INVARIANTS OF QUANTUM GROUPS RELATED TO THE SCALING GROUP GERMAN-POLISH WORKSHOP ON QUANTUM GROUPS, GRAPHS AND SYMMETRIES

Piotr M. Sołtan (based on joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

October 9, 2023

P.M. SOŁTAN (KMMF)

INVARIANTS OF QUANTUM GROUPS

THE SETUP

- Let $\mathbb G$ be a locally compact quantum group and left Haar measure $\varphi.$
- Let $\{\sigma_t^{\varphi}\}_{t\in\mathbb{R}}$ be the modular group of φ and let $\{\tau_t^{\mathbb{G}}\}_{t\in\mathbb{R}}$ denote the scaling group of \mathbb{G} .
- Let δ be the modular element of \mathbb{G} .
- Denote the group of inner automorphisms of the von Neumann algebra $L^{\infty}(\mathbb{G})$ by $\operatorname{Inn}(L^{\infty}(\mathbb{G}))$ and the group of approximately inner automorphisms of $L^{\infty}(\mathbb{G})$ by $\overline{\operatorname{Inn}}(L^{\infty}(\mathbb{G}))$.

THE INVARIANTS

DEFINITION

We define

$$T^{\tau}(\mathbb{G}) = \{t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} = \mathrm{id}\},\$$

$$T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) = \{t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \mathrm{Inn}(L^{\infty}(\mathbb{G}))\},\$$

$$T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G}) = \{t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \overline{\mathrm{Inn}}(L^{\infty}(\mathbb{G}))\},\$$

$$T^{\sigma}(\mathbb{G}) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi} = \mathrm{id}\},\$$

$$T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \mathrm{Inn}(L^{\infty}(\mathbb{G}))\},\$$

$$T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G}) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \overline{\mathrm{Inn}}(L^{\infty}(\mathbb{G}))\},\$$

$$Mod(\mathbb{G}) = \{t \in \mathbb{R} \mid \delta^{\mathrm{i}t} = 1\}.\$$

Some properties of the invariants

- The sets $T^{\circ}_{\bullet}(\mathbb{G})$ are subgroups of \mathbb{R} and are isomorphism invariants of the quantum group \mathbb{G} .
- $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}).$
- $T^{\bullet}(\mathbb{G}), T^{\bullet}_{\overline{\operatorname{Inn}}}(\mathbb{G}), \text{ and } \operatorname{Mod}(\mathbb{G}) \text{ are closed.}$
- We would obtain the same groups $T^{\sigma}(\mathbb{G})$, $T^{\sigma}_{Inn}(\mathbb{G})$, and $T^{\sigma}_{\overline{Inn}}(\mathbb{G})$ if we chose the right Haar measure instead of the left one.
- *T*^σ_{Inn}(𝔅) is equal to the Connes' invariant *T*(*L*[∞](𝔅)). Consequently, *T*^σ_{Inn}(𝔅) depends only on the von Neumann algebra *L*[∞](𝔅). It is also the case for *T*^σ_{Inn}(𝔅).

4/20

Some properties of the invariants

PROPOSITION

For any locally compact quantum group ${\mathbb G}$ we have

$$T^{\sigma}(\mathbb{G}) = T^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$\operatorname{Mod}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) \subset \frac{1}{2}T^{\tau}(\mathbb{G}).$$

- The first equality above together with T^τ(G) = T^τ(G) reduces the list to 11 (invariants T^σ(G), T^σ(G) and T^τ(G) are determined by the remaining ones).
- If \mathbb{G} is compact then $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = \mathbb{R}.$
- If additionally $L^{\infty}(\mathbb{G})$ is semifinite then $T^{\sigma}_{\text{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\text{Inn}}}(\mathbb{G}) = \mathbb{R}$.

EXAMPLES

EXAMPLE: THE QUANTUM E(2) GROUP With $\mathbb{G} = \mathbb{E}_q(2)$ for some $q \in]0, 1[$ we have $T^{\tau}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\sigma}(\widehat{\mathbb{G}}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \frac{\pi}{\log q}\mathbb{Z},$ $T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathbb{R}.$

EXAMPLES

EXAMPLE: QUANTUM "az + b" GROUPS

Let \mathbb{G} be the quantum "az + b" group for the deformation parameter q in one of the three cases:

1
$$q = e^{\frac{2\pi i}{N}}$$
 with $N = 6, 8, ...,$
2 $q \in]0, 1[,$
3 $q = e^{1/\rho}$ with $\operatorname{Re} \rho < 0$, $\operatorname{Im} \rho = \frac{N}{2\pi}$ with $N = \pm 2, \pm 4, ...$
Then

$$T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) = T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = \mathbb{R},$$

$$T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}) = T^{\sigma}(\mathbb{G}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \begin{cases} \{0\} & \text{in cases } 1 \text{ and } 3 \\ \frac{\pi}{\log q}\mathbb{Z} & \text{in case } 2 \end{cases}.$$

EXAMPLES

EXAMPLE: U_F^+

Let \mathbb{G} be the quantum group U_F^+ . Then $L^{\infty}(\mathbb{G})$ is a full factor, so $\operatorname{Inn}(L^{\infty}(\mathbb{G})) = \overline{\operatorname{Inn}}(L^{\infty}(\mathbb{G}))$ (Vaes).

