COMPACT QUANTUM GROUPS DEFINED BY UNIVERSAL PROPERTIES

Piotr M. Soltan

Institute of Mathematics of the Polish Academy of Sciences and Department of Mathematical Methods in Physics, Faculty of Physics, Warsaw University

October 22, 2010

LECTURE OUTLINE

INTRODUCTION

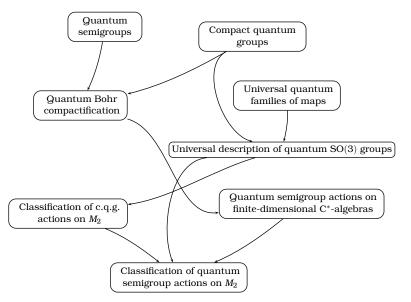
QUANTUM SPACES

QUANTUM GROUPS

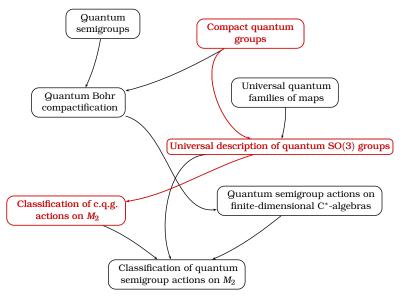
QUANTUM GROUP ACTIONS

ACTIONS ON $M_2(\mathbb{C})$

STRUCTURE OF HABILITATION RESEARCH



STRUCTURE OF HABILITATION RESEARCH



DEFINITION A C*-algebra is a Banach algebra A

DEFINITION A C*-algebra is a Banach algebra A

• *A* is a Banach space over $\mathbb C$ with norm $\|\cdot\|$.

DEFINITION

A C***-algebra** is a Banach algebra A

- *A* is a Banach space over \mathbb{C} with norm $\|\cdot\|$.
- *A* is endowed with a bilinear product such that

$$||ab|| \le ||a|| ||b||$$
 $(a, b \in A).$

DEFINITION

A C*-algebra is a Banach algebra A with involution

$$A \ni a \longmapsto a^* \in A$$

- *A* is a Banach space over \mathbb{C} with norm $\|\cdot\|$.
- *A* is endowed with a bilinear product such that

$$||ab|| \le ||a|| ||b||$$
 $(a, b \in A).$

DEFINITION

A C*-algebra is a Banach algebra A with involution

$$A \ni a \longmapsto a^* \in A$$

• *A* is a Banach space over \mathbb{C} with norm $\|\cdot\|$.

A is endowed with a bilinear

product such that

$$||ab|| \le ||a|| ||b||$$
 $(a, b \in A).$

• The map $a \mapsto a^*$ is anti-linear and anti-multiplicative and such that

$$(a^*)^* = a, \qquad (a \in A).$$

DEFINITION

A C*-algebra is a Banach algebra A with involution

$$A \ni a \longmapsto a^* \in A$$

such that

$$||a^*a|| = ||a||^2$$

for all $a \in A$.

- *A* is a Banach space over \mathbb{C} with norm $\|\cdot\|$.
- *A* is endowed with a bilinear product such that

$$||ab|| \le ||a|| ||b||$$
 $(a, b \in A).$

• The map $a \mapsto a^*$ is anti-linear and anti-multiplicative and such that

$$(a^*)^*=a, \qquad (a\in A).$$

• Let X be a compact (Hausdorff) space.

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$||f|| = \sup_{x \in X} |f(x)|, \qquad (f \in \mathbf{C}(X)),$$

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$||f|| = \sup_{x \in X} |f(x)|, \qquad (f \in \mathbf{C}(X)),$$

natural addition and multiplication

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$||f|| = \sup_{x \in X} |f(x)|, \qquad (f \in \mathbf{C}(X)),$$

natural addition and multiplication and involution $f \mapsto f^*$

$$f^*(x) = \overline{f(x)}, \quad (x \in X)$$

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$||f|| = \sup_{x \in X} |f(x)|, \qquad (f \in \mathbf{C}(X)),$$

natural addition and multiplication and involution $f \mapsto f^*$

$$f^*(x) = \overline{f(x)}, \quad (x \in X)$$

is a commutative C*-algebra with unit.

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$\|f\|=\sup_{x\in X}\bigl|f(x)\bigr|,\qquad (f\in {\rm C}(X)),$$

natural addition and multiplication and involution $f \mapsto f^*$

$$f^*(x) = \overline{f(x)}, \quad (x \in X)$$

is a commutative C*-algebra with unit.

• If $\Phi: X \to Y$ is a continuous map

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$\|f\|=\sup_{x\in X}\bigl|f(x)\bigr|,\qquad (f\in {\rm C}(X)),$$

natural addition and multiplication and involution $f \mapsto f^*$

$$f^*(x) = \overline{f(x)}, \quad (x \in X)$$

is a commutative C*-algebra with unit.

