantum subgroup of [

o~ ~

o L®°(A) C L=(T), (A is closed)
o L2([) — £°(N). (A is open)

o Put (®°(A\N) = {x € 1= | (7 ® id)Ap(x) = 1 ® x}.
o Let G = T. We have

WE (0°(A\T) ® 1)WE c (A1) & L=(T)
which yields an action of G on ¢*°(A\l):

a(x) = W8 (x @ 1)WE", x € (2(A\I).
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QUANTUM CLIFFORD THEORY DISCRETE QUANTUM GROUP WITH A QUANTUM SUBGROUP

EXAMPLE
Consider a special case:
o let H C G be a normal closed quantum subgroup,

Q let[F:@andA:(E/ﬁ.
Then G acts on £2°(A\[') = (T /A) = ¢>°(H).

9 (*°(A\I') is a product of matrix algebras:
(M) =T M
iel

with each M; = M, (C).

o The action of G = T on ¢*(A\I) defines the equivalence
relation ~, on I.
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QUANTUM CLIFFORD THEORY QUANTUM CLIFFORD’S THEOREM

o Denote by 1; the unit of M; C ¢>°(A\I') viewed as a projection
in ().

THEOREM
For any i € I the element

> 1€ (M) € £2(T)
Jroadi

is the central support z(1;) in °°(I") of the projection 1;. Moreover
2(1;) is orthogonal to z(1;) if i is not equivalent to j.

o In particular for any € Irr T there exists i € I such that
@ for all j € I we have p,1; # 0 if and only if j ~, i,

@ we have pK( > ]lj> = Dk-

J~al
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QUANTUM CLIFFORD THEORY QUANTUM CLIFFORD’S THEOREM

EXAMPLE REVISITED

o When A = m for a closed normal subgroup H of G, the
theorem says that for an irrep « of G (or ¢°(G)) the
restriction of x to H (or EOO(H?]I)) is a direct sum of irreps of H
constituting one class of the equivalence relation ~, on

I =Irr H.

o for classical groups G and H the irreps of H in one orbit of
the action of G (by conjugation) all have the same
dimension.
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QUANTUM CLIFFORD THEORY DIMENSIONS IN KAC CASE

THEOREM

Let G be a compact quantum group of Kac type and let H be a
closed normal quantum subgroup of G. Then any two irreducible

representations o and T of H in the same orbit have the same

dimension. Moreover, if 7 is any trreducible representation of G

with 7(1,) # 0, then also the multiplicity of o in  is the same
the multiplicity of T in «.
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OTHER APPLICATIONS TORSION FREENESS AND CONNECTEDNESS

THEOREM
Consider the following three conditions

) -~ . . All actions of G on finite dimensional
@ G s torslonfree , C*-algebras are direct sums of actions
Morita equivalent to trivial action on C
. . e, For any action of G on a product of ma-
@ G s satl‘sﬁes the (TO) -condltlon’ trix algebras the orbits are trivial
) . There is no finite quantum group H such
@ G is connected. that Pol(E) C Pol(G) as a Hopf +-
subalgebra
Then

Q= 9= Q.

In general neither of the implications can be reversed.
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OTHER APPLICATIONS VERGNIOUX RELATION

DEFINITION

Let A be a quantum subgroup of a discrete quantum group [
For 0,7 € Irr [ we say that ¢ and 7 are A-related if there exists

v € Irr A such that 7 C 0 ® 7.

o Recall that in this situation we have an action o« of G on

(NI =T M.
iel
o For i € I define I-supp(1;) = {x € Irr T | p,1; # O}.
THEOREM

@ Fori,je I we have i ~, j iff I-supp(1;) = I-supp(1;).
@ two elements 0,7 € Irr [ are A-related iff there exists i € I
such that o, 7 € [-supp(1;).
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