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COMPACT QUANTUM GROUPS

Definition

G =
(
C(G),∆

)

• C(G) — unital C∗-algebra

• ∆: C(G) → C(G) ⊗ C(G)

C(G)

∆

∆
C(G) ⊗ C(G)

∆⊗id

C(G) ⊗ C(G)
id⊗∆

C(G) ⊗ C(G) ⊗ C(G)

• ∆
(
C(G)

)(
1⊗C(G)

)
= C(G)⊗C(G)

•
(
C(G)⊗1

)
∆

(
C(G)

)
= C(G)⊗C(G)

Examples

• G — compact group,

• C(G) := C(G)
• ∆( f )(x , y) = f (xy)

• Γ – discrete group

• C(G) := C∗(Γ)
• ∆(γ) = γ ⊗ γ

or

• C(G) := C∗

r (Γ)
• ∆(γ) = γ ⊗ γ
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THE HOPF ALGEBRA

THEOREM (S.L. WORONOWICZ)

Let G be a compact quantum group. There exists a unique

dense Hopf ∗-subalgebra Pol(G) ⊂ C(G).

• Pol(G) is a Hopf algebra, so

• Pol(G) is a unital ∗-subalgebra of C(G),
• ∆

(
Pol(G)

)
⊂ Pol(G) ⊙ Pol(G),

• there is a counit (denoted ǫ) and an antipode on
Pol(G).

• Moreover

• for G classical, i.e. C(G) = C(G), the subalgebra
Pol(G) is the algebra of regular functions on G,

• if C(G) = C∗(Γ) (or C∗

r (Γ)) we have Pol(G) = C[Γ].

• Pol(G) is the linear span of matrix elements of

irreducible corepresentations of G.
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NORMS ON Pol(G)

• maximal (universal) C∗-norm

 the completion: C(Gmax)

• minimal (reduced) C∗-norm

 the completion: C(Gmin)

• ‖a‖∼ = max
{
‖a‖,

∣∣ǫ(a)
∣∣}

 the completion: C(G̃)

Example: Pol(G) = C[Γ]

 C(Gmax) = C∗

full(Γ)

 C(Gmin) = C∗

r (Γ)

 C(G̃) = ??

DEFINITION

A C∗-norm on Pol(G) is a quantum group norm if

∆: Pol(G) −→ Pol(G) ⊗ Pol(G)

extends to completions.

FACT

All of the above C∗-norms are quantum group norms.
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EXOTIC COMPLETIONS

• We are interested in quantum group norms
quantum group norms on Pol(G) such that if C(G)
is the completion we have

• C(Gmin) 6= C(G),
• C(G) 6= C(Gmax),

• C(G) 6= C(G̃) 6= C(Gmax)

(in the sense that the canonical epimorphisms are

not isomorphisms).

• Another interesting possibility is

• C(G) 6= C(G̃) = C(Gmax).

• We call such norms exotic quantum group norms.

• Existence of exotic norms is interesting for the theory

of quantum group actions.



COMPACT QUANTUM GROUPS DISCRETE QUANTUM GROUPS AND PROPERTY (T) EXOTIC COMPLETIONS

DISCRETE QUANTUM GROUPS

• Each compact quantum group G comes with its

discrete dual

Ĝ =
(
c0(Ĝ), ∆̂

)
.

• Crucial fact: c0(Ĝ) is a direct sum of matrix algebras.

• If G is classical (C(G) = C(G)) and abelian then

c0(Ĝ) = c0(Ĝ) =
⊕

bG

C

• Representations of the C∗-algebra c0(Ĝ) are in

natural bijection with corepresentations of G.

• Representations of the C∗-algebra C(Gmax) are in

natural bijection with corepresentations of Ĝ.

• In 2008 Pierre Fima defined property (T) for discrete

quantum groups. The analog of a finite set in Ĝ is a

finite sum of simple summands of c0(Ĝ).
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EXAMPLES

1. Let G be classical: C(G) = C(G), where G is a
compact group. Then

• we have
c0(Ĝ) =

⊕

π – irrep of G

Mdim π
(C),

• ∆̂ reflects the tensor product of representations of G.

2. Let Γ be a discrete group and G =
(
C∗(Γ),∆

)
. Then

• c0(Ĝ) = c0(Γ),

• ∆̂ : c0(Ĝ) → M
(
c0(Ĝ) ⊗ c0(Ĝ)

)

∆̂( f )(x , y) = f (xy).

• ∆̂ is a morphism c0(Ĝ) → c0(Ĝ) ⊗ c0(Ĝ).

• Ĝ = (c0(Ĝ), ∆̂) is a discrete quantum group.

• Ĝ has property (T) in the sense of Fima if and only if
Γ has property (T).
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OTHER CHARACTERIZATIONS

THEOREM (DAVID KYED & P.M.S.)

The following are equivalent:

• Ĝ has property (T) in the sense of Fima,

• the counit ǫ is an isolated point of Spec
(
C(Gmax)

)
,

• all finite dimensional representations are isolated

points of Spec
(
C(Gmax)

)
,

• the C∗-algebra C(Gmax) has property (T) of Bekka,

• there exists a unique minimal projection p in the center

of C(Gmax) with ǫ(p) = 1,

• there exists a minimal projection p ∈ C(Gmax) with

ǫ(p) = 1,

• Ĝ has property (T) as defined by Petrescu & Joita

(1992, for Kac algebras only),

• Ĝ has property (T) as defined by Bédos, Conti &

Tuset (2005, for algebraic quantum groups).
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FIRST EXOTIC EXAMPLES

THEOREM

Take a non-coamenable G.* Then

• C(Gmin) 6= C(G̃min),

• if C(G̃min) = C(Gmax) then Ĝ has property (T).

This provides many examples such that

Gmin 6= G 6= Gmax

(take G = G̃min with G without property (T)).

*i.e. C(Gmin) 6= C(Gmax)
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SPECIAL REPRESENTATION

• Let π be the representation of C(Gmax) which is the

direct sum of all infinite-dimensional irreducible

representations.

THEOREM

If Ĝ has property (T) then the C∗-norm on Pol(G) defined

by π is a quantum group norm.

• Denote the resulting quantum group by Gπ.
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MORE EXOTIC EXAMPLES

• Take Ĝ — infinite property (T) discrete quantum

group.

• Gπ does not admit a continuous counit, so

Gπ 6= G̃π.

• It could happen that Gmin = Gπ, but in most cases

Gmin 6= Gπ.

• there are examples when G̃π = Gmax, but in most

cases

G̃π 6= Gmax.
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SUMMARY

• G — coamenable

Gmin = G = G̃ = Gmax.

• G — non-coamenable, Ĝ not Kazhdan

Gmin = G 6= G̃ 6= Gmax.

• Ĝ — Kazhdan, minimally almost periodic

Gmin 6= G 6= G̃ = Gmax.

• Ĝ — Kazhdan, not minimally almost periodic

Gmin 6= G 6= G̃ 6= Gmax.
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