• If $\Phi: X \to Y$ is a continuous map then $\varphi: C(Y) \to C(X)$ defined by

$$(\varphi(f))(x) = f(\Phi(x)), \qquad (f \in C(Y), x \in X)$$

• Let X be a compact (Hausdorff) space. Then the space $\mathrm{C}(X)$ with norm

$$\|f\|=\sup_{x\in X}\bigl|f(x)\bigr|,\qquad (f\in {\rm C}(X)),$$

natural addition and multiplication and involution $f \mapsto f^*$

$$f^*(x) = \overline{f(x)}, \quad (x \in X)$$

is a commutative C*-algebra with unit.

• If $\Phi: X \to Y$ is a continuous map then $\varphi: C(Y) \to C(X)$ defined by

$$(\varphi(f))(x) = f(\Phi(x)), \qquad (f \in C(Y), x \in X)$$

is a homomorphism of C*-algebras.

• If A is a commutative C^* -algebra with unit

• If A is a commutative C^* -algebra with unit then there exists a unique compact space X such that $A \cong C(X)$.

- If A is a commutative C^* -algebra with unit then there exists a unique compact space X such that $A \cong C(X)$.
- If $\varphi \colon C(Y) \to C(X)$ is a homomorphism of C*-algebras

- If A is a commutative C^* -algebra with unit then there exists a unique compact space X such that $A \cong C(X)$.
- If $\varphi \colon C(Y) \to C(X)$ is a homomorphism of C*-algebras then there is a unique continuous map $\Phi \colon X \to Y$

- If A is a commutative C^* -algebra with unit then there exists a unique compact space X such that $A \cong C(X)$.
- If $\varphi \colon \mathrm{C}(Y) \to \mathrm{C}(X)$ is a homomorphism of C*-algebras then there is a unique continuous map $\Phi \colon X \to Y$ such that

$$(\varphi(f))(x) = f(\Phi(x)), \quad (x \in X).$$

- If A is a commutative C^* -algebra with unit then there exists a unique compact space X such that $A \cong C(X)$.
- If $\varphi \colon \mathrm{C}(Y) \to \mathrm{C}(X)$ is a homomorphism of C*-algebras then there is a unique continuous map $\Phi \colon X \to Y$ such that

$$(\varphi(f))(x) = f(\Phi(x)), \quad (x \in X).$$

We have the (anti)equivalence of categories:

$$\begin{cases} \text{compact spaces,} \\ \text{continuous maps} \end{cases} \longleftrightarrow \begin{cases} \text{commutative C*-algebras} \\ \text{with unit,} \\ \text{C*-algebra homomorphisms} \end{cases}$$

- If A is a commutative C^* -algebra with unit then there exists a unique compact space X such that $A \cong C(X)$.
- If $\varphi \colon \mathrm{C}(Y) \to \mathrm{C}(X)$ is a homomorphism of C*-algebras then there is a unique continuous map $\Phi \colon X \to Y$ such that

$$(\varphi(f))(x) = f(\Phi(x)), \quad (x \in X).$$

We have the (anti)equivalence of categories:

$$\begin{cases} \text{compact spaces,} \\ \text{continuous maps} \end{cases} \longleftrightarrow \begin{cases} \text{commutative C^*-algebras} \\ \text{with unit,} \\ C^*\text{-algebra homomorphisms} \end{cases}$$

• Analogous fact is also true for locally compact spaces and algebras without unit.

DEFINITION

DEFINITION

A **quantum space** is an object of the category dual to the category of C^* -algebras.

• Every C^* -algebra A defines a quantum space X.

DEFINITION

- Every C^* -algebra A defines a quantum space X.
 - If A is commutative then \mathbb{X} is a (locally) compact space and $A \cong C(\mathbb{X})$

DEFINITION

- Every C^* -algebra A defines a quantum space X.
 - If *A* is commutative then \mathbb{X} is a (locally) compact space and $A \cong C(\mathbb{X})$ (or $A \cong C_0(\mathbb{X})$),

DEFINITION

- Every C^* -algebra A defines a quantum space X.
 - If *A* is commutative then \mathbb{X} is a (locally) compact space and $A \cong C(\mathbb{X})$ (or $A \cong C_0(\mathbb{X})$),
 - if A is not commutative then \mathbb{X} is a "virtual" object,

DEFINITION

- Every C^* -algebra A defines a quantum space X.
 - If *A* is commutative then \mathbb{X} is a (locally) compact space and $A \cong C(\mathbb{X})$ (or $A \cong C_0(\mathbb{X})$),
 - if A is not commutative then $\mathbb X$ is a "virtual" object,
 - the concrete mathematical object is the C*-algebra *A*,

DEFINITION

- Every C^* -algebra A defines a quantum space X.
 - If *A* is commutative then \mathbb{X} is a (locally) compact space and $A \cong C(\mathbb{X})$ (or $A \cong C_0(\mathbb{X})$),
 - if A is not commutative then \mathbb{X} is a "virtual" object,
 - the concrete mathematical object is the C*-algebra *A*,
 - every theorem about quantum spaces is a theorem about C*-algebras.

