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IDEMPOTENT STATES QUASI-SUBGROUPS

Let G be a locally compact quantum group. A state ω on

Cu

0pGq is idempotent if

ω ˇ ω “ ω,

where ˇ is the convolution: µ ˇ ν “ pµ b νq˝∆u.

Let IdempGq be the set of all idempotent states on Cu

0pGq.

THEOREM (KAWADA-ITÔ,COHEN)

Let G be a locally compact group and let ω P IdempGq. Then there

exists a unique compact subgroup K of G such that

ωp f q “

ż

K

f pkq dhKpkq, f P C0pGq

(hK “ the Haar measure on K, C0pGq “ Cu

0pGq canonically).
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IDEMPOTENT STATES QUASI-SUBGROUPS

If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

we have an epimorphism π : Cu
0pGq CupKq,

ω “ hK˝π is an idempotent state on Cu
0pGq.

However, not every ω P IdempGq arises this way (A. Pal).

Given ω P IdempGq we will say that ω corresponds to a

compact quantum quasi-subgroup of G.
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IDEMPOTENT STATES QUASI-SUBGROUPS

Let ω, µ P IdempGq. We say that µ dominates ω if

ω ˇ µ “ µ.

Notation: ω ď µ.

For idempotent states ω, µ arising from compact quantum

subgroups H and K we have
´
ω ď µ

¯
ðñ

´
H Ă K

¯

Put Idem0pGq “ IdempGq Y t0u.

THEOREM

Given ω, µ P IdempGq there exist

ω ^ µ “ sup
 
ν P IdempGq ν ď ω, ν ď µ

(

and

ω _ µ “ inf
 
ν P Idem0pGq ω ď ν, µ ď ν

(
.
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IDEMPOTENT STATES QUASI-SUBGROUPS

A (left) coideal in L8pGq is a von Neumann subalgebra

N Ă L8pGq such that ∆GpNq Ă L8pGq b̄ N

FACT

There is a bijective correspondence between

idempotent states on G, and

τ-invariant integrable coideals N Ă L8pGq.

The coideal Nω corresponding to ω P Idem0pGq is the range of the

normal conditional expectation

Eω : L8pGq Q x ÞÝÑ ω ˇ x P L8pGq.

We have

Nω^µ “ Nω _ Nµand

Nω_µ “

#
Nω X Nµ when Nω X Nµ is integrable,

t0u otherwise.
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IDEMPOTENT STATES QUASI-SUBGROUPS

Let H and K be two compact quantum subgroups of G.

Let ω and µ be the corresponding idempotent states.

Then

ω ^ µ is the Haar measure of H X K,
we have

ω _ µ “ Haar measure of xH,Ky

when xH,Ky is compact, and

ω _ µ “ 0

otherwise.

DEFINITION

The quasi-subgroup corresponding to ω ^ µ is the intersection

of quasi-subgroups related to ω and µ. In case ω _ µ is

non-zero, w say that the corresponding quasi-subgroup is the

quasi-subgroup generated by those of ω and µ.
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IDEMPOTENT STATES LATTICE OF QUASI-SUBGROUPS

PROPOSITION

The operations

IdempGq ˆ IdempGq Q pω, µq ÞÑ ω ^ µ P IdempGq,

Idem0pGq ˆ Idem0pGq Q pω, µq ÞÑ ω _ µ P Idem0pGq

are commutative and associative.

THEOREM

Let ω, µ, ρ P IdempGq be such that

1 ρ ď ω,

2 µ ˇ ρ “ ρ ˇ µ,

3 Nω^µ “ pNωNµqσ´c.l.s..

Then ω ^ pµ _ ρq “ pω ^ µq _ ρ.

ρ ď ω means that the quasi-subgroup corresponding to ρ is

contained in the one for ω,

µ ˇ ρ “ ρ ˇ µ means that the quasi-subgroups corresponding

to µ and ρ commute.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

We have Cu

0pGq C0pGq Ă L8pGq, so L8pGq˚ maps into

Cu

0pGq˚.

This map is injective and its image is a closed ideal in the

Banach algebra Cu

0pGq˚.

Elements of L8pGq˚ viewed in Cu

0pGq˚ are (sometimes) called

normal.

DEFINITION

We will say that a compact quasi-subgroup corresponding to

ω P IdempGq is open if ω is normal.

Let IdemnorpGq denote the set of normal idempotent states on

G.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

PROPOSITION

If G is a discrete quantum group then IdemnorpGq “ IdempGq.

PROOF.

The co-unit ε of G is normal and it is dominated by all

idempotent states. So if ω P IdempGq then

ω ˇ ε “ ω.

But normal states form an ideal, so ω is normal.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

THEOREM

For any locally compact quantum group G there is a bijection

IdemnorpGq Q ω ÞÝÑ rω P IdemnorppGq

reversing natural orders and such that

rrω “ ω

for all ω P IdemnorpGq.

On the level of coideals corresponding to idempotent states

we have

Nrω “ Nω
1 X L8ppGq.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

If ω, µ P IdemnorpGq and ω _ µ ‰ 0 then ω _ µ P IdemnorpGq.

However, ω ^ µ does not have to be normal.

PROPOSITION

Let ω, µ P IdemnorpGq. Then ω ^ µ P IdemnorpGq if and only if

rω _ rµ ‰ 0. In this case we have

ω ^ µ “ Črω _ rµ.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

normal open quantum subgroups of a l.c.q.g. G,

normal compact quantum subgroups of pG
given by

G Ą H ÐÑ K Ă pG,

where pH – pG{K.

Our theorem gives a bijection between

compact open quasi-subgroups of G,

compact open quasi-subgroups of pG.

The latter is an extension of a special case of the former.
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OPEN QUASI-SUBGROUPS APPLICATIONS

THEOREM

Let G be a compact quantum group. Then

1 the following conditions are equivalent for ω P IdempGq:
1 ω P IdemnorpGq,
2 dimNω ă `8,
3 Nω has a finite-dimensional direct summand;

2 for any finite-dimensional coideal N Ă L8pGq there exists

ω P IdemnorpGq such that N “ Nω; in particular N is invariant

under the scaling group.

The proof 3 ñ 1 uses a strong result on ergodic actions

of compact quantum groups: if a compact quantum group

acts ergodically on a von Neumann algebra N with a finite

dimensional direct summand then dimN ă `8.
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OPEN QUASI-SUBGROUPS APPLICATIONS

THEOREM

Let G be a locally compact quantum group and let ω P IdempGq be

such that dimNω ă `8. Then G is compact and consequently

ω P IdemnorpGq.

PROOF.

The coideal Nω is integrable, so if dimNω ă `8, we have

hp1q ă `8, so that G is compact. The last statement follows

from previous Theorem.

The above theorem corresponds to the elementary fact that

if a quotient by a compact subgroup is finite then the

original group must also be compact.

In other words, the condition that dimNω ă `8, says that

the corresponding quasi-subgroup is of “finite index”.
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OPEN QUASI-SUBGROUPS APPLICATIONS

Thank you!
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