INVARIANTS OF QUANTUM GROUPS RELATED TO THE SCALING AND MODULAR GROUPS

GEOMETRY AND ANALYSIS OF QUANTUM GROUPS 2023

Piotr M. Sołtan (based on joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

November 6, 2023

THE SETUP

- Let \mathbb{G} be a locally compact quantum group and left Haar measure φ .
- Let $\{\sigma_t^{\varphi}\}_{t\in\mathbb{R}}$ be the modular group of φ and let $\{\tau_t^{\mathbb{G}}\}_{t\in\mathbb{R}}$ denote the scaling group of \mathbb{G} .
- Let δ be the modular element of \mathbb{G} .
- Denote the group of inner automorphisms of the von Neumann algebra $L^{\infty}(\mathbb{G})$ by $\operatorname{Inn}(L^{\infty}(\mathbb{G}))$ and the group of approximately inner automorphisms of $L^{\infty}(\mathbb{G})$ by $\overline{\operatorname{Inn}}(L^{\infty}(\mathbb{G}))$.

THE INVARIANTS

DEFINITION

We define

$$\begin{split} T^{\tau}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} = \mathrm{id} \big\}, \\ T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} \in \mathrm{Inn} \big(L^{\infty}(\mathbb{G}) \big) \big\}, \\ T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \tau_t^{\mathbb{G}} \in \overline{\mathrm{Inn}} \big(L^{\infty}(\mathbb{G}) \big) \big\}, \\ T^{\sigma}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \sigma_t^{\varphi} = \mathrm{id} \big\}, \\ T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \sigma_t^{\varphi} \in \mathrm{Inn} \big(L^{\infty}(\mathbb{G}) \big) \big\}, \\ T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \sigma_t^{\varphi} \in \overline{\mathrm{Inn}} \big(L^{\infty}(\mathbb{G}) \big) \big\}, \\ \mathrm{Mod}(\mathbb{G}) &= \big\{ t \in \mathbb{R} \, \big| \, \delta^{\mathrm{i}t} = \mathbb{1} \big\}. \end{split}$$

SOME PROPERTIES OF THE INVARIANTS

- The sets $T^{\circ}_{\bullet}(\mathbb{G})$ are subgroups of \mathbb{R} and are isomorphism invariants of the quantum group \mathbb{G} .
- $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}).$
- $T^{\bullet}(\mathbb{G})$, $T^{\bullet}_{\overline{\text{Inn}}}(\mathbb{G})$, and $\text{Mod}(\mathbb{G})$ are closed.
- We would obtain the same groups $T^{\sigma}(\mathbb{G})$, $T^{\sigma}_{\operatorname{Inn}}(\mathbb{G})$, and $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G})$ if we chose the right Haar measure instead of the left one.
- $T^{\sigma}_{\mathrm{Inn}}(\mathbb{G})$ is equal to the Connes' invariant $T(L^{\infty}(\mathbb{G}))$. Consequently, $T^{\sigma}_{\mathrm{Inn}}(\mathbb{G})$ depends only on the von Neumann algebra $L^{\infty}(\mathbb{G})$. It is also the case for $T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G})$.

SOME PROPERTIES OF THE INVARIANTS

PROPOSITION

For any locally compact quantum group \mathbb{G} we have

$$T^{\sigma}(\mathbb{G}) = T^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$

$$T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$

$$T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$

$$\operatorname{Mod}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) \subset \frac{1}{2} T^{\tau}(\mathbb{G}).$$

- The first equality above together with $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}})$ reduces the list to 11 (invariants $T^{\sigma}(\mathbb{G})$, $T^{\sigma}(\widehat{\mathbb{G}})$ and $T^{\tau}(\widehat{\mathbb{G}})$ are determined by the remaining ones).
- If \mathbb{G} is compact then $\operatorname{Mod}(\mathbb{G}) = T_{\operatorname{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\operatorname{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = T_{\operatorname{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\operatorname{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = \mathbb{R}$.
- If additionally $L^{\infty}(\mathbb{G})$ is semifinite then $T^{\sigma}_{\text{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\text{Inn}}}(\mathbb{G}) = \mathbb{R}$.

