SOME QUANTUM SPACES WHICH ARE NOT QUANTUM GROUPS

GRAPH ALGEBRAS

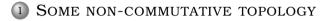
Piotr M. Sołtan (joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

July 6, 2023

P.M. SOŁTAN (KMMF)

QUANTUM SPACES NOT GROUPS



- 2 CAN THE QUANTUM DISK BE A QUANTUM GROUP?
- 3 What about other quantum spaces?
- 4 The von Neumann algebra level

QUANTUM SPACES AND QUANTUM GROUPS

- A **compact quantum space** is an object of the category dual to the category of C*-algebras corresponding to a unital C*-algebra.
- We will denote such objects by symbols such as X or G and the corresponding C*-algebras by C(X), C(G).

DEFINITIONS

A **compact quantum group** is a quantum space \mathbb{G} together with a unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ such that

 $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$

and the sets $\{\Delta(a)(\mathbb{1}\otimes b) \mid a, b \in C(\mathbb{G})\}$ and $\{(a \otimes \mathbb{1})\Delta(b) \mid a, b \in C(\mathbb{G})\}$ are linearly dense in $C(\mathbb{G}) \otimes C(\mathbb{G})$.

EXAMPLE: $SU_q(2)$

Fix $q \in [-1, 1] \setminus \{0\}$. We define the quantum space $SU_q(2)$ by setting $C(SU_q(2))$ to the the universal C*-algebra generated by elements α and γ such that

$$\begin{bmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

is unitary. The comultiplication Δ : $C(SU_q(2)) \rightarrow C(SU_q(2)) \otimes C(SU_q(2))$ is defined by

$$\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

NON-EXAMPLE: \mathbb{T}^2_{θ}

The quantum torus \mathbb{T}^2_{θ} is defined by letting $C(\mathbb{T}^2_{\theta})$ be the universal C*-algebra generated by unitaries u and v such that $uv = e^{2\pi i\theta}vu$. There is no compact quantum group structure on \mathbb{T}^2_{θ} .

Some additional structure of compact quantum groups

- $\bullet\,$ Let $\mathbb G$ be a compact quantum group.
- By a theorem of Woronowicz there exists a unique state *h* on C(G) such that (id ⊗ *h*)∆(*a*) = (*h*⊗id)∆(*a*) = *h*(*a*)1 for all *a* ∈ C(G). This state is the Haar measure of G. We say that G is of Kac type if *h* is a trace.
- The modular group of **h** is given by

$$\sigma^{\boldsymbol{h}}_t(\boldsymbol{a}) = (f_{\mathrm{i}t} \otimes \mathrm{id} \otimes f_{\mathrm{i}t}) \Delta(\boldsymbol{a})$$

where $\{f_{it}\}_{t \in \mathbb{R}}$ is a certain family of characters on $C(\mathbb{G})$.

• There exists another one parameter group $\{\tau_t\}_{t\in\mathbb{R}}$ of automorphisms of $C(\mathbb{G})$ such that

$$\tau_t(\boldsymbol{a}) = (f_{\mathrm{i}t} \otimes \mathrm{id} \otimes f_{-\mathrm{i}t}) \Delta(\boldsymbol{a})$$

for all *a*. $\{\tau_t\}_{t\in\mathbb{R}}$ is the **scaling group** of \mathbb{G} .

 ${\ensuremath{\, \bullet }}\xspace$ G is of Kac type iff the its scaling group is trivial.

UNITARY REPRESENTATIONS

 ${\ensuremath{\, \bullet }}$ A unitary representation of ${\ensuremath{\mathbb G}}$ is a unitary matrix

$$U = \begin{bmatrix} U_{1,1} & \cdots & U_{1,n} \\ \vdots & \ddots & \vdots \\ U_{n,1} & \cdots & U_{n,n} \end{bmatrix} \in \mathsf{Mat}_n(\mathbb{C}(\mathbb{G})) = \mathsf{Mat}_n(\mathbb{C}) \otimes \mathbb{C}(\mathbb{G})$$

such that
$$\Delta(U_{i,j}) = \sum_{k=1}^{n} U_{i,k} \otimes U_{k,j}$$
.

• For example, if $\mathbb{G} = \mathrm{SU}_q(2)$ then

$$\begin{bmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$

is a unitary representation of $\mathbb{G}.$

• The $U_{i,j}$ are called **matrix elements** of the representation.