DEFINITION

A compact quantum group is a quantum space \mathbb{G}

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C^* -algebra A

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C*-algebra A such that there is a homomorphism of C*-algebras $\Delta \colon A \to A \otimes A$

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C*-algebra A such that there is a homomorphism of C*-algebras $\Delta: A \to A \otimes A$ such that

• $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C*-algebra A such that there is a homomorphism of C*-algebras $\Delta: A \to A \otimes A$ such that

- $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,
- the sets

$$\operatorname{span} \big\{ \Delta(a) (\mathbf{1} \otimes b) \, \big| \, a,b \in A \big\}, \quad \operatorname{span} \big\{ (a \otimes \mathbf{1}) \Delta(b) \, \big| \, a,b \in A \big\},$$

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C^* -algebra A such that there is a homomorphism of C^* -algebras $\Delta \colon A \to A \otimes A$ such that

- $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,
- the sets

$$\operatorname{span}\{\Delta(a)(\mathbf{1}\otimes b)\,\big|\,a,b\in A\},\quad \operatorname{span}\{(a\otimes\mathbf{1})\Delta(b)\,\big|\,a,b\in A\},$$
 are dense in $A\otimes A$.

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C*-algebra A such that there is a homomorphism of C*-algebras $\Delta \colon A \to A \otimes A$ such that

- $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,
- the sets

$$\operatorname{span} \big\{ \Delta(a) (\mathbf{1} \otimes b) \, \big| \, a, b \in A \big\}, \quad \operatorname{span} \big\{ (a \otimes \mathbf{1}) \Delta(b) \, \big| \, a, b \in A \big\},$$
 are dense in $A \otimes A$.

• A common notation is $\mathbb{G} = (A, \Delta)$.

DEFINITION

A **compact quantum group** is a quantum space \mathbb{G} corresponding to a unital C^* -algebra A such that there is a homomorphism of C^* -algebras $\Delta \colon A \to A \otimes A$ such that

- $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,
- the sets

$$\mathrm{span}\big\{\Delta(a)(\mathbf{1}\otimes b)\,\big|\,a,b\in A\big\},\quad \mathrm{span}\big\{(a\otimes \mathbf{1})\Delta(b)\,\big|\,a,b\in A\big\},$$
 are dense in $A\otimes A$.

- A common notation is $\mathbb{G} = (A, \Delta)$.
- The morphism Δ is called the **comultiplication**.

• Let *G* be a compact group.

• Let G be a compact group. $\mathbb{G} := (C(G), \Delta)$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G)$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

Such quantum groups are called **classical**.

• Every quantum group $\mathbb{G} = (A, \Delta)$ with A commutative is classical.

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

- Every quantum group $\mathbb{G} = (A, \Delta)$ with A commutative is classical.
- Let Γ be a discrete group.

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

- Every quantum group $\mathbb{G} = (A, \Delta)$ with A commutative is classical.
- Let Γ be a discrete group. $\mathbb{G} := (\mathbf{C}^*(\Gamma), \Delta)$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

- Every quantum group $\mathbb{G} = (A, \Delta)$ with A commutative is classical.
- Let Γ be a discrete group. $\mathbb{G} := (C^*(\Gamma), \Delta)$, where $C^*(\Gamma)$ is the **group** C^* -algebra of Γ

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

- Every quantum group $\mathbb{G} = (A, \Delta)$ with A commutative is classical.
- Let Γ be a discrete group. $\mathbb{G}:=(C^*(\Gamma),\Delta)$, where $C^*(\Gamma)$ is the **group** C^* -algebra of Γ and Δ is the unique homomorphism $C^*(\Gamma) \to C^*(\Gamma) \otimes C^*(\Gamma)$ such that

$$\Delta(\gamma) = \gamma \otimes \gamma, \qquad (\gamma \in \Gamma \subset \mathbb{C}[\Gamma] \subset \mathbb{C}^*(\Gamma)).$$

• Let *G* be a compact group. $\mathbb{G} := (C(G), \Delta)$, where for $f \in C(G)$ we have $\Delta(f) \in C(G) \otimes C(G) \cong C(G \times G)$

$$(\Delta(f))(x,y) = f(xy), \quad (x,y \in G).$$

Such quantum groups are called **classical**.

- Every quantum group $\mathbb{G} = (A, \Delta)$ with A commutative is classical.
- Let Γ be a discrete group. $\mathbb{G}:=(\mathbf{C}^*(\Gamma),\Delta)$, where $\mathbf{C}^*(\Gamma)$ is the **group** \mathbf{C}^* -algebra of Γ and Δ is the unique homomorphism $\mathbf{C}^*(\Gamma) \to \mathbf{C}^*(\Gamma) \otimes \mathbf{C}^*(\Gamma)$ such that

$$\Delta(\gamma) = \gamma \otimes \gamma, \qquad (\gamma \in \Gamma \subset \mathbb{C}[\Gamma] \subset \mathbf{C}^*(\Gamma)).$$

This quantum group is called the **dual group** of Γ .

