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SOME NON-COMMUTATIVE TOPOLOGY DEFINITION

QUANTUM SPACES AND QUANTUM GROUPS

A compact quantum space is an object of the category dual to the category

of C˚-algebras corresponding to a unital C˚-algebra.

We will denote such objects by symbols such as X or G and the

corresponding C˚-algebras by CpXq, CpGq.

DEFINITIONS

A compact quantum group is a quantum space G together with a unital

˚-homomorphism ∆: CpGq Ñ CpGq b CpGq such that

p∆ b idq ˝ ∆ “ pid b ∆q ˝ ∆

and the sets
 

∆paqp1 b bq
ˇ

ˇa,b P CpGq
(

and
 

pa b 1q∆pbq
ˇ

ˇa,b P CpGq
(

are linearly

dense in CpGq b CpGq.
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SOME NON-COMMUTATIVE TOPOLOGY EXAMPLES

EXAMPLE: SUqp2q

Fix q P r´1,1szt0u. We define the quantum space SUqp2q by setting CpSUqp2qq to

the the universal C˚-algebra generated by elements α and γ such that

„

α ´qγ˚

γ α˚



is unitary. The comultiplication ∆: CpSUqp2qq Ñ CpSUqp2qq b CpSUqp2qq is defined

by

∆pαq “ α b α ´ qγ˚ b γ, ∆pγq “ γ b α ` α˚ b γ.

NON-EXAMPLE: T
2
θ

The quantum torus T
2
θ is defined by letting CpT2

θ q be the universal C˚-algebra

generated by unitaries u and v such that uv “ e2πiθvu. There is no compact

quantum group structure on T
2
θ .
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SOME NON-COMMUTATIVE TOPOLOGY MODULAR AND SCALING GROUPS

SOME ADDITIONAL STRUCTURE OF COMPACT QUANTUM GROUPS

Let G be a compact quantum group.

By a theorem of Woronowicz there exists a unique state h on CpGq such that

pid b hq∆paq “ ph b idq∆paq “ hpaq1 for all a P CpGq. This state is the Haar

measure of G. We say that G is of Kac type if h is a trace.

The modular group of h is given by

σh
t paq “ p fit b id b fitq∆paq

where t fitutPR is a certain family of characters on CpGq.

There exists another one parameter group tτtutPR of automorphisms of CpGq
such that

τtpaq “ p fit b id b f´itq∆paq

for all a. tτtutPR is the scaling group of G.

G is of Kac type iff the its scaling group is trivial.
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SOME NON-COMMUTATIVE TOPOLOGY REPRESENTATION THEORY

UNITARY REPRESENTATIONS

A unitary representation of G is a unitary matrix

U “

»

—

–

U1,1 ¨ ¨ ¨ U1,n
...

. . .
...

Un,1 ¨ ¨ ¨ Un,n

fi

ffi

fl
P Matn

`

CpGq
˘

“ MatnpCq b CpGq

such that ∆pUi,jq “
n
ř

k“1

Ui,k b Uk,j.

For example, if G “ SUqp2q then

„

α ´qγ˚

γ α˚



is a unitary representation of G.

The Ui,j are called matrix elements of the representation.
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SOME NON-COMMUTATIVE TOPOLOGY REPRESENTATION THEORY

UNITARY REPRESENTATIONS

A representation U P MatnpCq b CpGq is irreducible if the only projections

P P MatnpCq satisfying pP b 1qU “ UpP b 1q are 0 and 1.

Two representations U and V of G are equivalent if pu b 1qU “ V pu b 1q for

some unitary matrix u.

We let IrrG denote the set of equivalence classes of irreps of G and for any

α P IrrG we fix Uα P α such that there exists a diagonal matrix

ρα “ diagpρα,1, . . . ,ρα,nα
q satisfying

h
`

Uα
k,lU

α
i,j

˚
˘

“
δk,iδl,jρα,j

Tr ρα

where by nα we denoted the dimension of Uα (the size of the matrix).

The span of matrix elements of irreducible representations is dense in CpGq.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? DEFINITION AND STRATEGY

THE QUANTUM DISK

The quantum disk D was defined by Sheu in 1991 (and studied in depth by

Klimek & Leśniewski in 1992) by declaring that CpDq is the universal

C˚-algebra generated by z such that z˚z ´ zz˚ “ µp1 ´ zz˚qp1 ´ z˚zq with µ a

parameter in s0,1r.

The algebra turns out to be independent of µ and isomorphic to the Toeplitz

algebra T which we will treat as represented on H “ ℓ2 in the usual way.

Furthermore, CpDq “ T is a graph algebra (of the graph with two vertices

and incidence matrix
“

1 1
0 0

‰

) and fits into the exact sequence

0 K T
s

CpTq 0.

Assume there is a compact quantum group G with an isomorphism

π : CpGq Ñ T .

Goal: arrive at a contradiction.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? THE STRUCTURE OF G

FIRST OBSERVATIONS

PROPOSITION

The family t fitutPR of Woronowicz characters of G coincides with the composition

of CpGq
π

T
s

CpTq and point evaluations. In particular, G is not of Kac

type.