- \mathbb{G} is compact, so $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = \mathbb{R}.$
- If \mathbb{G} is not of Kac type ($\lambda F^*F \neq 1$) then

$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}(\mathbb{G}) = \bigcap_{\Lambda \in \mathrm{Sp}(F^*F \otimes (F^*F)^{-1}) \setminus \{1\}} \frac{2\pi}{\log(\Lambda)} \mathbb{Z},$$

while
$$\operatorname{Mod}(\widehat{\mathbb{G}}) = \bigcap_{\Lambda \in \operatorname{Sp}(F^*F) \setminus \{\lambda^{-1}\}} \frac{2\pi}{\log \lambda + \log(\Lambda)} \mathbb{Z}$$
, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$.

• If \mathbb{G} is not of Kac type then $L^{\infty}(\mathbb{G})$ is a type III_{μ} factor for some $\mu \in]0, 1]$ and $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) = T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) = \frac{2\pi}{\log \mu}\mathbb{Z}$ (otherwise $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) = T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) = \mathbb{R}$).

Some comments

- In our previous work for any subgroup Γ of \mathbb{R} we constructed second countable compact quantum group \mathbb{K} such that $T_{\text{Inn}}^{\tau}(\mathbb{K}) = \Gamma$.
- The invariants were helpful in showing that for any $\lambda \in [0, 1]$ there are uncountably many pairwise non-isomorphic compact quantum groups \mathbb{G} with $L^{\infty}(\mathbb{G})$ isomorphic to the injective factor of type III_{λ}.
- The equality $T^{\tau}(U_F^+) = T_{Inn}^{\tau}(U_F^+)$ says that the compact quantum group U_F^+ belongs to the class for which the following statement is true:

CONJECTURE (*)

If $\mathbb G$ is a second countable compact quantum group and $T^\tau_{\rm Inn}(\mathbb G)=\mathbb R$ then $\mathbb G$ is of Kac type.

• We were able to prove that this conjecture is true for many compact quantum groups including duals of second countable type I discrete quantum groups (e.g. *q*-deformations of compact semisimple Lie groups).

P.M. SOŁTAN (KMMF)

MORE EXAMPLES

EXAMPLE: q-DEFORMATIONS

Let *G* be a compact semisimple Lie group with root system Φ and let $q \in]0, 1[$.

• Since G_q is compact we again have

$$\operatorname{Mod}(G_q) = T_{\operatorname{Inn}}^{\tau}(\widehat{G_q}) = T_{\overline{\operatorname{Inn}}}^{\tau}(\widehat{G_q}) = T_{\operatorname{Inn}}^{\sigma}(\widehat{G_q}) = T_{\overline{\operatorname{Inn}}}^{\sigma}(\widehat{G_q}) = \mathbb{R}.$$

Furthermore T^σ_{Inn}(G_q) = T^σ_{Inn}(G_q) = ℝ because C(G_q) is a C*-algebra of type I.
We have T^τ(G_q) = π/log q ℤ and

$$T_{\mathrm{Inn}}^{\tau}(G_q) = T_{\overline{\mathrm{Inn}}}^{\tau}(G_q) = \mathrm{Mod}(\widehat{G_q}) = \frac{\pi}{\Upsilon_{\Phi} \log q} \mathbb{Z},$$

where Υ_{Φ} is a positive integer determined by Lie-theoretic data (see next two slides).

P.M. SOŁTAN (KMMF)

MORE EXAMPLES

EXAMPLE: q-deformations (continued)

• Let $\Phi = \Phi_1 \cup \cdots \cup \Phi_l$ be the decomposition of Φ into irreducible parts. Then

$$\Upsilon_{\Phi} = \gcd(\Upsilon_{\Phi_1}, \ldots, \Upsilon_{\Phi_l}).$$

• We have

type	group	range of n	Υ_{Φ}	$T_{\mathrm{Inn}}^{ au}(G_q)$
A_n	$\mathrm{SU}(n+1)$	$n \ge 1$ odd	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \ge 1$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
B_n	$\operatorname{Spin}(2n+1)$	$n \geqslant 2 \mathrm{odd}$	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \ge 2$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
C_n	$\operatorname{Sp}(2n)$	$n \ge 3$	2	$\frac{\pi}{2\log q}\mathbb{Z}$
D_n	$\operatorname{Spin}(2n)$	$n \ge 4$ odd	2	$\frac{\pi}{2\log q}\mathbb{Z}$
		$n \ge 4$ even	1	$\frac{\pi}{\log q}\mathbb{Z}$

11/20

EXAMPLE: q-DEFORMATIONS (CONTINUED)

• And for the exceptional cases we have

• type
$$E_6$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$,
• type E_7 : $\Upsilon_{\Phi} = 1$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{\log q}\mathbb{Z}$,
• type E_8 : $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$,
• type F_4 : $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$,
• type G_2 : $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$.