Quantum SU(2) group

 $\bullet \ \ Fix \ {\color{red} {\scriptstyle \boldsymbol{q}}} \in [-1,1] \setminus \{0\}.$

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha, \qquad \alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$$

$$\gamma^* \gamma = \gamma \gamma^*, \qquad \alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$$

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

$$\Delta(\alpha) = \alpha \otimes \alpha - \mathbf{q} \gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

• Define $\Delta: A \to A \otimes A$

$$\Delta(\alpha) = \alpha \otimes \alpha - \mathbf{q} \gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

• (A, Δ) is a compact quantum group

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

• Define $\Delta: A \to A \otimes A$

$$\Delta(\alpha) = \alpha \otimes \alpha - \mathbf{q} \gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

• (A, Δ) is a compact quantum group called the **quantum** SU(2) **group**.

- Fix $q \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

$$\Delta(\alpha) = \alpha \otimes \alpha - \mathbf{q} \gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

- (A, Δ) is a compact quantum group called the **quantum** SU(2) **group**.
- for q = 1 the algebra A is commutative

- Fix $\mathbf{q} \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

$$\Delta(\alpha) = \alpha \otimes \alpha - \mathbf{q} \gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

- (A, Δ) is a compact quantum group called the quantum SU(2) group.
- for q = 1 the algebra A is commutative and $A \cong C(SU(2))$.

- Fix $q \in [-1, 1] \setminus \{0\}$.
- Let A be the universal C*-algebra generated by two elements α and γ such that

$$\alpha \gamma = \mathbf{q} \gamma \alpha,$$
 $\alpha^* \alpha + \gamma^* \gamma = \mathbf{1},$ $\gamma^* \gamma = \gamma \gamma^*,$ $\alpha \alpha^* + \mathbf{q}^2 \gamma^* \gamma = \mathbf{1}.$

$$\Delta(\alpha) = \alpha \otimes \alpha - \mathbf{q} \gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

- (A, Δ) is a compact quantum group called the quantum SU(2) group.
- for q = 1 the algebra A is commutative and $A \cong C(SU(2))$. Then Δ describes the product in SU(2).

Quantum SO(3) group

Quantum SO(3) group

• Let (A, Δ) be the quantum SU(2) group

Quantum SO(3) group

• Let (A, Δ) be the quantum SU(2) group (for some q).

- Let (A, Δ) be the quantum SU(2) group (for some q).
- Let *C* be the C*-subalgebra of *A* generated by

$$\alpha\gamma$$
, $\alpha^*\gamma$, α^2 , γ^2 , $\gamma^*\gamma$

- Let (A, Δ) be the quantum SU(2) group (for some *q*).
- Let *C* be the C*-subalgebra of *A* generated by

$$\alpha\gamma, \alpha^*\gamma, \alpha^2, \gamma^2, \gamma^*\gamma$$

(matrix elements of the spin-1 representation).

- Let (A, Δ) be the quantum SU(2) group (for some q).
- Let *C* be the C*-subalgebra of *A* generated by

$$\alpha\gamma, \alpha^*\gamma, \alpha^2, \gamma^2, \gamma^*\gamma$$

(matrix elements of the spin-1 representation).

• We have $\Delta(C) \subset C \otimes C$

- Let (A, Δ) be the quantum SU(2) group (for some *q*).
- Let *C* be the C*-subalgebra of *A* generated by

$$\alpha\gamma, \alpha^*\gamma, \alpha^2, \gamma^2, \gamma^*\gamma$$

(matrix elements of the spin-1 representation).

• We have $\Delta(C) \subset C \otimes C$, let $\Delta_C = \Delta|_C$.

- Let (A, Δ) be the quantum SU(2) group (for some *q*).
- Let *C* be the C*-subalgebra of *A* generated by

$$\alpha\gamma, \alpha^*\gamma, \alpha^2, \gamma^2, \gamma^*\gamma$$

(matrix elements of the spin-1 representation).

- We have $\Delta(C) \subset C \otimes C$, let $\Delta_C = \Delta|_C$.
- (C, Δ_C) is a compact quantum group.

- Let (A, Δ) be the quantum SU(2) group (for some q).
- Let *C* be the C*-subalgebra of *A* generated by

$$\alpha\gamma$$
, $\alpha^*\gamma$, α^2 , γ^2 , $\gamma^*\gamma$

(matrix elements of the spin-1 representation).

- We have $\Delta(C) \subset C \otimes C$, let $\Delta_C = \Delta|_C$.
- (C, Δ_C) is a compact quantum group. It is called the **quantum** SO(3) **group**.