UNITARY REPRESENTATIONS

- A representation $U \in \mathsf{Mat}_n(\mathbb{C}) \otimes C(\mathbb{G})$ is **irreducible** if the only projections $P \in \mathsf{Mat}_n(\mathbb{C})$ satisfying $(P \otimes 1)U = U(P \otimes 1)$ are 0 and 1.
- Two representations U and V of \mathbb{G} are **equivalent** if $(u \otimes 1)U = V(u \otimes 1)$ for some unitary matrix u.
- We let $\operatorname{Irr} \mathbb{G}$ denote the set of equivalence classes of irreps of \mathbb{G} and for any $\alpha \in \operatorname{Irr} \mathbb{G}$ we fix $U^{\alpha} \in \alpha$ such that there exists a diagonal matrix $\rho_{\alpha} = \operatorname{diag}(\rho_{\alpha,1}, \dots, \rho_{\alpha,n_{\alpha}})$ satisfying

$$\boldsymbol{h} \big(U_{k,l}^{\alpha} U_{l,j}^{\alpha *} \big) = \frac{\delta_{k,i} \delta_{l,j} \rho_{\alpha,j}}{\operatorname{Tr} \rho_{\alpha}}$$

where by n_{α} we denoted the **dimension** of U^{α} (the size of the matrix).

 $\bullet\,$ The span of matrix elements of irreducible representations is dense in ${\rm C}(\mathbb{G}).$

THE QUANTUM DISK

- The **quantum disk** \mathbb{D} was defined by Sheu in 1991 (and studied in depth by Klimek & Leśniewski in 1992) by declaring that $C(\mathbb{D})$ is the universal C*-algebra generated by z such that $z^*z zz^* = \mu(\mathbb{1} zz^*)(\mathbb{1} z^*z)$ with μ a parameter in]0, 1[.
- The algebra turns out to be independent of μ and isomorphic to the Toeplitz algebra \mathscr{T} which we will treat as represented on $\mathcal{H} = \ell_2$ in the usual way.
- Furthermore, $C(\mathbb{D}) = \mathscr{T}$ is a graph algebra (of the graph with two vertices and incidence matrix $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$) and fits into the exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T} \xrightarrow{s} \mathbf{C}(\mathbb{T}) \longrightarrow 0.$$

- Assume there is a compact quantum group \mathbb{G} with an isomorphism $\pi \colon C(\mathbb{G}) \to \mathscr{T}$.
- Goal: arrive at a contradiction.

P.M. SOŁTAN (KMMF)

FIRST OBSERVATIONS

PROPOSITION

The family $\{f_{it}\}_{t\in\mathbb{R}}$ of Woronowicz characters of \mathbb{G} coincides with the composition of $C(\mathbb{G}) \xrightarrow{\pi} \mathscr{T} \xrightarrow{s} C(\mathbb{T})$ and point evaluations. In particular, \mathbb{G} is not of Kac type.

PROPOSITION

For any $\alpha \in \operatorname{Irr} \mathbb{G}$ the image $\pi(U_{i,j}^{\alpha}) \in \operatorname{B}(\mathcal{H})$ of $U_{i,j}^{\alpha}$ is

- compact if $i \neq j$,
- Fredholm if i = j.

TWO IMPORTANT OPERATORS

• Let
$$\omega = \mathbf{h} \circ \pi^{-1} |_{\mathcal{K}}$$
.

• Then there exists a positive trace class operator A on \mathcal{H} such that $\omega(\cdot) = \text{Tr}(\cdot A)$ and ker $A = \{0\}$.

Fact

For any
$$x \in \mathscr{T}$$
 and $t \in \mathbb{R}$ we have $(\pi \circ \sigma_t^h \circ \pi^{-1})(x) = A^{it}xA^{-it}$.

THEOREM

There exists a strictly positive self-adjoint operator B on \mathcal{H} such that $(\pi \circ \tau_t \circ \pi^{-1})(x) = B^{it}xB^{-it}$ for all $x \in \mathscr{T}$ and $t \in \mathbb{R}$. Moreover A and B strongly commute.

NOTATION FOR EIGENSPACES AND EIGENPROJECTIONS

- Let *T* be a self-adjoint operator on a Hilbert space \mathcal{H} .
- We will denote the eigenspace $\ker(t\mathbb{1}-T)$ by the symbol $\mathcal{H}(T=t).$
- The corresponding spectral projection will be $\chi(T = t)$.
- Note that if $\alpha \mapsto \chi(\alpha)$ is the logical evaluation function (returning 0 if the proposition α is false and 1 if it is true) then $\chi(T = t)$ is the application to T of the function

$$\mathbb{R} \ni \boldsymbol{s} \longmapsto \boldsymbol{\chi}(\boldsymbol{s}=t) \in \{0,1\}.$$

• The notation $\mathcal{H}(T = t)$ is modeled on the typical expressions known from probability theory.

• Since *A* is trace-class, we have

$$\mathcal{H} = igoplus_{q\in \mathrm{Sp}(A)} \mathcal{H}(A=q).$$

with $\dim \mathcal{H}(A = q) < \infty$ for every q.

• Since *B* commutes with *A*, it preserves all eigenspaces of *A* and hence we have

$$B = \bigoplus_{q \in \operatorname{Sp}(A)} \chi(A = q) B \chi(A = q).$$

• For $q \in \operatorname{Sp}(A)$ we write B_q for $\chi(A = q)B\chi(A = q)$.