SPECIAL CASE

- $\bullet\,$ Consider the compact quantum group ${\rm SU}_q(3).$
- Then $\Upsilon_{\Phi} = 2$, so

$$T_{\mathrm{Inn}}^{\tau}(\mathrm{SU}_q(3)) = \frac{\pi}{2\log q}\mathbb{Z},$$

while $T^{\tau}(SU_q(3)) = \frac{\pi}{\log q}\mathbb{Z}$.

- This means that there are non-trivial inner scaling automorphisms.
- $SU_q(3)$ does not have non-trivial one-dimensional representations, so these scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let *G* be such that $\Upsilon_{\Phi} = 2$. Then a unitary implementing the scaling automorphism for $t = \frac{\pi}{2 \log q}$ does not belong to $C(G_q)$. In particular, the restriction of this automorphism to $C(G_q)$ is not inner.

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

PROPOSITION

Let Γ be a discrete group. Then the following are equivalent:

① Γ is i.c.c.,

۱.

I.C.C.-TYPE CONDITIONS

PROPOSITION

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group and assume that

$$\Delta_{\mathbb{G}}^{(n)}(L^{\infty}(\mathbb{G}))' \cap \underbrace{L^{\infty}(\mathbb{G}) \overline{\otimes} \cdots \overline{\otimes} L^{\infty}(\mathbb{G})}_{n+1} = \mathbb{C}\mathbb{1}$$

for some $n \in \mathbb{N}$. Then $L^{\infty}(\mathbb{G})$ is a factor.

DEFINITION

Let \mathbb{F} be a discrete quantum group. We say that \mathbb{F} is *n*-i.c.c. if

$$\Delta_{\widehat{\mathbb{F}}}^{(n)} \left(L^{\infty}(\widehat{\mathbb{F}}) \right)' \cap \underbrace{L^{\infty}(\widehat{\mathbb{F}}) \overline{\otimes} \cdots \overline{\otimes} L^{\infty}(\widehat{\mathbb{F}})}_{n+1} = \mathbb{C}\mathbb{1}.$$

PROPOSITION

Let \mathbb{F} be a discrete quantum group. If \mathbb{F} is *n*-i.c.c. for some *n* then \mathbb{F} is *m*-i.c.c. for all natural $m \leq n$.

THEOREM

Let $\mathbb G$ be a second countable compact quantum group whose dual is 1-i.c.c. Then conjecture (*) holds for $\mathbb G.$

EXAMPLE

- Recall that $\operatorname{Irr} U_F^+ = \mathbb{Z}_+ \star \mathbb{Z}_+$ with the two copies of \mathbb{Z}_+ generated by the class α of the defining representation and $\beta = \overline{\alpha}$.
- For $x \in \mathbb{Z}_+ \star \mathbb{Z}_+$ put

$$D_{x,n} = egin{cases} \|
ho_x^2 - \mathbbm{1} \| rac{\|
ho_x \|^{2(n+1)} - 1}{\|
ho_x \|^2 - 1} &
ho_x
eq \mathbbm{1} \ 0 &
ho_x = \mathbbm{1} \end{cases}$$

• Let
$$D_n = \max\{D_{\alpha\beta,n}, D_{\beta\alpha,n}, D_{\alpha^2\beta,n}\}.$$

THEOREM

If
$$D_n < 1 - \frac{1}{\sqrt{2}}$$
 and $\frac{2(7-4D_n)D_n}{2(1-D_n)^2-1} < \frac{1}{\sqrt{n+1}}$ then $\widehat{U_F^+}$ is *n*-i.c.c.

.

EXAMPLE (CONTINUED)

THEOREM

Take
$$n \in \mathbb{N}$$
 and write $c = \max\left\{\|\lambda F^*F - \mathbb{1}\|, \|(\lambda F^*F)^{-1} - \mathbb{1}\|\right\}$, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$. If $\sqrt{n}(n+1)c(2+c)(1+c)^{4+6n} < \frac{1}{72}$

then U_F^+ is *n*-i.c.c.

POST-DOC POSITION IN WARSAW

A position for one year starting March 2024 will be announced tomorrow.
Please e-mail me if you are interested.

Thank you for your attention