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COMPACT QUANTUM GROUPS DEFINITION

THE BASICS

DEFINITION
A compact quantum group G is described by

o a von Neumann algebra L*(G),

o a unital *-homomorphism A: L*(G) - L*(G)® L*(G)
(continuous in the o-weak topology) such that

0 (A®id)oc A =(Id®A)o A,

o there exists a faithful state h on L*(G) such that

VxeL*(G) (h®@id)A(x) = h(x)1 = (id ® h)A(x).

o The condition (V) determines h uniquely. We call this state the Haar
measure of G.
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THE STRUCTURE OF L®(G)  REPRESENTATIONS

DEFINITION
Let G be a compact quantum group. A finite-dimensional unitary
representation of G is a unitary U € B(H) ® L*(G) (with H a finite-dimensional

Hilbert space) such that
(Id®A)(U) = Ui2Uss,
where
0 U =U®1eB(H)®L*G)®L*G),
o Ups = (id ® flip)(Us2) € B(H) ® L*(G) ® L*(G).

o We say that a representation U € B(H) ® L*(G) is irreducible if
(T1)U =U(T®1) implies T = Aly.

o Representations U € B(H) ® L*(G) and V € B(K) ® L*(G) are equivalent if
there is a unitary S € B(H,K) such that (S® 1)U = V(S®1).
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THE STRUCTURE OF L®(G)  REPRESENTATIONS

MATRIX ELEMENTS OF IRREPS

o Let U € B(H) ® L*(G) be a representation. Then any w € B(H)* defines
(w®1id)(U) € L*(G) which is called a matrix element or a coefficient of U.

o Typically we take w(-) = (¢| - | n) for some vectors £,n € H.
o Choosing an orthonormal basis {£1,...,£,} of Hyields U; ; = (w; j ®id)(U)
where Wi j = <§L| . | £J>

o From now on we denote by Irr(G) the set of equivalence classes of irreps of
G. For each «a € Irr(G) we fix U® € . Then any orthonormal basis £, ..., &q
of the carrier Hilbert space H* of U* defines the matrix elements Uy;.

THEOREM
span{Uf;|a € rr(G), i,j € {1,...,n,}} is o-weakly dense in L*(G).
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THE STRUCTURE OF L% (G) P-OPERATORS

THE p-OPERATORS

Qo

For each a € Irr(G) let V* = (j®id)(U**) € B(H**) @ L*(G) (j: B(H*) — B(H**)
maps T to the operator (| — (T*1|).
Next we let p, = const-j((id ® h)(V**V*)) with the constant chosen so that
Tr(pa) = Tr(pg ')
Note that p, is positive.
From now on for each « € Irr(G) we fix an orthonormal basis of H* in which
Po is diagonal:
Pa,1
pO[ =
Pa,na

and Pa,1 = 2 Pa,ng -

Siip= 151
o We have h(Ug* Uf ) = da HiPa, ) 0 {Up;} are linearly independent.

B Tr(pa)
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THE STRUCTURE OF L®(G)  MODULAR AND SCALING GROUPS

THE MODULAR GROUP AND THE SCALING GROUP

THEOREM

There exist two o-weakly continuous one-parameter groups o™ and ¢ of
automorphisms of L*(G) such that

TEG(US_]) = pa lU,Jpa_’lJt
h UO: — UO: it
Ut( l,) pal ,Jpa,J
forallaeIrr(G), i,je {1,...,n,} and t e R.

o Clearly the two groups commute.
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WHAT IF L% (G) =~ B(¢2)?  FACTOR OF TYPE I

WHAT IF?