EXAMPLES

EXAMPLE: THE QUANTUM E(2) GROUP

With $\mathbb{G} = \mathcal{E}_q(2)$ for some $q \in]0,1[$ we have

$$T^{\tau}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\sigma}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \frac{\pi}{\log q}\mathbb{Z},$$

$$T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathbb{R}.$$

EXAMPLES

EXAMPLE: QUANTUM "az + b" GROUPS

Let \mathbb{G} be the quantum "az + b" group for the deformation parameter q in one of the three cases:

- ① $q = e^{\frac{2\pi i}{N}}$ with N = 6, 8, ...,
- ② $q \in [0, 1[$,
- ③ $q=\mathrm{e}^{1/
 ho}$ with $\mathrm{Re}\,
 ho < 0$, $\mathrm{Im}\,
 ho = \frac{N}{2\pi}$ with $N=\pm 2,\pm 4,\ldots$

Then

$$T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\hat{\mathbb{G}}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\hat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\hat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\hat{\mathbb{G}}) = \mathbb{R},$$

$$T^{\tau}(\mathbb{G}) = T^{\tau}(\hat{\mathbb{G}}) = T^{\sigma}(\mathbb{G}) = T^{\sigma}(\hat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathrm{Mod}(\hat{\mathbb{G}}) = \begin{cases} \{0\} & \text{in cases } \mathbb{Q} \text{ and } \mathbb{3} \\ \frac{\pi}{\log q} \mathbb{Z} & \text{in case } \mathbb{2} \end{cases}.$$

EXAMPLES

EXAMPLE: U_F^+

Let \mathbb{G} be the quantum group U_F^+ . Then $L^{\infty}(\mathbb{G})$ is a full factor, so $\operatorname{Inn}(L^{\infty}(\mathbb{G})) = \overline{\operatorname{Inn}}(L^{\infty}(\mathbb{G}))$ (Vaes).

- \mathbb{G} is compact, so $\mathrm{Mod}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = \mathbb{R}$.
- If \mathbb{G} is not of Kac type $(\lambda F^*F \neq 1)$ then

$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}(\mathbb{G}) = \bigcap_{\Lambda \in \mathrm{Sp}(F * F \otimes (F * F)^{-1}) \setminus \{1\}} \frac{2\pi}{\log(\Lambda)} \mathbb{Z},$$

while
$$\operatorname{Mod}(\widehat{\mathbb{G}}) = \bigcap_{\Lambda \in \operatorname{Sp}(F^*F) \setminus \{\lambda^{-1}\}} \frac{2\pi}{\log \lambda + \log(\Lambda)} \mathbb{Z}$$
, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$.

• If $\mathbb G$ is not of Kac type then $L^\infty(\mathbb G)$ is a type III_μ factor for some $\mu \in]0,1]$ and $T^\sigma_{\overline{\mathrm{Inn}}}(\mathbb G) = T^\sigma_{\mathrm{Inn}}(\mathbb G) = \frac{2\pi}{\log \mu}\mathbb Z$ (otherwise $T^\sigma_{\overline{\mathrm{Inn}}}(\mathbb G) = T^\sigma_{\mathrm{Inn}}(\mathbb G) = \mathbb R$).

SOME COMMENTS

- In our previous work for any subgroup Γ of \mathbb{R} we constructed second countable compact quantum group \mathbb{K} such that $T_{\text{ton}}^{\tau}(\mathbb{K}) = \Gamma$.
- The invariants were helpful in showing that for any $\lambda \in]0,1]$ thee are uncountably many pairwise non-isomorphic compact quantum groups \mathbb{G} with $L^{\infty}(\mathbb{G})$ isomorphic to the injective factor of type III_{λ} .
- The equality $T^{\tau}(\mathbf{U}_F^+) = T_{\mathrm{Inn}}^{\tau}(\mathbf{U}_F^+)$ says that the compact quantum group \mathbf{U}_F^+ belongs to the class for which the following statement is true:

CONJECTURE (*)

If $\mathbb G$ is a second countable compact quantum group and $T^{\tau}_{\operatorname{Inn}}(\mathbb G)=\mathbb R$ then $\mathbb G$ is of Kac type.

• We were able to prove that this conjecture is true for many compact quantum groups including duals of second countable type I discrete quantum groups (e.g. *q*-deformations of compact semisimple Lie groups).

9/21

MORE EXAMPLES

EXAMPLE: q-DEFORMATIONS

Let *G* be a compact semisimple Lie group with root system Φ and let $q \in]0,1[$.

• Since G_q is compact we again have

$$\operatorname{Mod}(G_q) = T_{\operatorname{Inn}}^{\tau}(\widehat{G}_q) = T_{\overline{\operatorname{Inn}}}^{\tau}(\widehat{G}_q) = T_{\operatorname{Inn}}^{\sigma}(\widehat{G}_q) = T_{\overline{\operatorname{Inn}}}^{\sigma}(\widehat{G}_q) = \mathbb{R}.$$

- Furthermore $T_{\mathrm{Inn}}^{\sigma}(G_q) = T_{\overline{\mathrm{Inn}}}^{\sigma}(G_q) = \mathbb{R}$ because $\mathrm{C}(G_q)$ is a C*-algebra of type I.
- We have $T^{\tau}(G_q) = \frac{\pi}{\log q} \mathbb{Z}$ and

$$T_{\operatorname{Inn}}^{\tau}(G_q) = T_{\overline{\operatorname{Inn}}}^{\tau}(G_q) = \operatorname{Mod}(\widehat{G_q}) = \frac{\pi}{\Upsilon_{\Phi} \log q} \mathbb{Z},$$

where Υ_{Φ} is a positive integer determined by Lie-theoretic data (see next two slides).

