# AN APPLICATION OF PROPERTY (T) FOR DISCRETE QUANTUM GROUPS

#### Piotr M. Soltan (joint work with David Kyed)

Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw and Institute of Mathematics of the Polish Academy of Sciences

## כנס מתמטיקה ישראלי-פולני

Łódź, September 13, 2011

# COMPACT QUANTUM GROUPS

#### Definition

$$\mathbb{G} = \left( \mathsf{C}(\mathbb{G}), \Delta \right)$$

- $C(\mathbb{G})$  unital C\*-algebra
- $\Delta \colon \mathbf{C}(\mathbb{G}) \to \mathbf{C}(\mathbb{G}) \otimes \mathbf{C}(\mathbb{G})$

$$\begin{array}{c} C(\mathbb{G}) & \xrightarrow{\Delta} C(\mathbb{G}) \otimes C(\mathbb{G}) \\ \Delta & \swarrow & \swarrow \\ C(\mathbb{G}) \otimes C(\mathbb{G}) & \xrightarrow{id \otimes \Delta} C(\mathbb{G}) \otimes C(\mathbb{G}) \otimes C(\mathbb{G}) \end{array}$$

- $\Delta(C(\mathbb{G}))(\mathbf{1} \otimes C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$
- $(C(\mathbb{G}) \otimes \mathbf{1}) \Delta(C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$

#### Examples

- *G* compact group,
  - $C(\mathbb{G}) := C(G)$
  - $\Delta(f)(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}\mathbf{y})$
- Γ discrete group

• 
$$C(\mathbb{G}) := C^*(\Gamma)$$

• 
$$\Delta(\gamma) = \gamma \otimes \gamma$$

or

- $C(\mathbb{G}) := C_r^*(\Gamma)$
- $\Delta(\gamma) = \gamma \otimes \gamma$

## THE HOPF ALGEBRA

#### THEOREM (S.L. WORONOWICZ)

Let  $\mathbb G$  be a compact quantum group. There exists a unique dense Hopf \*-subalgebra  $\text{Pol}(\mathbb G)\subset C(\mathbb G).$ 

- $Pol(\mathbb{G})$  is a Hopf algebra, so
  - $Pol(\mathbb{G})$  is a unital \*-subalgebra of  $C(\mathbb{G})$ ,
  - $\Delta(\operatorname{Pol}(\mathbb{G})) \subset \operatorname{Pol}(\mathbb{G}) \odot \operatorname{Pol}(\mathbb{G}),$
  - there is a counit (denoted  $\epsilon$ ) and an antipode on  $\operatorname{Pol}(\mathbb{G})$ .
- Moreover
  - for  $\mathbb{G}$  classical, i.e.  $C(\mathbb{G}) = C(G)$ , the subalgebra  $Pol(\mathbb{G})$  is the algebra of **regular functions** on *G*,
  - if  $C(\mathbb{G}) = C^*(\Gamma)$  (or  $C^*_r(\Gamma)$ ) we have  $Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$ .
- Pol(G) is the linear span of matrix elements of irreducible corepresentations of G.

# NORMS ON $Pol(\mathbb{G})$

 maximal (universal) C\*-norm  $\rightarrow$  the completion: C( $\mathbb{G}_{max}$ ) minimal (reduced) C\*-norm  $\rightarrow$  the completion:  $C(\mathbb{G}_{\min})$ •  $||a||_{\sim} = \max\{||a||, |\epsilon(a)|\}$  $\rightsquigarrow$  the completion:  $C(\widetilde{\mathbb{G}})$  $\rightsquigarrow C(\widetilde{\mathbb{G}}) = ??$ DEFINITION

A C<sup>\*</sup>-norm on Pol( $\mathbb{G}$ ) is a quantum group norm if

 $\Delta \colon \operatorname{Pol}(\mathbb{G}) \longrightarrow \operatorname{Pol}(\mathbb{G}) \otimes \operatorname{Pol}(\mathbb{G})$ 

extends to completions.

FACT

All of the above  $C^*$ -norms are quantum group norms.

Example:  $Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$  $\rightarrow$  C( $\mathbb{G}_{max}$ ) = C^\*\_{full}(\Gamma)

$$\rightsquigarrow \ C(\mathbb{G}_{min}) = C^*_r(\Gamma)$$

## EXOTIC COMPLETIONS

- We are interested in quantum group norms **quantum group norms** on  $Pol(\mathbb{G})$  such that if  $C(\mathbb{G})$  is the completion we have
  - $C(\mathbb{G}_{\min}) \neq C(\mathbb{G})$ ,
  - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$ ,
  - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

(in the sense that the canonical epimorphisms are not isomorphisms).

• Another interesting possibility is

• 
$$C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) = C(\mathbb{G}_{max}).$$

- We call such norms **exotic** quantum group norms.
- Existence of exotic norms is interesting for the theory of quantum group actions.

## DISCRETE QUANTUM GROUPS

• Each compact quantum group G comes with its **discrete dual** 

$$\widehat{\mathbb{G}} = \big( c_0(\widehat{\mathbb{G}}), \widehat{\Delta} \big).$$

- Crucial fact:  $c_0(\widehat{\mathbb{G}})$  is a direct sum of matrix algebras.
- If  $\mathbb G$  is classical (C( $\mathbb G)=C(G)$ ) and abelian then

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \mathrm{c}_0(\widehat{G}) = \bigoplus_{\widehat{G}} \mathbb{C}$$

- Representations of the C\*-algebra  $c_0(\widehat{\mathbb{G}})$  are in natural bijection with corepresentations of  $\mathbb{G}$ .
- Representations of the C\*-algebra  $C(\mathbb{G}_{max})$  are in natural bijection with corepresentations of  $\widehat{\mathbb{G}}$ .
- In 2008 Pierre Fima defined property (T) for discrete quantum groups. The analog of a finite set in  $\widehat{\mathbb{G}}$  is a finite sum of simple summands of  $c_0(\widehat{\mathbb{G}})$ .