• C is the universal C*-algebra generated by elements a,c,g,k,l such that

• C is the universal C*-algebra generated by elements a, c, g, k, l such that

$$\begin{array}{lll} l^*l = (\mathbf{1} - k)(\mathbf{1} - \mathbf{q}^{-2}k), & ak = \mathbf{q}^2ka, & ck = \mathbf{q}^2kc, \\ ll^* = (\mathbf{1} - \mathbf{q}^2k)(\mathbf{1} - \mathbf{q}^4k), & g^*g = gg^*, & lg = \mathbf{q}^4gl, \\ a^*l = \mathbf{q}^{-1}(\mathbf{1} - k)c, & la = \mathbf{q}^2al, & a^*a = k - k^2, \\ aa^* = \mathbf{q}^2k - \mathbf{q}^4k^2, & ag = \mathbf{q}^2ga, & ac = ca, \\ c^*c = k - k^2, & lg^* = \mathbf{q}^4g^*l, & a^2 = \mathbf{q}^{-1}lg, \\ cc^* = \mathbf{q}^2k - \mathbf{q}^4k^2, & lk = \mathbf{q}^4kl, & k^2 = g^*g, \\ ak = ka, & k^* = k. \end{array}$$

• C is the universal C*-algebra generated by elements a,c,g,k,l such that

$$\begin{array}{lll} l^*l = (\mathbf{1} - k)(\mathbf{1} - \mathbf{q}^{-2}k), & ak = \mathbf{q}^2ka, & ck = \mathbf{q}^2kc, \\ ll^* = (\mathbf{1} - \mathbf{q}^2k)(\mathbf{1} - \mathbf{q}^4k), & g^*g = gg^*, & lg = \mathbf{q}^4gl, \\ a^*l = \mathbf{q}^{-1}(\mathbf{1} - k)c, & la = \mathbf{q}^2al, & a^*a = k - k^2, \\ aa^* = \mathbf{q}^2k - \mathbf{q}^4k^2, & ag = \mathbf{q}^2ga, & ac = ca, \\ c^*c = k - k^2, & lg^* = \mathbf{q}^4g^*l, & a^2 = \mathbf{q}^{-1}lg, \\ cc^* = \mathbf{q}^2k - \mathbf{q}^4k^2, & lk = \mathbf{q}^4kl, & k^2 = g^*g, \\ gk = kg, & k^* = k. \end{array}$$

• Δ_C is defined as:

$$\Delta_{C}(a) = (\mathbf{1} - \mathbf{q}^{2}k) \otimes a + a \otimes l - \mathbf{q}a^{*} \otimes g - k \otimes a,$$

$$\Delta_{C}(c) = -\mathbf{q}^{2}c \otimes k + l \otimes c - \mathbf{q}g^{*} \otimes c^{*} + c \otimes (\mathbf{1} - k),$$

$$\Delta_{C}(g) = (1 + \mathbf{q}^{-2})c^{*} \otimes a + g \otimes l - \mathbf{q}^{-1}l^{*} \otimes g,$$

$$\Delta_{C}(k) = k \otimes (\mathbf{1} - \mathbf{q}^{2}k) + \mathbf{q}^{-1}a \otimes c + \mathbf{q}^{-1}a^{*} \otimes c^{*} + (\mathbf{1} - k) \otimes k,$$

$$\Delta_{C}(l) = -(\mathbf{q} + \mathbf{q}^{-1})c \otimes a + l \otimes l + \mathbf{q}^{2}g^{*} \otimes g.$$

• Let *X* be a compact space and let *G* be a compact group acting on *X*.

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x,t) \longmapsto x \cdot t \in X.$$

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X.$$

• Define $\alpha \colon C(X) \to C(X) \otimes C(G) \cong C(X \times G)$

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X$$
.

• Define $\alpha \colon C(X) \to C(X) \otimes C(G) \cong C(X \times G)$

$$(\alpha(f))(x,t) = f(x \cdot t), \quad (x \in X, t \in G).$$

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X$$
.

• Define $\alpha \colon C(X) \to C(X) \otimes C(G) \cong C(X \times G)$

$$(\alpha(f))(x,t) = f(x \cdot t), \quad (x \in X, t \in G).$$

• Let Δ be the comultiplication on C(G).

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X$$
.

• Define $\alpha \colon C(X) \to C(X) \otimes C(G) \cong C(X \times G)$

$$(\alpha(f))(x,t) = f(x \cdot t), \quad (x \in X, t \in G).$$

• Let Δ be the comultiplication on C(G). We have

$$(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$$

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X.$$

• Define $\alpha \colon \operatorname{C}(X) \to \operatorname{C}(X) \otimes \operatorname{C}(G) \cong \operatorname{C}(X \times G)$ $(\alpha(f))(x,t) = f(x \cdot t), \qquad (x \in X, \ t \in G).$

• Let Δ be the comultiplication on C(G). We have

$$(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$$

(because $(x \cdot t) \cdot s = x \cdot (ts) \ \forall \ x \in X \ t, s \in G$).

