HOMOMORPHISMS OF LOCALLY COMPACT QUANTUM GROUPS, QUANTUM SUBGROUPS AND INTEGRABILITY

GREAT PLAINS OPERATOR THEORY SYMPOSIUM UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Piotr M. Sołtan (joint work with P. Kasprzak & F. Khosravi)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

May 25, 2016

P.M. SOLTAN (WARSAW)

Q.G. HOMOMORPHISMS & INTEGRABILITY

1 LOCALLY COMPACT QUANTUM GROUPS

- 2 HOMOMORPHISMS
- **3** QUANTUM SUBGROUPS
- 4 Image & kernel
- 5 Integrability of Homomorphisms

DEFINITION

Let

- M be a von Neumann algebra,
- $\Delta \colon M \longrightarrow M \,\bar{\otimes}\, M$ a be normal unital *-homomorphism such that

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta,$$

• \boldsymbol{h} , \boldsymbol{h}_{L} be n.f.s. weights on M such that

$$(\boldsymbol{h}\otimes \mathrm{id})\circ\Delta = \boldsymbol{h}(\cdot)\mathbb{1}$$
 and $(\mathrm{id}\otimes \boldsymbol{h}_{\mathrm{L}})\circ\Delta = \boldsymbol{h}_{\mathrm{L}}(\cdot)\mathbb{1}$.

Then we say that M is the algebra of essentially bounded functions on a locally compact quantum group. We write

$$\mathsf{M} = L^{\infty}(\mathbb{G})$$

and call \mathbb{G} a locally compact quantum group.

P.M. SOŁTAN (WARSAW) Q.G. HOMOMORPHISMS & INTEGRABILITY

- $G \leftarrow -a$ locally compact group,
 - **(1)** Classical groups ($\mathbb{G} = G$)
 - $L^{\infty}(\mathbb{G}) := L^{\infty}(\mathbb{G}),$
 - $\Delta \colon L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G}) \cong L^{\infty}(\mathbb{G} \times \mathbb{G})$

$$\Delta(f)(\textbf{\textit{x}},\textbf{\textit{y}})=f(\textbf{\textit{xy}}), \qquad f\in L^{\infty}(\mathbb{G}), \ \textbf{\textit{x}},\textbf{\textit{y}}\in \textbf{G},$$

• with h and $h_{\rm L}$ the right and left Haar measure on G

$$oldsymbol{h}(f) = \int\limits_G f \, dh, \quad oldsymbol{h}_{
m L}(f) = \int\limits_G f \, dh_{
m L}, \quad f \in L^\infty(\mathbb{G}).$$

- ② Duals of classical groups ($\mathbb{G}=\widehat{G}$)
 - L[∞](G) = vN(G) ← -- right group von Neumann algebra of G,
 for x ∈ G we write ρ_x for the right shift by x on L²(G)

$$\Delta(\rho_{\mathbf{x}}) = \rho_{\mathbf{x}} \otimes \rho_{\mathbf{x}}, \qquad \mathbf{x} \in \mathbf{G},$$

• $\boldsymbol{h} = \boldsymbol{h}_{L} \quad \text{\leftarrow -- evaluation at } \boldsymbol{e} \in \boldsymbol{G}.$

- $\mathbb{G} \leftarrow --$ locally compact quantum group,
- $\Delta_{\mathbb{G}} \colon L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{G}) \bar{\otimes} \ L^{\infty}(\mathbb{G}),$
- $\boldsymbol{h}, \boldsymbol{h}_{L} \leftarrow -$ right and left Haar weights on $L^{\infty}(\mathbb{G})$,
- $\widehat{\mathbb{G}} \leftarrow --$ the dual of \mathbb{G} ,
- $L^{\infty}(\mathbb{G}), L^{\infty}(\widehat{\mathbb{G}}) \subset \mathbf{B}(L^{2}(\mathbb{G})),$
- \leftarrow -- GNS Hilbert space for **h**

Slicing:

$$\begin{split} L^{\infty}(\mathbb{G}) &= \left\{ (\omega \otimes \mathrm{id}) \mathbb{W}^{\mathbb{G}} \, \Big| \, \omega \in \mathrm{B}(L^{2}(\mathbb{G}))_{*} \right\}^{\sigma}_{,} \\ L^{\infty}(\widehat{\mathbb{G}}) &= \left\{ (\mathrm{id} \otimes \omega) \mathbb{W}^{\mathbb{G}} \, \Big| \, \omega \in \mathrm{B}(L^{2}(\mathbb{G}))_{*} \right\}^{\sigma}_{,} \end{split}$$

