Operators with the property $\operatorname{Sp} R = \operatorname{Sp} S = \operatorname{Sp} (R + S)$ and quantum exponential functions

P.M. Soltan

Report on work with W. Pusz & S.L. Woronowicz

Consider

- a closed subset $\Sigma \subset \mathbb{C}$,
- a pair of operators (R, S) on a Hilbert space such that

$$\begin{pmatrix} R \text{ and } S \text{ are } \underline{\text{normal}}, \\ \operatorname{Sp} R, \operatorname{Sp} S \subset \Sigma, \\ R \text{ and } S \text{ satisfy some,} \\ \operatorname{commutation relations} \end{pmatrix}$$

and the relations imply that S + R is a densely defined closable operator,

• denote by S + R the closure of S + R.

Questions:

- Is $S \dotplus R$ normal?
- Is $\operatorname{Sp}(S \dotplus R)$ contained in Σ ?

These are questions about the relations satisfied by (R, S) and about Σ .

Obvious example

- \bullet R and S strongly commute,
- Σ is an additive subgroup of \mathbb{C} .

"Quantum" examples

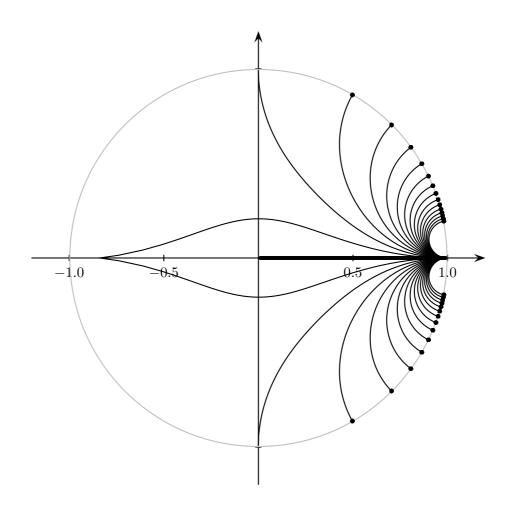
- Σ is the closure in \mathbb{C} of a special multiplicative subgroup of $\mathbb{C} \setminus \{0\}$,
- \bullet R and S satisfy

$$SR = q^2 RS$$
 and $SR^* = R^*S$

for a special complex number $q \neq 1$.

Remark The proposed relations imply that R and S have to be unbounded (or zero) – cf. Fuglede-Putnam theorem.

Chose q from the set

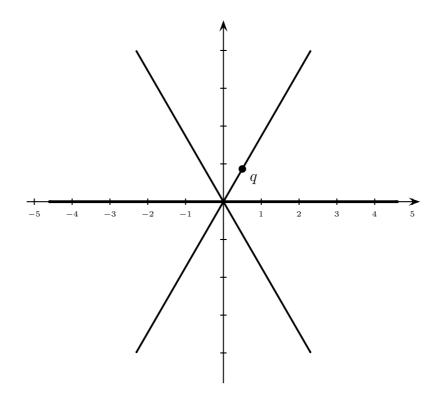


then

- Let Γ be the <u>multiplicative</u> subgroup of $\mathbb{C} \setminus \{0\}$ generated by q and $\{q^{it} : t \in \mathbb{R}\}$.
- Define