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X.$$

• Define $\alpha \colon C(X) \to C(X) \otimes C(G) \cong C(X \times G)$ $(\alpha(f))(x,t) = f(x \cdot t), \quad (x \in X, t \in G).$

• Let Δ be the comultiplication on C(G). We have

$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta) \circ \alpha$$

(because $(x \cdot t) \cdot s = x \cdot (ts) \ \forall \ x \in X \ t, s \in G$).

• The set

$$\operatorname{span}\{\alpha(f)(\mathbf{1}\otimes g)\big|f\in\operatorname{C}(X),\ g\in\operatorname{C}(G)\}$$

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X.$$

• Define $\alpha \colon \operatorname{C}(X) \to \operatorname{C}(X) \otimes \operatorname{C}(G) \cong \operatorname{C}(X \times G)$ $(\alpha(f))(x,t) = f(x \cdot t), \quad (x \in X, t \in G).$

• Let Δ be the comultiplication on C(G). We have

$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta) \circ \alpha$$

(because $(x \cdot t) \cdot s = x \cdot (ts) \ \forall \ x \in X \ t, s \in G$).

• The set

$$\operatorname{span}\{\alpha(f)(\mathbf{1}\otimes g)\big|f\in\operatorname{C}(X),\ g\in\operatorname{C}(G)\}$$

is dense in $C(X) \otimes C(G)$

- Let *X* be a compact space and let *G* be a compact group acting on *X*.
- We have the continuous map

$$X \times G \ni (x, t) \longmapsto x \cdot t \in X.$$

• Define $\alpha \colon \operatorname{C}(X) \to \operatorname{C}(X) \otimes \operatorname{C}(G) \cong \operatorname{C}(X \times G)$ $(\alpha(f))(x,t) = f(x \cdot t), \qquad (x \in X, \ t \in G).$

• Let Δ be the comultiplication on C(G). We have

$$(\alpha \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \Delta) \circ \alpha$$

(because $(x \cdot t) \cdot s = x \cdot (ts) \ \forall \ x \in X \ t, s \in G$).

The set

$$\operatorname{span}\{\alpha(f)(\mathbf{1}\otimes g)\big|f\in\operatorname{C}(X),\ g\in\operatorname{C}(G)\}$$

is dense in $C(X) \otimes C(G)$ (since $x \cdot e = x \ \forall \ x \in X$).

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C*-algebra.

DEFINITION

Let $\mathbb{G}=(A,\Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B)

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

• $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,

•
$$(\alpha \otimes \mathrm{Id}) \circ \alpha = (\mathrm{Id} \otimes \Delta) \circ \alpha$$

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

- $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,
- the set $\operatorname{span}\{\alpha(b)(\mathbf{1}\otimes a) \mid a\in A, b\in B\}$

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

- $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,
- the set $\operatorname{span}\{\alpha(b)(\mathbf{1}\otimes a) \mid a\in A, b\in B\}$

is dense in $B \otimes A$.

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

- $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,
- the set $\operatorname{span}\{\alpha(b)(\mathbf{1}\otimes a) \mid a\in A, b\in B\}$

is dense in $B \otimes A$.

DEFINITION

Let α be an action of $\mathbb{G} = (A, \Delta)$ on B

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

- $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,
- the set $\operatorname{span}\{\alpha(b)(\mathbf{1}\otimes a) \mid a\in A, b\in B\}$

is dense in $B \otimes A$.

DEFINITION

Let α be an action of $\mathbb{G} = (A, \Delta)$ on B and let ψ be a functional on B.

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

- $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,
- the set $\operatorname{span}\{\alpha(b)(\mathbf{1}\otimes a) \mid a\in A, b\in B\}$

is dense in $B \otimes A$.

DEFINITION

Let α be an action of $\mathbb{G} = (A, \Delta)$ on B and let ψ be a functional on B. We say that α **preserves** ψ

DEFINITION

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and let B be a unital C^* -algebra. An **action** of \mathbb{G} on B (or on the quantum space corresponding to B) is a homomorphism $\alpha \colon B \to B \otimes A$ such that

- $(\alpha \otimes id) \circ \alpha = (id \otimes \Delta) \circ \alpha$,
- the set $\operatorname{span}\{\alpha(b)(\mathbf{1}\otimes a) \mid a\in A,\ b\in B\}$

is dense in $B \otimes A$.

DEFINITION

Let α be an action of $\mathbb{G} = (A, \Delta)$ on B and let ψ be a functional on B. We say that α **preserves** ψ if

$$(\psi \otimes id)(\alpha(b)) = \psi(b)\mathbf{1}$$

for all $b \in B$.

ACTION OF THE QUANTUM SO(3) GROUP

ACTION OF THE QUANTUM SO(3) GROUP

• (C, Δ_C) — quantum SO(3) group for some q.

ACTION OF THE QUANTUM SO(3) GROUP

- (C, Δ_C) quantum SO(3) group for some q.
- For *B* we take the C*-algebra $M_2(\mathbb{C})$.

