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• Analogous fact is also true for locally compact spaces

and algebras without unit.
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QUANTUM SPACES

DEFINITION

A quantum space is an object of the category dual to the

category of C∗-algebras.

• Every C∗-algebra A defines a quantum space X.

• If A is commutative then X is a (locally) compact
space and A ∼= C(X) (or A ∼= C0(X)),

• if A is not commutative then X is a “virtual” object,
• the concrete mathematical object is the C∗-algebra A,
• every theorem about quantum spaces is a theorem

about C∗-algebras.
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corresponding to a unital C∗-algebra A such that there is a

homomorphism of C∗-algebras ∆: A → A ⊗ A such that
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, span
{

(a ⊗ 1)∆(b) a,b ∈ A
}

,

are dense in A ⊗ A.

• A common notation is G = (A,∆).

• The morphism ∆ is called the comultiplication.
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• Fix q ∈ [−1,1] \ {0}.

• Let A be the universal C∗-algebra generated by two

elements α and γ such that

αγ = qγα, α∗α+ γ∗γ = 1,

γ∗γ = γγ∗, αα∗ + q
2γ∗γ = 1.

• Define ∆: A → A ⊗ A

∆(α) = α⊗ α− qγ∗ ⊗ γ,

∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

• (A,∆) is a compact quantum group called the

quantum SU(2) group.

• for q = 1 the algebra A is commutative and

A ∼= C(SU(2)). Then ∆ describes the product in

SU(2).
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• Let (A,∆) be the quantum SU(2) group (for some q).

• Let C be the C∗-subalgebra of A generated by

αγ, α∗γ, α2, γ2, γ∗γ

(matrix elements of the spin-1 representation).

• We have ∆(C) ⊂ C ⊗ C, let ∆C = ∆
∣

∣

C
.

• (C,∆C) is a compact quantum group. It is called the

quantum SO(3) group.
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a, c,g,k, l such that

l∗l = (1− k)(1− q
−2k), ak = q

2ka, ck = q
2kc,

ll∗ = (1− q
2k)(1− q

4k), g∗g = gg∗, lg = q
4gl,

a∗l = q
−1(1− k)c, la = q

2al, a∗a = k − k2,

aa∗ = q
2k − q

4k2, ag = q
2ga, ac = ca,
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4g∗l, a2 = q
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cc∗ = q
2k − q

4k2, lk = q
4kl, k2 = g∗g,

gk = kg, k∗ = k.
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• C is the universal C∗-algebra generated by elements

a, c,g,k, l such that

l∗l = (1− k)(1− q
−2k), ak = q

2ka, ck = q
2kc,

ll∗ = (1− q
2k)(1− q

4k), g∗g = gg∗, lg = q
4gl,

a∗l = q
−1(1− k)c, la = q

2al, a∗a = k − k2,

aa∗ = q
2k − q

4k2, ag = q
2ga, ac = ca,

c∗c = k − k2, lg∗ = q
4g∗l, a2 = q

−1lg,

cc∗ = q
2k − q

4k2, lk = q
4kl, k2 = g∗g,

gk = kg, k∗ = k.

• ∆C is defined as:

∆C(a) = (1− q
2k)⊗ a + a ⊗ l − qa∗ ⊗ g − k ⊗ a,

∆C(c) = −q
2c ⊗ k + l ⊗ c − qg∗ ⊗ c∗ + c ⊗ (1− k),

∆C(g) = (1 + q
−2)c∗ ⊗ a + g ⊗ l − q

−1l∗ ⊗ g,

∆C(k) = k ⊗ (1− q
2k) + q

−1a ⊗ c + q
−1a∗ ⊗ c∗ + (1− k)⊗ k,

∆C(l) = −(q + q
−1)c ⊗ a + l ⊗ l + q

2g∗ ⊗ g.
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• Let X be a compact space and let G be a compact

group acting on X .

• We have the continuous map

X ×G ∋ (x , t) 7−→ x · t ∈ X .

• Define α : C(X)→ C(X)⊗ C(G) ∼= C(X ×G)
(

α( f )
)

(x , t) = f (x · t), (x ∈ X , t ∈ G).