### EXAMPLES

- 1. Let  $\mathbb{G}$  be classical:  $C(\mathbb{G}) = C(G)$ , where G is a compact group. Then
  - we have

$$\mathbf{c}_{\mathbf{0}}(\widehat{\mathbb{G}}) = \bigoplus_{\pi \text{ - irrep of } G} M_{\dim \pi}(\mathbb{C}),$$

- $\widehat{\Delta}$  reflects the tensor product of representations of *G*.
- 2. Let  $\Gamma$  be a discrete group and  $\mathbb{G} = (C^*(\Gamma), \Delta)$ . Then
  - $\mathbf{c}_{0}(\widehat{\mathbb{G}}) = \mathbf{c}_{0}(\Gamma)$ , •  $\widehat{\Delta} : \mathbf{c}_{0}(\widehat{\mathbb{G}}) \to \mathbf{M}(\mathbf{c}_{0}(\widehat{\mathbb{G}}) \otimes \mathbf{c}_{0}(\widehat{\mathbb{G}}))$

 $\widehat{\Delta}(f)(x,y) = f(xy).$ 

- $\widehat{\Delta}$  is a **morphism**  $c_0(\widehat{\mathbb{G}}) \to c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}}).$
- $\widehat{\mathbb{G}}=(c_0(\widehat{\mathbb{G}}),\widehat{\Delta})$  is a discrete quantum group.
- $\widehat{\mathbb{G}}$  has property (T) in the sense of Fima if and only if  $\Gamma$  has property (T).

# OTHER CHARACTERIZATIONS

#### THEOREM (DAVID KYED & P.M.S.)

The following are equivalent:

- $\widehat{\mathbb{G}}$  has property (T) in the sense of Fima,
- *the counit*  $\epsilon$  *is an isolated point of* Spec $(C(\mathbb{G}_{max}))$ *,*
- all finite dimensional representations are isolated points of  $Spec(C(\mathbb{G}_{max}))$ ,
- the C\*-algebra  $C(\mathbb{G}_{max})$  has property (T) of Bekka,
- there exists a unique minimal projection p in the center of  $C(\mathbb{G}_{max})$  with  $\epsilon(p) = 1$ ,
- there exists a minimal projection  $p \in C(\mathbb{G}_{\max})$  with  $\epsilon(p) = 1$ ,
- $\widehat{\mathbb{G}}$  has property (T) as defined by Petrescu & Joita (1992, for Kac algebras only),
- $\widehat{\mathbb{G}}$  has property (T) as defined by Bédos, Conti & Tuset (2005, for algebraic quantum groups).

#### FIRST EXOTIC EXAMPLES

#### THEOREM

Take a non-coamenable  $\mathbb{G}^*$ . Then

• 
$$C(\mathbb{G}_{\min}) \neq C(\widetilde{\mathbb{G}_{\min}})$$
,

• if  $C(\widetilde{\mathbb{G}_{min}}) = C(\mathbb{G}_{max})$  then  $\widehat{\mathbb{G}}$  has property (T).

This provides many examples such that

$$\mathbb{G}_{min} \neq \mathbb{G} \neq \mathbb{G}_{max}$$

(take  $\mathbb{G}=\widetilde{\mathbb{G}_{min}}$  with  $\mathbb{G}$  without property (T)).

<sup>\*</sup>i.e.  $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$ 

## SPECIAL REPRESENTATION

• Let  $\pi$  be the representation of  $C(\mathbb{G}_{max})$  which is the direct sum of all infinite-dimensional irreducible representations.

#### THEOREM

If  $\widehat{\mathbb{G}}$  has property (T) then the C<sup>\*</sup>-norm on Pol( $\mathbb{G}$ ) defined by  $\pi$  is a quantum group norm.

• Denote the resulting quantum group by  $\mathbb{G}_{\pi}$ .

## MORE EXOTIC EXAMPLES

- Take  $\widehat{\mathbb{G}}$  infinite property (T) discrete quantum group.
- $\mathbb{G}_{\pi}$  does not admit a continuous counit, so

 $\mathbb{G}_{\pi} \neq \widetilde{\mathbb{G}_{\pi}}.$ 

• It could happen that  $\mathbb{G}_{min}=\mathbb{G}_{\pi},$  but in most cases

$$\mathbb{G}_{\min} \neq \mathbb{G}_{\pi}.$$

• there are examples when  $\widetilde{\mathbb{G}_{\pi}} = \mathbb{G}_{\max}$ , but in most cases

$$\widetilde{\mathbb{G}_{\pi}} \neq \mathbb{G}_{\max}.$$

## SUMMARY

• G — coamenable

$$\mathbb{G}_{\min} = \mathbb{G} = \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

•  $\mathbb{G}$  — non-coamenable,  $\widehat{\mathbb{G}}$  not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

•  $\widehat{\mathbb{G}}$  — Kazhdan, minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

•  $\widehat{\mathbb{G}}$  — Kazhdan, not minimally almost periodic

$$\mathbb{G}_{min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} \neq \mathbb{G}_{max}.$$



# THANK YOU