- (C, Δ_C) quantum SO(3) group for some **q**.
- For *B* we take the C*-algebra $M_2(\mathbb{C})$.
- *B* is generated by the element

$$n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

- (C, Δ_C) quantum SO(3) group for some **q**.
- For *B* we take the C*-algebra $M_2(\mathbb{C})$.
- *B* is generated by the element

$$n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

• Define a homomorphism $\alpha_{\mathbf{g}} \colon B \to B \otimes C \cong M_2(C)$

- (C, Δ_C) quantum SO(3) group for some **q**.
- For *B* we take the C*-algebra $M_2(\mathbb{C})$.
- *B* is generated by the element

$$n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

• Define a homomorphism $\alpha_q: B \to B \otimes C \cong M_2(C)$:

$$\alpha_{\mathbf{q}}(n) = \begin{bmatrix} -\mathbf{q}a & l \\ -\mathbf{q}g & \mathbf{q}^{-1}a \end{bmatrix} \in M_2(C) \cong B \otimes C$$

- (C, Δ_C) quantum SO(3) group for some **q**.
- For *B* we take the C*-algebra $M_2(\mathbb{C})$.
- *B* is generated by the element

$$n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

• Define a homomorphism $\alpha_q: B \to B \otimes C \cong M_2(C)$:

$$\alpha_{\mathbf{q}}(n) = \begin{bmatrix} -\mathbf{q}a & l \\ -\mathbf{q}g & \mathbf{q}^{-1}a \end{bmatrix} \in M_2(C) \cong B \otimes C$$

(a, c, g, k, l - generators of C).

- (C, Δ_C) quantum SO(3) group for some **q**.
- For *B* we take the C*-algebra $M_2(\mathbb{C})$.
- *B* is generated by the element

$$n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

• Define a homomorphism $\alpha_q : B \to B \otimes C \cong M_2(C)$:

$$\alpha_{\mathbf{q}}(n) = \begin{bmatrix} -\mathbf{q}a & l \\ -\mathbf{q}g & \mathbf{q}^{-1}a \end{bmatrix} \in M_2(C) \cong B \otimes C$$

(a, c, g, k, l - generators of C).

• α_q is an action of (C, Δ_C) on $B = M_2(\mathbb{C})$.

Properties of the action $\alpha_{m q}$

Properties of the action $\alpha_{\mathbf{q}}$

• The **Powers state** on $B = M_2(\mathbb{C})$ is the functional

$$\omega_{\mathbf{q}}\left(\begin{bmatrix}x & y\\ z & t\end{bmatrix}\right) = \frac{x + \mathbf{q}^2 t}{1 + \mathbf{q}^2}.$$

Properties of the action $\alpha_{\mathbf{q}}$

• The **Powers state** on $B = M_2(\mathbb{C})$ is the functional

$$\omega_{\mathbf{q}}\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = \frac{x + \mathbf{q}^2 t}{1 + \mathbf{q}^2}.$$

• The action α_q preserves the Powers state

Properties of the action $\alpha_{\mathbf{q}}$

• The **Powers state** on $B = M_2(\mathbb{C})$ is the functional

$$\omega_{\mathbf{q}}\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = \frac{x + \mathbf{q}^2 t}{1 + \mathbf{q}^2}.$$

• The action $\alpha_{\mathbf{q}}$ preserves the Powers state:

$$(\omega_{\mathbf{q}} \otimes \mathrm{id}) (\alpha_{\mathbf{q}}(b)) = \omega_{\mathbf{q}}(b) \mathbf{1}$$

for all $b \in B$.

THEOREM

• Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.
- Assume that β preserves the Powers state

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.
- Assume that β preserves the Powers state:

$$(\omega_{\mathbf{q}} \otimes \mathrm{id})(\beta(b)) = \omega_{\mathbf{q}}(b)\mathbf{1}, \qquad (b \in B).$$

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.
- Assume that β preserves the Powers state:

$$(\omega_{\mathbf{q}} \otimes \mathrm{id})(\beta(b)) = \omega_{\mathbf{q}}(b)\mathbf{1}, \qquad (b \in B).$$

Then there exists a unique homomorphism $\Psi \colon C \to D$

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.
- Assume that β preserves the Powers state:

$$(\omega_{\mathbf{q}} \otimes \mathrm{id})(\beta(b)) = \omega_{\mathbf{q}}(b)\mathbf{1}, \qquad (b \in B).$$

Then there exists a unique homomorphism $\Psi \colon C \to D$ such that

$$\beta(b) = (\mathrm{id} \otimes \Psi)(\alpha_{\mathbf{g}}(b)), \qquad (b \in B).$$

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.
- Assume that β preserves the Powers state:

$$(\omega_{\mathbf{q}} \otimes \mathrm{id})(\beta(b)) = \omega_{\mathbf{q}}(b)\mathbf{1}, \qquad (b \in B).$$

Then there exists a unique homomorphism $\Psi \colon C \to D$ such that

$$\beta(b) = (\mathrm{id} \otimes \Psi)(\alpha_{\mathbf{q}}(b)), \qquad (b \in B).$$