• Let ∆ be the comultiplication on C(G). We have

(α ⊗ id)◦α = (id⊗∆)◦α

(because (x · t) · s = x · (ts) ∀ x ∈ X t,s ∈ G).

• The set

span
{

α( f )(1⊗ g) f ∈ C(X), g ∈ C(G)
}

is dense in C(X)⊗C(G) (since x · e = x ∀ x ∈ X ).
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DEFINITION

Let G = (A,∆) be a compact quantum group and let B be a

unital C∗-algebra. An action of G on B (or on the quantum

space corresponding to B) is a homomorphism

α : B → B ⊗ A such that

• (α⊗ id)◦α = (id⊗∆)◦α,

• the set
span

{

α(b)(1⊗ a) a ∈ A, b ∈ B
}

is dense in B ⊗ A.

DEFINITION

Let α be an action of G = (A,∆) on B and let ψ be a

functional on B. We say that α preserves ψ if

(ψ ⊗ id)
(

α(b)
)

= ψ(b)1

for all b ∈ B.



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.

• For B we take the C∗-algebra M2(C).



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.

• For B we take the C∗-algebra M2(C).

• B is generated by the element

n =

[

0 1

0 0

]

.



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.

• For B we take the C∗-algebra M2(C).

• B is generated by the element

n =

[

0 1

0 0

]

.

• Define a homomorphism αq : B → B ⊗ C ∼= M2(C)



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.

• For B we take the C∗-algebra M2(C).

• B is generated by the element

n =

[

0 1

0 0

]

.

• Define a homomorphism αq : B → B ⊗ C ∼= M2(C):

αq(n) =

[

−qa l

−qg q
−1a

]

∈ M2(C) ∼= B ⊗ C



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.

• For B we take the C∗-algebra M2(C).

• B is generated by the element

n =

[

0 1

0 0

]

.

• Define a homomorphism αq : B → B ⊗ C ∼= M2(C):

αq(n) =

[

−qa l

−qg q
−1a

]

∈ M2(C) ∼= B ⊗ C

(a, c, g, k, l — generators of C).



INTRODUCTION QUANTUM SPACES QUANTUM GROUPS QUANTUM GROUP ACTIONS ACTIONS ON M2(C)

ACTION OF THE QUANTUM SO(3) GROUP

• (C,∆C) — quantum SO(3) group for some q.

• For B we take the C∗-algebra M2(C).

• B is generated by the element

n =

[

0 1

0 0

]

.

• Define a homomorphism αq : B → B ⊗ C ∼= M2(C):

αq(n) =

[

−qa l

−qg q
−1a

]

∈ M2(C) ∼= B ⊗ C

(a, c, g, k, l — generators of C).

• αq is an action of (C,∆C) on B = M2(C).
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z t

])

=
x + q

2t
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PROPERTIES OF THE ACTION αq

• The Powers state on B = M2(C) is the functional

ωq

([ x y
z t

])

=
x + q

2t

1 + q2
.

• The action αq preserves the Powers state:

(ωq ⊗ id)
(

αq(b)
)

= ωq(b)1

for all b ∈ B.
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THEOREM

• Let H = (D,∆D) be a compact quantum group.

• Let β : B → B ⊗ D be an action of H on B.

• Assume that β preserves the Powers state:

(ωq ⊗ id)
(

β(b)
)

= ωq(b)1, (b ∈ B).

Then there exists a unique homomorphism Ψ: C → D such

that
β(b) = (id⊗Ψ)

(

αq(b)
)

, (b ∈ B).

Moreover
∆D◦Ψ = (Ψ⊗Ψ)◦∆C.

• This property determines the quantum SO(3) group

uniquely.
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A FEW FACTS

• Every finite dimensional C∗-algebra is a direct sum of

algebras of the form Mn(C).

• Every action of a compact quantum group on a

finite-dimensional C∗-algebra M preserves a

functional of the form

M ∋ m 7−→ Tr(ρm),

(ρ is an invertible positive matrix with trace 1).

• Every positive functional of norm 1 on the C∗-algebra

B = M2(C) is of the form

B ∋ b 7−→ ωq(u
∗bu)

for some q and a unitary u ∈ B.
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