Suppose that there is a compact quantum group G such that L*(G) =~ B(H),
where H is a Hilbert space such that dimH > 1.

o If H were finite-dimensional then B(H) would be simple, but a finite
dimensional L*(G) admits a character, so this is impossible.

o The case dimH > Ny is ruled out by the fact that there are no faithful normal
states on B(H) for non-separable H.

o Thus we are left with H ~ ¢2.

o We will show that this leads to a contradiction.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 1.
o Suppose G is a compact quantum group with L*(G) =~ B(H).

o The state h cannot be a trace because there are no traces on B(H).
o It is known that in this case (h not a trace) there exists «a € Irr(G) with

(pa,la"wpama) # (1, s 1)

o Let us assume that the set {p, 1,...,Paq,n,} is invariant under taking inverses.

If this doesn’t hold we can show that the compact quantum group G x G has
B € Irr(G xG) such that pﬁis non-trivial zgld {Ps,1,--\PBns} = {pg_rll, el pg’lnﬁ }
Still L*(G x G) = L*(G)®L*(G) =~ B(H)® B(H) = B(H).
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 2.
o Let 7: L*(G) — B(H) be the assumed isomorphism.
o The state h must be of the form

h(x) = Tr(An(x)), x e L*(G)

for some positive trace-class operator A on H with eigenvalues
q1>QQ>"'>O.

o For each n let H(A = g,) be the corresponding eigenspace, so that
o0
(—B (A= qn).

Moreover, we have dimH(A = gqn) < +oo for all n.

o We have . .
m(of(x)) = A'r(x)A7",  xeL®(G), teR.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 3.
o There is a strictly positive self-adjoint operator B on H such that

m(rf(x)) = B'n(x)B™,  xeL®(G), teR

(this is a consequence of Stone’s theorem).

o The fact that the groups {Ul‘}teR and {TéG’}teR commute implies that A and B
strongly commute.

o Hence for any n the operator B restricts to a positive operator on the
finite-dimensional Hilbert space H(A = qn).

o Let pn1 > -+ > pnp, be the complete list of eigenvalues of this restriction.
o We have

o Pn
=6969 (A = gn) N H(B = pinp).
n=1 p=
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 4.

o Claim: 7(Ug,) maps H(A = qn) into H(A = p, kPa,1Gn)-
o Indeed: take ¢ € H(A = gn). Then

A'r(UR )¢ = A'n(Ug ) ATAYS = 7 (o (UR 1))

= W(Pg,kUﬁilng)qirff = (pa,kpa,lqn)itﬂ'(Ufél)f-
o Claim: 7 (U ;) maps H(B = pinp) into H(B = poﬁkp;’llun’p).
o Indeed: take n € H(B = pnp). Then
B'n(Ugy)n = B'n(Ug1)B™ B = (' (Ug 1)) pin 1
= (o UR 1P S it o = (PakPs i inp) (U .

o Let ¢ be a non-zero element of H(A = q;) " H(B = p1.p,).
We will show that n(Uy ;)¢ =0 forall ke {1,...,n.}.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 4. (continued)
o By the previous claims we have

(U 1)¢ € H(A = pakPa,1q1) N H(B = pa, kP 1 101,5,)-

0 If po i = Pa,1 then pq kPa,1q1 = P2 191 > q1 = [A], s0 H(A = po,iPa,1q1) = {0}

and consequently 7(Ug ;)¢ = 0.
o If py ic < pa,1 then first of all
Pa,kPa,191 = (miin{pai})pa,lql = p;ll Pa,191 = q1
(invariance of {p, 1, ..., Pa,n,} under taking inverses!). Thus

H(A = po,iPa,191) = H(A=q1) or H(A = pqrpa,1q1) = {0}
Clearly, if H(A = py,kPa,1q1) = {0} then 7(Ug ;)¢ = O.

P.M. SOLTAN (KMMF) B(£2) 1s NOT L® (G) AND MORE OCTOBER 12, 2023 13/ 40



WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 4. (continued further)
o We have m(Ug )¢ € H(A = pakPa,1q1) N H(B = pa kP, 1 141,p,) and
H(A = pakPa,191) = H(A = q1) or H(A = p, kPa,191) = {0O}.
o What happens if H(A = p, kpa.1q1) = H(A = q1)?