• Implementation of coproducts:

$$egin{aligned} &\Delta_{\mathbb{G}}(oldsymbol{x}) = \mathbb{W}^{\mathbb{G}}(oldsymbol{x}\otimes \mathbb{1})\mathbb{W}^{\mathbb{G}^*}, &oldsymbol{x}\in L^\infty(\mathbb{G}), \ &\Delta_{\widehat{\mathbb{G}}}(oldsymbol{y}) = oldsymbol{\sigma}ig(\mathbb{W}^{\mathbb{G}^*}(\mathbb{1}\otimes oldsymbol{y})\mathbb{W}^{\mathbb{G}}ig), &oldsymbol{y}\in L^\infty(\widehat{\mathbb{G}}), \end{aligned}$$

where σ is the flip.

- $\mathbb{G} \leftarrow --$ a locally compact quantum group,
- N ←-- a von Neumann algebra.
- A **right action** of \mathbb{G} on N is a normal unital injective *-homomorphism $\alpha \colon \mathbb{N} \longrightarrow \mathbb{N} \otimes L^{\infty}(\mathbb{G})$ such that

$$(\alpha \otimes \mathbf{id}) \circ \alpha = (\mathbf{id} \otimes \Delta_{\mathbb{G}}) \circ \alpha.$$

- A left action is $\beta \colon \mathbb{N} \to L^{\infty}(\mathbb{G}) \overline{\otimes} \mathbb{N}$ with $(\mathrm{id} \otimes \alpha) \circ \alpha = (\Delta_{\mathbb{G}} \otimes \mathrm{id}) \circ \alpha$.
- An action can be **implemented**: $N \subset B(\mathcal{H})$, there is a unitary $V \in B(\mathcal{H}) \otimes L^{\infty}(\mathbb{G})$ such that

$$\alpha(\boldsymbol{x}) = \boldsymbol{V}(\boldsymbol{x} \otimes \mathbb{1})\boldsymbol{V}^*, \qquad \boldsymbol{x} \in \mathsf{N}$$

(similarly for left actions).

• Any action admits a **canonical implementation** (work of S. Vaes).

• An action $\alpha \colon \mathbb{N} \longrightarrow \mathbb{N} \otimes L^{\infty}(\mathbb{G})$ is **integrable** if the operator valued weight $(\mathrm{id} \otimes \boldsymbol{h}_{\mathrm{L}}) \circ \alpha$ is semifinite (for a left action β we ask that $(\boldsymbol{h} \otimes \mathrm{id}) \circ \beta$ be semifinite).

EXAMPLE $\mathbb{G} = G \leftarrow - \text{--locally compact group}$

• $\alpha \leftarrow -$ right action of G on a von Neumann algebra N:

 $\alpha \colon G \ni t \longmapsto \alpha_t \in \operatorname{Aut}(\mathsf{N}).$

- $(\circ \ \alpha \colon \mathsf{N} \longrightarrow \mathsf{N} \mathbin{\bar{\otimes}} \ L^\infty(\mathbb{G}) \cong L^\infty(G,\mathsf{N}), \ \alpha(\mathbf{x})(t) = \alpha_t(\mathbf{x}). \ \mathsf{)}$
 - α is integrable if

$$\int_{G} \alpha_t(\boldsymbol{x}) \, d\boldsymbol{h}_{\rm L}(t)$$

belongs to N_+ (not N_+^{ext}) for a dense set of $x \in N_+$.

• Integrability can be characterized in terms of the canonical implementation.

7 / 18

• \mathbb{H} , \mathbb{G} \leftarrow -- locally compact quantum groups.

THEOREM

There is a bijection between sets of

(a) bicharacters from \mathbb{H} to \mathbb{G} , *i.e.* unitaries $V \in L^{\infty}(\widehat{\mathbb{G}}) \otimes L^{\infty}(\mathbb{H})$ such that

 $(\Delta_{\widehat{\mathbb{G}}}\otimes \mathrm{id})V = V_{23}V_{13}$ and $(\mathrm{id}\otimes \Delta_{\mathbb{H}})V = V_{12}V_{13}$,

2 right quantum group homomorphisms from H to G i.e. actions α: L[∞](G) → L[∞](G) ⊗ L[∞](H) such that

 $(\Delta_{\mathbb{G}} \otimes \mathrm{id}) \circ \alpha = (\mathrm{id} \otimes \alpha) \circ \Delta_{\mathbb{G}}.$

DEFINITION

A **homomorphism** $\pi : \mathbb{H} \longrightarrow \mathbb{G}$ is an element of either of the sets of **1** or **2**.