PROPOSITION

For any α P IrrG the image πpUα
i,jq P BpHq of Uα

i,j is

compact if i ‰ j,

Fredholm if i “ j.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? IMPLEMENTATION OF THE TWO ONE-PARAMETER GROUPS

TWO IMPORTANT OPERATORS

Let ω “ h ˝ π´1
ˇ

ˇ

K
.

Then there exists a positive trace class operator A on H such that

ωp ¨ q “ Trp ¨ Aq and kerA “ t0u.

FACT

For any x P T and t P R we have pπ ˝ σh
t ˝ π´1qpxq “ AitxA´it.

THEOREM

There exists a strictly positive self-adjoint operator B on H such that

pπ ˝ τt ˝ π´1qpxq “ BitxB´it for all x P T and t P R. Moreover A and B strongly

commute.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? NOTATION

NOTATION FOR EIGENSPACES AND EIGENPROJECTIONS

Let T be a self-adjoint operator on a Hilbert space H.

We will denote the eigenspace kerpt1 ´ T q by the symbol HpT “ tq.

The corresponding spectral projection will be χpT “ tq.

Note that if α ÞÑ χpαq is the logical evaluation function (returning 0 if the

proposition α is false and 1 if it is true) then χpT “ tq is the application to T

of the function

R Q s ÞÝÑ χps “ tq P t0,1u.

The notation HpT “ tq is modeled on the typical expressions known from

probability theory.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? SPECTRAL SUBSPACES OF A

Since A is trace-class, we have

H “
à

qPSppAq

HpA “ qq.

with dimHpA “ qq ă 8 for every q.

Since B commutes with A, it preserves all eigenspaces of A and hence we

have

B “
à

qPSppAq

χpA “ qqBχpA “ qq.

For q P SppAq we write Bq for χpA “ qqBχpA “ qq.

PROPOSITION

Fix α P IrrG and i P t1, . . . ,nαu. Then

1 πpUα
i,iqHpA “ qq Ă HpA “ qρ2

α,iq,

2 For any λ P SppBqq we have πpUα
i,iqHpBq “ λq Ă H

`

Bqρ2
α,i

“ λ
˘

.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? SPECTRAL SUBSPACES OF A

THEOREM

The set
Ť

qPSppAq

SppBqq is finite.

Statement 1 allows us to conclude that ker πpUα
i,iq splits into subspaces

ker πpUα
i,iq “

à

qPSppAq

ker πpUα
i,iq X HpA “ qq.

Since πpUα
i,iq is Fredholm, only finitely many of those can be non-zero, so

there exists q0 P SppAq such that πpUα
i,iq is injective on HpA “ qq for all q ă q0.

Choose α and i so that ρα,i ą 1 (this is G not being Kac type).

Assume that λ belongs to
Ť

qPSppAq
qăq0

SppBqq, so that λ P SppBq̃q for some q̃ P SppAq,

q̃ ă q0.

Then, by 2 , for any ξ P HpBq̃ “ λq the vector πpUα
i,iq

nξ belongs to H
`

Bq̃ρ2n
α,i

“ λ
˘

.
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CAN THE QUANTUM DISK BE A QUANTUM GROUP? SPECTRAL SUBSPACES OF A

THEOREM

The set
Ť

qPSppAq

SppBqq is finite.

Take n such that q̃ρ
2pn´1q
α,i ă q0 and q̃ρ2n

α,i ě q0. Then

πpUα
i,iqπpUα

i,iq
n´1ξ P H

`

Bq̃ρ2n
α,i

“ λ
˘

“ t0u

(because λ is not an eigenvalue of Bq for q ě q0).

This contradicts injectivity of πpUα
i,iq on H

`

B
q̃ρ

2pn´1q
α,i

“ λ
˘

.

It follows that B is bounded.

By some arcane results of the theory of compact quantum groups the scaling

group must be trivial, i.e. G is of Kac type — a contradiction!
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WHAT ABOUT OTHER QUANTUM SPACES? SOME TYPE I C˚-ALGEBRAS

REMARKS

1 Similar techniques yield the following

THEOREM (ALEXANDRU CHIRVASITU, JACEK KRAJCZOK & P.M.S.)

Let G be a compact quantum group such that the C˚-algebra CpGq fits into the

exact sequence

0
N
À

i“1

KpHiq CpGq CpXq 0

with X a compact space. The G is finite (i.e. dimCpGq ă `8).

2 It follows that the Podleś spheres do not carry a compact quantum group

structure (for the quotient sphere SUqp2q{T this had been known before).
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THE VON NEUMANN ALGEBRA LEVEL FACTORS OF TYPE I AND III

REMARKS

3 For a compact quantum group G we let L8pGq denote the strong closure of

the image of CpGq under the GNS representation for h. In this framework we

have

THEOREM (JACEK KRAJCZOK & P.M.S.)

1 There does not exist a non-trivial compact quantum group G such that L8pGq is a type

one factor.

2 There does not exist a compact quantum groups such that L8pGq has a direct

summand wich is a type I8 factor.

3 For any λ P s0,1s there exists an uncountable family of pairwise non-isomorphic

compact quantum groups such that L8pGq is the injective factor of type IIIλ.

4 There exists a family tGsusPs0,1r of compact quantum groups such that tL8pGsqusPs0,1r is

a family of pairwise non-isomorphic injective factors of type III0.
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THE END THANK YOU

Thank you for your attention
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