MORE EXAMPLES

Example: q-deformations (continued)

• Let $\Phi = \Phi_1 \cup \cdots \cup \Phi_l$ be the decomposition of Φ into irreducible parts. Then

$$\Upsilon_{\Phi} = \gcd(\Upsilon_{\Phi_1}, \ldots, \Upsilon_{\Phi_l}).$$

We have

type	group	range of n	Υ_{Φ}	$T_{\mathrm{Inn}}^{ au}(G_q)$
A_n	SU(n+1)	$n \geqslant 1$ odd	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \geqslant 1$ even	2	$rac{\pi}{2\log q}\mathbb{Z}$
B_n	$\operatorname{Spin}(2n+1)$	$n \geqslant 2$ odd	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \geqslant 2$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
C_n	$\operatorname{Sp}(2n)$	$n \geqslant 3$	2	$rac{\pi}{2\log q}\mathbb{Z}$
D_n	$\mathrm{Spin}(2n)$	$n \geqslant 4$ odd	2	$\frac{\pi}{2\log q}\mathbb{Z}$
		$n \geqslant 4$ even	1	$\frac{\pi}{\log a}\mathbb{Z}$

MORE EXAMPLES

Example: q-Deformations (continued)

- And for the exceptional cases we have
 - type E_6 : $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2 \log q} \mathbb{Z}$,
 - type E_7 : $\Upsilon_{\Phi} = 1$ and $T_{\operatorname{Inn}}^{\tau}(G_q) = \frac{\pi}{\log q} \hat{\mathbb{Z}}$,
 - type E_8 : $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2 \log q} \mathbb{Z}$,
 - type F_4 : $\Upsilon_{\Phi} = 2$ and $T_{\operatorname{Inn}}^{\tau}(G_q) = \frac{\pi}{2 \log q} \mathbb{Z}$,
 - type G_2 : $\Upsilon_{\Phi} = 2$ and $T_{\operatorname{Inn}}^{\tau}(G_q) = \frac{\pi}{2 \log q} \mathbb{Z}$.

SPECIAL CASE

- Consider the compact quantum group $SU_q(3)$.
- Then $\Upsilon_{\Phi} = 2$, so

$$T_{\operatorname{Inn}}^{\tau}(\operatorname{SU}_q(3)) = \frac{\pi}{2\log q}\mathbb{Z},$$

while
$$T^{\tau}(SU_q(3)) = \frac{\pi}{\log q} \mathbb{Z}$$
.

- This means that there are non-trivial inner scaling automorphisms.
- \circ $\mathrm{SU}_q(3)$ does not have non-trivial one-dimensional representations, so these scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let G be such that $\Upsilon_{\Phi}=2$. Then a unitary implementing the scaling automorphism for $t=\frac{\pi}{2\log q}$ does not belong to $\mathrm{C}(G_q)$. In particular, the restriction of this automorphism to $\mathrm{C}(G_q)$ is not inner.

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

PROPOSITION

Let Γ be a discrete group. Then the following are equivalent:

- \bigcirc Γ is i.c.c.,
- ② $L(\Gamma)$ is a factor,

I.C.C.-TYPE CONDITIONS

PROPOSITION

Let \mathbb{G} be a locally compact quantum group and assume that

$$\Delta^{(n)}_{\mathbb{G}} \big(L^{\infty}(\mathbb{G}) \big)' \cap \underbrace{L^{\infty}(\mathbb{G}) \, \overline{\otimes} \, \cdots \, \overline{\otimes} \, L^{\infty}(\mathbb{G})}_{n+1} = \mathbb{C} \mathbb{1}$$

for some $n \in \mathbb{N}$. Then $L^{\infty}(\mathbb{G})$ is a factor.

DEFINITION

Let Γ be a discrete quantum group. We say that Γ is n-i.c.c. if

$$\Delta_{\widehat{\mathbb{F}}}^{(n)} \big(L^{\infty}(\widehat{\mathbb{F}}) \big)' \cap \underbrace{L^{\infty}(\widehat{\mathbb{F}}) \overline{\otimes} \cdots \overline{\otimes} L^{\infty}(\widehat{\mathbb{F}})}_{n+1} = \mathbb{C}1.$$

I.C.C.-TYPE CONDITIONS

PROPOSITION

Let Γ be a discrete quantum group. If Γ is n-i.c.c. for some n then Γ is m-i.c.c. for all natural $m \leq n$.