Moreover

$$\Delta_D \circ \Psi = (\Psi \otimes \Psi) \circ \Delta_C.$$

THEOREM

- Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group.
- Let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.
- Assume that β preserves the Powers state:

$$(\omega_{\mathbf{q}} \otimes \mathrm{id})(\beta(b)) = \omega_{\mathbf{q}}(b)\mathbf{1}, \qquad (b \in B).$$

Then there exists a unique homomorphism $\Psi \colon C \to D$ such that

$$\beta(b) = (\mathrm{id} \otimes \Psi) (\alpha_{\mathbf{q}}(b)), \qquad (b \in B).$$

Moreover

$$\Delta_D \circ \Psi = (\Psi \otimes \Psi) \circ \Delta_C.$$

• This property determines the quantum SO(3) group uniquely.

• Every finite dimensional C*-algebra is a direct sum of algebras of the form $M_n(\mathbb{C})$.

- Every finite dimensional C*-algebra is a direct sum of algebras of the form $M_n(\mathbb{C})$.
- Every action of a compact quantum group on a finite-dimensional C*-algebra M preserves a functional of the form

$$M \ni m \longmapsto \operatorname{Tr}(\rho m),$$

- Every finite dimensional C*-algebra is a direct sum of algebras of the form $M_n(\mathbb{C})$.
- Every action of a compact quantum group on a finite-dimensional C*-algebra M preserves a functional of the form

$$M \ni m \longmapsto \operatorname{Tr}(\rho m),$$

(ρ is an invertible positive matrix with trace 1).

- Every finite dimensional C*-algebra is a direct sum of algebras of the form $M_n(\mathbb{C})$.
- Every action of a compact quantum group on a finite-dimensional C*-algebra M preserves a functional of the form

$$M \ni m \longmapsto \operatorname{Tr}(\rho m),$$

(ρ is an invertible positive matrix with trace 1).

• Every positive functional of norm 1 on the C*-algebra $B=M_2(\mathbb{C})$

- Every finite dimensional C*-algebra is a direct sum of algebras of the form $M_n(\mathbb{C})$.
- Every action of a compact quantum group on a finite-dimensional C*-algebra M preserves a functional of the form

$$M \ni m \longmapsto \operatorname{Tr}(\rho m),$$

(ρ is an invertible positive matrix with trace 1).

• Every positive functional of norm 1 on the C*-algebra $B=M_2(\mathbb{C})$ is of the form

$$B\ni b\longmapsto \omega_{\mathbf{q}}(u^*bu)$$

for some q and a unitary $u \in B$.

• $\mathbb{G} = (C, \Delta_C)$ — quantum SO(3) group,

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B=M_2$,

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B=M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B = M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B.

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B=M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B = M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are $\mathbf{q} \in]0,1[$,

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B=M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are

- $q \in]0,1[$,
- a unitary $u \in B = M_2(\mathbb{C})$,

- $\mathbb{G} = (C, \Delta_{\mathbf{C}})$ quantum SO(3) group,
- $B=M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are

- $q \in]0, 1[$,
- a unitary $u \in B = M_2(\mathbb{C})$,
- a homomorphism $\Psi \colon C \to D$

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B=M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are

- $q \in]0,1[$,
- a unitary $u \in B = M_2(\mathbb{C})$,
- a homomorphism $\Psi \colon C \to D$

such that

CLASSIFICATION OF ACTIONS ON $M_2(\mathbb{C})$

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B = M_2$,
- $\alpha_q : B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are

- $q \in]0, 1[$,
- a unitary $u \in B = M_2(\mathbb{C})$,
- a homomorphism $\Psi \colon C \to D$

such that

$$\beta(b) = (\mathrm{id} \otimes \Psi) \big((u \otimes \mathbf{1}) \alpha_{\mathbf{q}}(u^*bu) (\mathbf{1} \otimes u^*) \big), \qquad (b \in B).$$

CLASSIFICATION OF ACTIONS ON $M_2(\mathbb{C})$

- $\mathbb{G} = (C, \Delta_C)$ quantum SO(3) group,
- $B = M_2$,
- $\alpha_{\mathbf{g}} \colon B \to B \otimes C$ standard action.

THEOREM

Let $\mathbb{H} = (D, \Delta_D)$ be a compact quantum group and let $\beta \colon B \to B \otimes D$ be an action of \mathbb{H} on B. Then there are

- $q \in]0,1[$,
- a unitary $u \in B = M_2(\mathbb{C})$,
- a homomorphism $\Psi \colon C \to D$

such that

$$\beta(b) = (\mathrm{id} \otimes \Psi) ((u \otimes \mathbf{1}) \alpha_{\mathbf{q}} (u^* b u) (\mathbf{1} \otimes u^*)), \qquad (b \in B).$$

Moreover

$$\Delta_D \circ \Psi = (\Psi \otimes \Psi) \circ \Delta_C.$$

