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THE SETUP

o Let G be a locally compact quantum group and left Haar measure ¢.

o Let {07} er be the modular group of ¢ and let {r¥},r denote the scaling
group of G.

o Let § be the modular element of G.

o Denote the group of inner automorphisms of the von Neumann algebra
L*(G) by Inn(L*(G)) and the group of approximately inner automorphisms
of L*(G) by Inn(L*(G)).
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THE INVARIANTS

DEFINITION
We define

(G) = {teR|rf =id},

(G) = {tER‘T;_GEInH(LOO(G))},
" (G) = {teR| 7 eInn(L*(G))},
’(G) = {teR|o{ =id},

W(G) = {teR|of e Inn(L¥(G))},
—(G) = {teR|of e Inn(L*(G))},
(G) ={teR|s =1}
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SOME PROPERTIES OF THE INVARIANTS

o The sets TJ(G) are subgroups of R and are isomorphism invariants of the
quantum group G.

o T7(G) = T"(G).

o T*G), T;—(G), and Mod(G) are closed.

o We would obtain the same groups 7°(G), 11,,(G). and T7(G) if we chose the
right Haar measure instead of the left one.

o 17 (G) is equal to the Connes’ invariant T(L™(G)). Consequently, 77, (G)
depends only on the von Neumann algebra L*(G). It is also the case for
T2 _(G).

Inn
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SOME PROPERTIES OF THE INVARIANTS

PROPOSITION

For any locally compact quantum group G we have

T°(G) = T™(G) n Mod(G),
Tu(G) 0 Mod(G) = T7,,,(G) n Mod(G),
TZ(G) n Mod(G) = TE—(G) n Mod(G),
Mod(G) n Mod(G) c 1 T7(G).

o The first equality above together with 77(G) = TT(@) reduces the list to 11
(invariants 7°(G), T"(G) and TT(G) are determined by the remaining ones).

o If G is compact then Mod(G) = T}, (G) = T7(G) = TZ_(G) = TZ(G) = R.

o If additionally L*(G) is semifinite then 77 (G) = T7—(G) = R.
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EXAMPLES

EXAMPLE: THE QUANTUM E(2) GROUP
With G = E4(2) for some g € |0, 1| we have

T(G) = Tip(G) = T:(G) = T(G) = T7(G) = T(G) = Mod(G) = ZZ,
T5(G) = T2(G) = Tip(G) = TEo(G) = T5,(G) = TZ(G) = Mod(G) = R.
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EXAMPLES

EXAMPLE: QUANTUM “az + b” GROUPS

Let G be the quantum “az + b” group for the deformation parameter q in one of
the three cases:

@ q=e~v withN=86,8,...,

@ ge]0,1],
@ g=¢e" withRep <0, Imp =2 with N = +2, 44, ....
Then
T1un(G) = Ti5(G) = THw(G) = T (G) = THu(G) = T54(G) = THn(G) = TEL(G) =R,

T7(G) = T(6) = T%(G) = T%(&) = Mod(G) = Mod(§) = {{0} in cases ® and @

- .
Tog qZ in case @
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EXAMPLES

EXAMPLE: Uf

Let G be the quantum group U{. Then L®(G) is a full factor, so
Inn(L*(G)) = Inn(L*(G)) (Vaes).
o G is compact, so Mod(G) = T}, (G) = TZ_(G) = T,(G) = T2(G) = R.
o If G is not of Kac type (AF*F # 1) then

Inn

Ti(6) = Th(G) = TG) = M e(0) 2
AeSp(F*FQ(F*F)~1)\{1}
while MOd(@) = ﬂ WZ where \ = —Tr’(élfg;f}‘;l)
AeSp(F*F)\{A~1}

o If G is not of Kac type then L*(G) is a type III, factor for some p € |0, 1] and
T7-(G) = T (G) = loguZ (otherwise T (G) = T{,(G) = R).
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SOME COMMENTS

o In our previous work for any subgroup I' of R we constructed second
countable compact quantum group K such that 7] (K) =T.

o The invariants were helpful in showing that for any A € |0, 1] thee are
uncountably many pairwise non-isomorphic compact quantum groups G
with L*(G) isomorphic to the injective factor of type III,.

o The equality 77(Uf) = 17 (Uf) says that the compact quantum group Uz
belongs to the class for which the following statement is true:

CONJECTURE (*)

If G is a second countable compact quantum group and 77 (G) = R then G is of
Kac type.

o We were able to prove that this conjecture is true for many compact
quantum groups including duals of second countable type I discrete
quantum groups (e.g. g-deformations of compact semisimple Lie groups).
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MORE EXAMPLES

EXAMPLE: q-DEFORMATIONS
Let G be a compact semisimple Lie group with root system ® and let g € |0, 1].
o Since Gq is compact we again have

Mod(Gq) = T1yn(Gq) = Tﬂl—n(Gq) = T1in(Gq) = Tf;—n(Gq) =R
© Furthermore Ty (Gq) = T7—(Gq) = R because C(Gq) is a C*-algebra of type L

© We have T"(Gq) = 1554Z and

Tin(Gq) = TﬂTn(Gq) = Mod(Gq) Z,

_ T
T Tselogqg

where T is a positive integer determined by Lie-theoretic data (see next two
slides).
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MORE EXAMPLES