THEOREM

Let $\mathbb G$ be a second countable compact quantum group whose dual is 1-i.c.c. Then conjecture (*) holds for $\mathbb G$.

THEOREM

Let \mathbb{G} be a second countable compact quantum group whose dual is 1-i.c.c. and such that $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$. Then \mathbb{G} is of Kac type.

- We have $\tau_t^{\mathbb{G}} = \operatorname{Ad}(b^{\mathrm{i}t})$ for some positive self-adjoint operator b.
- Furthermore, for any $x \in L^{\infty}(\mathbb{G})$ and any $t \in \mathbb{R}$

$$(b^{-it} \otimes b^{-it}) \Delta_{\mathbb{G}}(b^{it}) \Delta_{\mathbb{G}}(x) \Delta_{\mathbb{G}}(b^{-it}) (b^{it} \otimes b^{it}) = (\tau_{-t}^{\mathbb{G}} \otimes \tau_{-t}^{\mathbb{G}}) \Delta_{\mathbb{G}}(\tau_{t}^{\mathbb{G}}(x)) = \Delta(x),$$

so
$$(b^{-it} \otimes b^{-it})\Delta(b^{it}) \in \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G}))' \cap L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G}) = \mathbb{C}1.$$

- Thus $(b^{-it} \otimes b^{-it})\Delta(b^{it}) = z_t\mathbb{1}$ for some scalars z_t . Moreover $t \mapsto z_t$ is a continuous homomorphism, so $z_t = \lambda^{it}$ for some $\lambda > 0$.
- Put $B = \lambda b$. Then still $\tau_t^{\mathbb{G}} = \operatorname{Ad}(B^{it})$ and, additionally, $\Delta_{\mathbb{G}}(B^{it}) = B^{it} \otimes B^{it}$ for all t.

THEOREM

Let \mathbb{G} be a second countable compact quantum group whose dual is 1-i.c.c. and such that $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$. Then \mathbb{G} is of Kac type.

Next we calculate

$$(m{h}_\mathbb{G}\otimes\mathrm{id})\Delta_\mathbb{G}\left(\int\limits_{t-rac{1}{n}}^{t+rac{1}{n}}B^{\mathbf{i}s}\,\mathrm{d}s
ight)=(m{h}_\mathbb{G}\otimes\mathrm{id})\int\limits_{t-rac{1}{n}}^{t+rac{1}{n}}(B^{\mathbf{i}s}\otimes B^{\mathbf{i}s})\,\mathrm{d}s=\int\limits_{t-rac{1}{n}}^{t+rac{1}{n}}m{h}_\mathbb{G}(B^{\mathbf{i}s})B^{\mathbf{i}s}\,\mathrm{d}s$$

- Multiplying by 2n and taking $\lim_{n\to\infty}$ we obtain $\boldsymbol{h}_{\mathbb{G}}(B^{\mathrm{i}t})\mathbb{1}=\boldsymbol{h}_{\mathbb{G}}(B^{\mathrm{i}t})B^{\mathrm{i}t}$, so $B=\mathbb{1}$.
- It follows that $\tau_t^{\mathbb{G}} = \text{id for all } t$.

EXAMPLE

- Recall that $\operatorname{Irr} U_F^+ = \mathbb{Z}_+ \star \mathbb{Z}_+$ with the two copies of \mathbb{Z}_+ generated by the class α of the defining representation and $\beta = \overline{\alpha}$.
- For $x \in \mathbb{Z}_+ \star \mathbb{Z}_+$ put

$$D_{x,n} = \begin{cases} \|\rho_x^2 - \mathbb{1}\| \frac{\|\rho_x\|^{2(n+1)} - 1}{\|\rho_x\|^2 - 1} & \rho_x \neq \mathbb{1} \\ 0 & \rho_x = \mathbb{1} \end{cases}.$$

• Let $D_n = \max\{D_{\alpha\beta,n}, D_{\beta\alpha,n}, D_{\alpha^2\beta,n}\}.$

THEOREM

If
$$D_n < 1 - \frac{1}{\sqrt{2}}$$
 and $\frac{2(7-4D_n)D_n}{2(1-D_n)^2-1} < \frac{1}{\sqrt{n+1}}$ then $\widehat{\mathrm{U}_F^+}$ is *n*-i.c.c.

EXAMPLE (CONTINUED)

THEOREM

Take $n \in \mathbb{N}$ and write $c = \max \{ \|\lambda F^*F - \mathbb{1}\|, \|(\lambda F^*F)^{-1} - \mathbb{1}\| \}$, where

$$\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$$
. If

$$\sqrt{n}(n+1)c(2+c)(1+c)^{4+6n}<\tfrac{1}{72}$$

then $\widehat{\mathrm{U}_F^+}$ is *n*-i.c.c.

Thank you for your attention