- $\mathbb{G} = G$, $\mathbb{H} = H \leftarrow -$ locally compact groups,
- $\pi: H \longrightarrow G \leftarrow -$ continuous homomorphism.
- The action α associated to π is

$$\alpha \colon H \longrightarrow \operatorname{Aut}(L^{\infty}(G))$$

with

$$(\alpha_h(f))(g) = f(g\pi(h)), \qquad h \in H, \ g \in G, \ f \in L^\infty(G).$$

• The corresponding bicharacter is

$$V \in L^{\infty}(\widehat{G}) \, \bar{\otimes} \, L^{\infty}(H) \cong L^{\infty}(H, \mathrm{vN}(G))$$

defined by

$$V(h) = \rho_{\pi(h)}, \qquad h \in H.$$

- As before: \mathbb{H} , $\mathbb{G} \leftarrow -l.c.q.g.$'s, $\pi \colon \mathbb{H} \to \mathbb{G} \leftarrow -homomorphism$.
- With π we associate
 - a bicharacter $V \in L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{H})$,
 - an action $\alpha \colon L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{H}).$
- Then V implements α :

$$\alpha(\mathbf{x}) = V(\mathbf{x} \otimes \mathbb{1})V^*, \qquad \mathbf{x} \in L^{\infty}(\mathbb{G}).$$

• Moreover *V* is the canonical implementation of α .

DEFINITION

A homomorphism $\pi: \mathbb{H} \longrightarrow \mathbb{G}$ identifies \mathbb{H} with a **closed quantum subgroup** of \mathbb{G} if there is an

- injective,
- unital,
- o normal

*-homomorphism $\gamma \colon L^{\infty}(\widehat{\mathbb{H}}) \longrightarrow L^{\infty}(\widehat{\mathbb{G}})$ such that

 $V = (\gamma \otimes \mathrm{id}) \mathrm{W}^{\mathbb{H}}$

($W^{\mathbb{H}}$ is the Kac-Takesaki operator of \mathbb{H}).

- There is a (potentially) weaker C*-algebraic notion of a **Woronowicz-closed** quantum subgroup.
- A closed quantum subgroup is Woronowicz-closed.
- The two notions are equivalent in many cases, but there is no proof of this in the general case (so far).
- If H is a Woronowicz-closed quantum subgroup of G then the action α of H on G is **free**: the set

$$\left\{ (\omega \otimes \mathrm{id}) \alpha(\mathbf{x}) \, \middle| \, \mathbf{x} \in L^{\infty}(\mathbb{G}), \ \omega \in \mathrm{B}(L^{2}(\mathbb{G}))_{*} \right\}$$

generates the von Neumann algebra $L^{\infty}(\mathbb{H})$.

DEFINITION

Let \mathbb{H} , \mathbb{G} be locally compact quantum groups. We say that \mathbb{H} is an **open quantum subgroup** of \mathbb{G} if there is a surjective normal *-homomorphism $\theta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{H})$ such that

 $\Delta_{\mathbb{H}} \circ \theta = (\theta \otimes \theta) \circ \Delta_{\mathbb{G}}.$

THEOREM (KALANTAR-KASPRZAK-SKALSKI)

An open quantum subgroup $\mathbb H$ of $\mathbb G$ is closed. The corresponding bicharacter is

$$V = (\mathrm{id} \otimes \theta) \mathbf{W}^{\mathbb{G}} \in L^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\mathbb{H}).$$

- $\pi \colon \mathbb{H} \longrightarrow \mathbb{G} \leftarrow --$ homomorphism,
- $V \leftarrow -$ corresponding bicharacter.