PROPOSITION

Fix $\alpha \in \operatorname{Irr} \mathbb{G}$ and $i \in \{1, \ldots, n_{\alpha}\}$. Then

2 For any $\lambda \in \operatorname{Sp}(B_q)$ we have $\pi(U_{i,i}^{\alpha})\mathcal{H}(B_q = \lambda) \subset \mathcal{H}(B_{q\rho_{\alpha,i}^2} = \lambda)$.

THEOREM

The set $\bigcup_{q \in \operatorname{Sp}(A)} \operatorname{Sp}(B_q)$ is finite.

• Statement (1) allows us to conclude that $\ker \pi(U_{i,i}^{\alpha})$ splits into subspaces

$$\ker \pi(U_{i,i}^lpha) = igoplus_{q\in \mathrm{Sp}(A)} \ker \pi(U_{i,i}^lpha) \cap \mathcal{H}(A=q).$$

- Since $\pi(U_{i,i}^{\alpha})$ is Fredholm, only finitely many of those can be non-zero, so there exists $q_0 \in \text{Sp}(A)$ such that $\pi(U_{i,i}^{\alpha})$ is injective on $\mathcal{H}(A = q)$ for all $q < q_0$.
- Choose α and *i* so that $\rho_{\alpha,i} > 1$ (this is \mathbb{G} not being Kac type).
- Assume that λ belongs to $\bigcup_{\substack{q \in \operatorname{Sp}(A) \\ q < q_0}} \operatorname{Sp}(B_q)$, so that $\lambda \in \operatorname{Sp}(B_{\tilde{q}})$ for some $\tilde{q} \in \operatorname{Sp}(A)$,

 $\tilde{q} < q_0.$

• Then, by 2), for any $\xi \in \mathcal{H}(B_{\tilde{q}} = \lambda)$ the vector $\pi(U_{i,i}^{\alpha})^n \xi$ belongs to $\mathcal{H}(B_{\tilde{q}\rho_{\alpha,i}^{2n}} = \lambda)$.

THEOREM

The set $\bigcup_{q \in \operatorname{Sp}(A)} \operatorname{Sp}(B_q)$ is finite.

• Take *n* such that $\tilde{q}\rho_{\alpha,i}^{2(n-1)} < q_0$ and $\tilde{q}\rho_{\alpha,i}^{2n} \ge q_0$. Then

$$\pi(U_{i,i}^{\alpha})\pi(U_{i,i}^{\alpha})^{n-1}\xi\in\mathcal{H}\big(B_{\tilde{q}\rho_{\alpha,i}^{2n}}=\lambda\big)=\{0\}$$

(because λ is not an eigenvalue of B_q for $q \ge q_0$).

- This contradicts injectivity of $\pi(U_{i,i}^{\alpha})$ on $\mathcal{H}(B_{\tilde{q}\rho_{\alpha,i}^{2(n-1)}} = \lambda)$.
- It follows that *B* is bounded.
- By some arcane results of the theory of compact quantum groups the scaling group must be trivial, i.e. G is of Kac type a contradiction!

Remarks

Similar techniques yield the following

THEOREM (ALEXANDRU CHIRVASITU, JACEK KRAJCZOK & P.M.S.) Let \mathbb{G} be a compact quantum group such that the C*-algebra $C(\mathbb{G})$ fits into the exact sequence

$$0 \longrightarrow \bigoplus_{i=1}^{N} \mathcal{K}(\mathcal{H}_{i}) \longrightarrow \mathcal{C}(\mathbb{G}) \longrightarrow \mathcal{C}(X) \longrightarrow 0$$

with X a compact space. The \mathbb{G} is finite (i.e. dim $C(\mathbb{G}) < +\infty$).

2 It follows that the Podleś spheres do not carry a compact quantum group structure (for the quotient sphere $SU_q(2)/\mathbb{T}$ this had been known before).

REMARKS

3 For a compact quantum group \mathbb{G} we let $L^{\infty}(\mathbb{G})$ denote the strong closure of the image of $C(\mathbb{G})$ under the GNS representation for \boldsymbol{h} . In this framework we have

THEOREM (JACEK KRAJCZOK & P.M.S.)

- $There does not exist a non-trivial compact quantum group G such that L^{\infty}(G) is a type one factor.$
- There does not exist a compact quantum groups such that $L^{\infty}(\mathbb{G})$ has a direct summand wich is a type I_{∞} factor.
- ③ For any $\lambda \in [0, 1]$ there exists an uncountable family of pairwise non-isomorphic compact quantum groups such that L[∞](G) is the injective factor of type III_{λ}.
- ④ There exists a family $\{\mathbb{G}_s\}_{s\in]0,1[}$ of compact quantum groups such that $\{L^{\infty}(\mathbb{G}_s)\}_{s\in]0,1[}$ is a family of pairwise non-isomorphic injective factors of type III₀.

Thank you for your attention