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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".
o Let Idem(G) be the set of all idempotent states on C§(G).

THEOREM (KAWADA-ITO,COHEN)

Let G be a locally compact group and let w € Idem(G). Then there
exists a unique compact subgroup K of G such that

w(f) = jf(k) dhg(k),  feColG)
K

(hg = the Haar measure on K, Co(G) = Cj(G) canonically).
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism 7 : Cj(G)——=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

o Given w € Idem(G) we will say that w corresponds to a
compact quantum quasi-subgroup of G.
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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, 1 arising from compact quantum
subgroups H and K we have

(w < u) — (H c K)
o Put Idemy(G) = Idem(G) u {0}.

THEOREM
Given w, i1 € Idem(G) there exist

w A p=sup{veldem(G)|v < w, v < pu}
and

w v p = inf{r € Idemo(G) |w < v, p < v}.

i
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IDEMPOTENT STATES QUASI-SUBGROUPS

o A (left) coideal in L*(G) is a von Neumann subalgebra
N < L*(G) such that Ag(N) ¢ L®(G)®N

FAcT
There is a bijective correspondence between
o idempotent states on G, and
o 7-invariant integrable coideals N < L*(G).

The coideal N,, corresponding to w € Idemo(G) is the range of the
normal conditional expectation

E,: L¥G)>x+— wxxe L*G).

o We have
and Noap = No v N,
{Nw AN,  when N, n N, is integrable,
wvp —

{0} otherwise.
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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let H and K be two compact quantum subgroups of G.
o Let w and p be the corresponding idempotent states.

o Then
o w A p is the Haar measure of H n K,

o we have
w v p = Haar measure of (H, K)

when (H, K} is compact, and
wvpu=0

otherwise.
DEFINITION
The quasi-subgroup corresponding to w A p is the intersection
of quasi-subgroups related to w and p. In case w v p is
non-zero, w say that the corresponding quasi-subgroup is the
quasi-subgroup generated by those of w and .
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IDEMPOTENT STATES LATTICE OF QUASI-SUBGROUPS

PROPOSITION
The operations
0 Idem(G) x Idem(G) 3 (w, ) — w A p € Idem(G),
0 Idemg(G) x Idemg(G) 3 (w, p) — w v p € Idemg(G)
are commutative and associative.
THEOREM
Let w, i, p € Idem(G) be such that
Qrp=xw,
@ puxp=pxp,
) NUJ/\/,L _ (NwNu)U_C'l'S'.
Thenw A (u v p) = (w A p) v p.

9 p < w means that the quasi-subgroup corresponding to p is
contained in the one for w,

9 u*p = p+pu means that the quasi-subgroups corresponding
to 1 and p commute.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

o We have C{(G)—=Co(G) < L®(G), so L*(G), maps into
CH(G)*.

o This map is injective and its image is a closed ideal in the
Banach algebra Cj(G)*.

o Elements of L*(G), viewed in Cj(G)* are (sometimes) called
normal.

DEFINITION

We will say that a compact quasi-subgroup corresponding to
w € Idem(G) is open if w is normal.

o Let Idem,,,(G) denote the set of normal idempotent states on
G.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

PROPOSITION
If G is a discrete quantum group then Idem,,,(G) = Idem(G).

PROOF.

The co-unit ¢ of G is normal and it is dominated by all
idempotent states. So if w € Idem(G) then

W*E=W.

But normal states form an ideal, so w is normal.
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

THEOREM
For any locally compact quantum group G there is a bijection

Idem,(G) dwr— W e Idemmr(@)

reversing natural orders and such that

g

= w

Sor all w € Idem,,.(G).

@ On the level of coideals corresponding to idempotent states
we have R
Ny = N,/ n L*(G).
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OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

o If w, e Idem,(G) and w v pu # O then w v p € Idem,(G).

o However, w A u does not have to be normal.

PROPOSITION

Let w, p € Idem,,.(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have

WAU=KV .

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES May 11, 2018

12 / 16



OPEN QUASI-SUBGROUPS NORMAL IDEMPOTENT STATES

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,
o normal compact quantum subgroups of G
given by R
GoH+«—— KcGgG,
where H =~ G/K.
@ Our theorem gives a bijection between
o compact open quasi-subgroups of G,
o compact open quasi-subgroups of G.
o The latter is an extension of a special case of the former.

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES May 11, 2018 13/ 16



OPEN QUASI-SUBGROUPS APPLICATIONS

THEOREM
Let G be a compact quantum group. Then

@ the following conditions are equivalent for w € Idem(G):
@ w e Idemy (G),
@ dimN, < +o0,
® N, has a finite-dimensional direct summand;
@ for any finite-dimensional coideal N — L*(G) there exists
w € Idem,(G) such that N = N,,; in particular N is invariant
under the scaling group.

o The proof @ = @ uses a strong result on ergodic actions
of compact quantum groups: if a compact quantum group
acts ergodically on a von Neumann algebra N with a finite
dimensional direct summand then dimN < +o0.
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OPEN QUASI-SUBGROUPS APPLICATIONS

THEOREM

Let G be a locally compact quantum group and let w € Idem(G) be
such that dimN,, < +o00. Then G is compact and consequently
w € Idem,.(G).

PROOF.

The coideal N, is integrable, so if dimN,, < +00, we have
h(1) < +o0, so that G is compact. The last statement follows
from previous Theorem. O

o The above theorem corresponds to the elementary fact that
if a quotient by a compact subgroup is finite then the
original group must also be compact.

o In other words, the condition that dim N,, < +o0, says that
the corresponding quasi-subgroup is of “finite index”.
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OPEN QUASI-SUBGROUPS APPLICATIONS

Thank you!

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES May 11, 2018 16 / 16



	Idempotent states
	Quasi-subgroups
	Lattice of quasi-subgroups

	Open quasi-subgroups
	Normal idempotent states
	Applications