PROPOSITION

There is a locally compact quantum group $\ensuremath{\mathbb{K}}$ such that

$$L^{\infty}(\mathbb{K}) = \left\{ (\mathrm{id} \otimes \zeta) V \middle| \zeta \in \mathrm{B}(L^{2}(\mathbb{H}))_{*} \right\}^{\sigma}$$

and

$$\Delta_{\mathbb{K}} = \Delta_{\widehat{\mathbb{G}}} \big|_{L^{\infty}(\mathbb{K})}$$

DEFINITION

The quantum group $\overline{\operatorname{im} \pi}$ is the dual of the quantum group \mathbb{K} . In particular

$$L^{\infty}(\widehat{\operatorname{im} \pi}) = \{(\operatorname{id} \otimes \zeta)V | \zeta \in \mathrm{B}(L^{2}(\mathbb{H}))_{*}\}^{\sigma}$$

•
$$\pi \colon \mathbb{H} \longrightarrow \mathbb{G}, V \leftarrow --$$
 as before.

PROPOSITION

There is a locally compact quantum group $\mathbb L$ such that

$$L^{\infty}(\mathbb{L}) = \left\{ (\phi \otimes \mathrm{id})V \middle| \phi \in \mathrm{B}(L^{2}(\mathbb{G}))_{*} \right\}^{\sigma}$$

and

$$\Delta_{\mathbb{L}} = \Delta_{\mathbb{H}} \big|_{L^{\infty}(\mathbb{L})}$$

DEFINITION

We call \mathbb{L} the quantum group $\mathbb{H}/\ker \pi$. In particular

$$L^{\infty}(\mathbb{H}/\ker\pi) = \{(\phi \otimes \mathrm{id})V | \phi \in \mathrm{B}(L^{2}(\mathbb{G}))_{*}\}^{\sigma-}.$$

P.M. SOLTAN (WARSAW)

- $\pi \colon \mathbb{H} \longrightarrow \mathbb{G}$, *V*, $\alpha \leftarrow --$ as before.
- We say that $\mathbb{H}/\ker \pi \cong \overline{\operatorname{im} \pi}$ if there is an isomorphism $\chi \colon L^{\infty}(\overline{\operatorname{im} \pi}) \longrightarrow L^{\infty}(\mathbb{H}/\ker \pi)$ such that

$$(\mathrm{id}\otimes\chi)(\mathrm{W}^{\mathrm{im}\,\pi})=V.$$

•
$$V \in L^{\infty}(\widehat{\operatorname{im} \pi}) \bar{\otimes} L^{\infty}(\mathbb{H}/\ker \pi),$$
 $(V \in L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{H}))$

• an isomorphism χ as above is necessarily unique.

THEOREM

The action α (corresponding to π) is integrable if and only if

- 1) $\mathbb{H}/\ker \pi$ is an open subgroup of $\widehat{\mathbb{H}}$,

• Point 1 "means" that ker π is compact.

P.M. SOŁTAN (WARSAW) Q.G. HOMOMORPHISMS & INTEGRABILITY MAY 25, 2016

16 / 18

THEOREM (K. DE COMMER)

Let $\pi : \mathbb{H} \longrightarrow \mathbb{G}$ identify \mathbb{H} with a closed quantum subgroup of \mathbb{G} . Then the associated action α is integrable.

COROLLARY

A Woronowicz-closed quantum subgroup $\mathbb H$ of $\mathbb G$ is a closed quantum subgroup if and only if the corresponding action

$$\alpha\colon L^{\infty}(\mathbb{G}) \longrightarrow L^{\infty}(\mathbb{G}) \bar{\otimes} \ L^{\infty}(\mathbb{H})$$

is integrable.

PROOF.

 \Rightarrow Immediate from theorem.

 \Leftarrow : \mathbb{H} Woronowicz-closed implies that α is free, so $\mathbb{H}/\ker \pi = \mathbb{H}$. Integrability implies that $\mathbb{H}/\ker \pi \cong \overline{\operatorname{im} \pi}$ and $\overline{\operatorname{im} \pi}$ is closed. *π*: *H* → *G* ←- continuous homomorphism of l.c. groups.
The associated action *α* is *H* ∋ *h* → *α_h* ∈ Aut(*L*[∞](*G*)):

$$(\alpha_h(f))(g) = f(g\pi(h)), \qquad g \in G, f \in L^{\infty}(G).$$

• Integrability of α means that

$$G
i g \mapsto \int\limits_{H} (lpha_h(f))(g) \, dh$$

is in $L^{\infty}(G)_+$ for a dense set of functions $f \in L^{\infty}(G)_+$.

COROLLARY

- **1** α is integrable if and only if ker π is compact and im π is closed and topologically isomorphic to $H/\ker \pi$.
- 2 When π is injective, α is integrable if and only if the image of π is closed and π is a homeomorphism onto its image.