EXAMPLE: g-DEFORMATIONS (CONTINUED)

o Let ® = &, u--- U P; be the decomposition of ¢ into irreducible parts. Then

o We have

P.M. SoLTAN (KMMF)

T@ = ng(Tq>1, ceey Tq;l).
type group range of n | Vo | 17 (Gq)

A SU(n + 1) n>1 odd 1 e d
n>1leven | 2 ﬁgq

n>2 odd 1 i
B Spin(2 1 = log g
n a0l n>2even | 2 21§gq
Ch Sp(2n) n=3 2 Tosd
D, Spin(2n) n>4 odd 2 TTor g
n =4 even 1 logq
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MORE EXAMPLES

EXAMPLE: g-DEFORMATIONS (CONTINUED)

o And for the exceptional cases we have

o type Ee:
o type E7:
o type Es:
o type Fu:
o type Ga:

P.M. SoLTAN (KMMF)

To =2 and Ty,,(Gq) = 570552
To = 1 and Ty, (Gq) = 15552

=
o
Il
N
5
o
=
3

) ﬁng,
To =2 and T7,,(Gq) = 515542

s
2loqu‘
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SPECIAL CASE

o Consider the compact quantum group SU¢(3).
o Then Tg = 2, so
Tﬂm(SUq(?’)) = ﬁ;z

while T7(SUq(3)) = 15552

o This means that there are non-trivial inner scaling automorphisms.

o SUq(8) does not have non-trivial one-dimensional representations, so these
scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let G be such that T¢ = 2. Then a unitary implementing the scaling
automorphism for t = 57— does not belong to C(Gy). In particular, the
restriction of this automorphlsm to C(Gy) is not inner.

P.M. SorTaN (KMMF) INVARIANTS OF QUANTUM GROUPS NOVEMBER 6, 2023 13/21



AND NOW FOR SOMETHING COMPLETELY DIFFERENT

PROPOSITION

Let I' be a discrete group. Then the following are equivalent:
@ T'isi.c.c.,
@ L(T) is a factor,
® A (L)) A LID)® - ® L(T) = C1 for some ne N,

"

n+1
NLIT)® ---® L(I') =C1 for all ne N.

. _/

n+1
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[.C.C.-TYPE CONDITIONS

PROPOSITION

Let G be a locally compact quantum group and assume that

A (L®(G)) A L*(G)® - ® L®(G) = C1

e
n+1

for some n € N. Then L*(G) is a factor.

DEFINITION

Let [ be a discrete quantum group. We say that [ is n-i.c.c. if

~

. . .
AN (L2([) A LP[[)® - ® LP([) = C1.
[I— . ~- >y
n+1
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[.C.C.-TYPE CONDITIONS

PROPOSITION
Let [ be a discrete quantum group. If [ is n-i.c.c. for some n then [ is m-i.c.c. for
all natural m < n.

THEOREM
Let G be a second countable compact quantum group whose dual is 1-i.c.c.
Then conjecture () holds for G.
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THEOREM

Let G be a second countable compact quantum group whose dual is 1-i.c.c. and
such that 77 (G) = R. Then G is of Kac type.

o We have 7¥ = Ad(b') for some positive self-adjoint operator b.
o Furthermore, for any x € L*(G) and any t e R

(b7 ® b Ag(b)Ag(x)Ac(b™) (b @ bY) = (%, ©7%)Ac (1 (x)) = A(x),

s0 (b1t @ b ) A(bit) € Ag(L®(G)) ~ L*(G)® L®(G) = C1.
o Thus (b~ ® b~ t)A(bi) = 21 for some scalars z;. Moreover t — z is a
continuous homomorphism, so z; = \i¢ for some \ > 0.

o Put B = \b. Then still 7 = Ad(B!!) and, additionally, Ag(B') = B! ® B! for
all t.
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THEOREM
Let G be a second countable compact quantum group whose dual is 1-i.c.c. and

such that 77 (G) = R. Then G is of Kac type.
o Next we calculate
t+1 t+1 t+d
(hg ®id)Ag f B®ds | = (hg ®id) f (B®®@B'®)ds = f hg(B'®)B®ds
1

t—1 t—1 t—1
n n

n

© Multiplying by 2n and taking lim we obtain hg(BY)1 = hg(BY)BY, so B=1.
n—
o It follows that 7¢ = id for all t.
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EXAMPLE

o Recall that Irr U}, = Z, * Z, with the two copies of Z, generated by the class
F g y

« of the defining representation and 3 = @.
o ForxeZ, xZ, put

2 Jox 2D —1
Dy, — lox — U Px# 1
’ O px - ]l

o Let D, = maX{Da67n>D,3a7n>Da257n}-

THEOREM

IfD,<1— \/LQ and ;g:gygl_}i‘ < \/ﬁ then U} is n-i.c.c.
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EXAMPLE (CONTINUED)

THEOREM

Take n € N and write ¢ = max{”)\F*F — 1|, [AF*F)~! — 1]

Tr((F*F)~!

} , Where

van+1)e2+c)(1+ )t < L

then Uf is n-i.c.c.
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Thank you for your attention