$$\Sigma = \overline{\Gamma} = \Gamma \cup \{0\}.$$

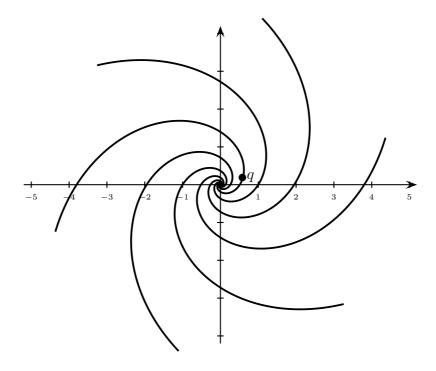
Then Σ looks like this



if we chose q as the root of unity

$$q = e^{\frac{2\pi i}{6}},$$

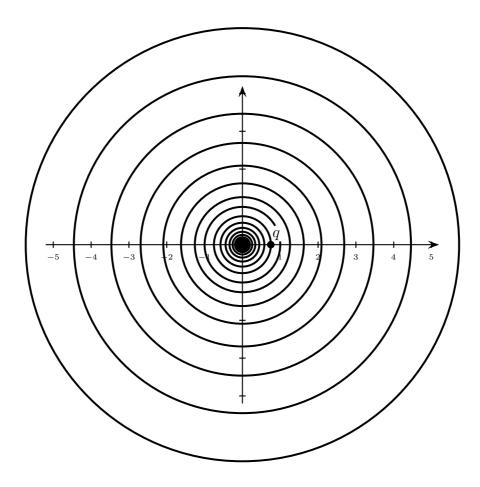
or like this



if we chose

$$q = e^{\left(-\frac{3}{2} - i\frac{6}{2\pi}\right)^{-1}},$$

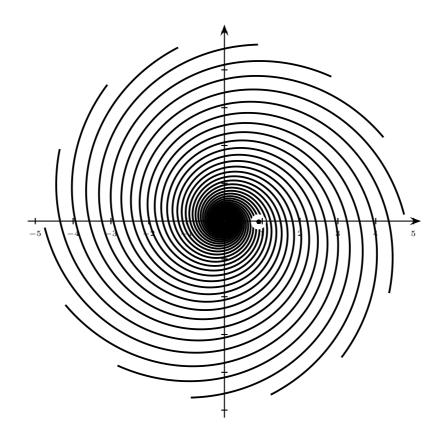
or like this



if we choose

$$q = e^{-\frac{1}{4}} \simeq 0.78.$$

Another example



Here

$$q = e^{\left(-10 + i\frac{14}{2\pi}\right)^{-1}}.$$

The group Γ is very special.

- If q is real then $\Gamma \simeq \mathbb{Z} \times S^1$.
- For other q we have $\Gamma \simeq \mathbb{Z}_N \times \mathbb{R}$, where N is even.

In both cases Γ is self dual and we have a symmetric nondegenerate bicharacter on Γ , i.e.

$$\chi \colon \Gamma \times \Gamma \longrightarrow S^1$$

which establishes the self duality.

The commutation relations

- $\bullet \ker R = \ker S = \{0\},\$
- for any $\gamma, \gamma' \in \Gamma$ we have

$$\chi(S, \gamma)\chi(R, \gamma') = \chi(\gamma, \gamma')\chi(R, \gamma')\chi(S, \gamma)$$

This is called the <u>Weyl relation</u> (cf. Weyl form of CCRs).

Remember R and S are normal and $\operatorname{Sp} R, \operatorname{Sp} S \subset \Sigma = \Gamma \cup \{0\}.$

Consequences of the relations

Putting different γ and γ' in the Weyl relation

$$\chi(S, \gamma)\chi(R, \gamma') = \chi(\gamma, \gamma')\chi(R, \gamma')\chi(S, \gamma)$$

one arrives at

$$Phase(S)|R| = |q||R|Phase(S),$$

$$|S|$$
Phase $(R) = |q|$ Phase $(R)|S|$,

Phase(S)Phase(R) = Phase(q)Phase(R)Phase(S),

$$|S|^{it}|R|^{it'} = \operatorname{Phase}(q)^{tt'}|R|^{it'}|S|^{it},$$

for all $t, t' \in \mathbb{R}$.

Caution: The above relations do not contain all the information. It does not follow from them that spectra of R and S are contained in Σ .

Theorem Let (R, S) be as before.

• Compositions $S \circ R$, $R \circ S$, $S \circ R^*$ and $R^* \circ S$ are closable and their closures satisfy

$$SR = q^2 R S, \qquad SR^* = R^* S.$$

- S + R is a closable operator,
- There exists a continuous function

$$F_q \colon \Sigma \longrightarrow \mathbf{S}^1$$

such that

$$S \dotplus R = F_q(RS^{-1})^* S F_q(RS^{-1})$$

= $F_q(R^{-1}S) R F_q(R^{-1}S)^*$.

In particular $S \dotplus R$ is a normal operator with $\operatorname{Sp}(S \dotplus R) \subset \Sigma$.

 \bullet F_q satisfies the exponential equation

$$F_q(S \dotplus R) = F_q(R)F_q(S).$$

Remark F_q is essentially the only function with the exponential property.

Nice fact: the relations

$$\begin{aligned} \operatorname{Phase}(S)|R| &= |q||R|\operatorname{Phase}(S), \\ |S|\operatorname{Phase}(R) &= |q|\operatorname{Phase}(R)|S|, \\ \operatorname{Phase}(S)\operatorname{Phase}(R) &= \operatorname{Phase}(q)\operatorname{Phase}(R)\operatorname{Phase}(S), \\ |S|^{it}|R|^{it'} &= \operatorname{Phase}(q)^{tt'}|R|^{it'}|S|^{it}, \end{aligned}$$

supplemented by

- S + R has a normal extension,
- $1 \in \operatorname{Sp} R$.

imply the Weyl relation.