-1

o1 SO

o In this case p, j must be p
3 =3 = min Sp(B
Pa,kPy 1 H1,Py = P 1H1,Pp < H1,pp = MIN p( ‘H(A=q1))'

Consequently H(B = pa7kp;,11/t17p1) = {0} and

m(Ug)CeHA=q) nH(B= pa,kp;,llMLPl) = {0}.

In particular 7(Ug )¢ = 0.
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WHAT IF L% (G) =~ B(£%)?  FACTOR OF TYPE I

Step 5.
o We have shown that there is a non-zero ¢ € H with

7T( ﬁl)C7 k:].,,na

vy, - U

1,nq
o But U® = e is a unitary matrix, so
U1 " Unaona
Ng
0#¢ =, m(Ug)*n(Ug,)¢ = 0.
k=1

o This contradiction shows that the existence of G such that L*(G) =~ B(H) is
impossible.

OJ
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WHAT IF L% (G) ~ B(£?)?  SIMILAR RESULTS

REMARKS

@ The proof can be tweaked to obtain
THEOREM (J. KrRaJCZOK & P.M.S.)

There does not exist a compact quantum group G such that L*(G) ~ N ® B(H) with

N an arbitrary von Neumann algebra or the zero vector space and H of infinite
dimension.
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WHAT IF L% (G) ~ B(£?)?  SIMILAR RESULTS

REMARKS

@ Similar techniques yield the following

THEOREM (A. CHIRVASITU, J. KrRAJCZOK & P.M.S.)

Let G be a compact quantum group such that the C*-algebra C(G) fits into the
exact sequence

0—— @ K(H) — C(€) — C(X) —=0
i=1

with X a compact space. The G is finite (dim C(G) < +0).

@ It follows that the Podles spheres and the quantum disk do not admit a
structure of a compact quantum group.
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OTHER INJECTIVE FACTORS TyPE II

THEOREM (J. KRAJCZOK & M. WASILEWSKI)

Let ge |—1,1[\{0} and v € R\{0O} and consider the action o of Q with discrete
topology on SUy4(2) given by

a(x) = 1o P (x),  xeL®(SU4@2)), reQ.
Let H, 4 be the corresponding bicrossed product:

H, g = Q > SUg(2).
Then
@ H, 4 is a compact quantum group,
@ H, 4 is coamenable and hence L*(H, 4) is injective,
@ if vlog|q| ¢ 7Q then L*(H, 4) is the injective factor of type II,
@ the spechtrum of the modular operator for the Haar measure h, 4 of H, 4 is
{0} v g™
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OTHER INJECTIVE FACTORS TyPpE III

o Let ((vn, qn))nEN be a sequence of parameters as described above
(vnlog |gn| ¢ 7Q for all n) and consider the compact quantum group

0

G = >< Hyn7qn.

n=1

e}
o In particular L*(G) = & L*(H,, q,)-

n=1

EXAMPLE

If the sequence ((vpn, qn))neN
Il » with separable predual.

o T(L®(G)) = pfg L

o S(L*(G)) = {0} u |qP=.

is constant then L*(G) is the injective factor of type
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OTHER INJECTIVE FACTORS TyPpE III

EXAMPLE
If there are two subsequences (gn, p)peN and (gn,, p)peN such that

{nip|peN}n{nyp|peN} =g

and

qnl,p p—0 rl? qn2,p p—o0 r2

for some ry, 3 € |—1,1[\{0} such that el O Talgl = {0} then L*(G) is the
injective factor of type III; with separable predual.
o T(L*(G)) = {0},

o S(L®(G)) = Rso.
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OTHER INJECTIVE FACTORS TyPpE III

THEOREM (J. KRAJCZOK & P.M.S.)

There exist a family {Gs}sjo,1| of compact quantum groups such that the von
Neumann algebras {LOO(GS)}SG] 0.1 are pairwise non-isomorphic factors of type
1.

o T(L*(Gs)) 2 Q,
o defining

we have
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OTHER INJECTIVE FACTORS TyPpE III

o For each X € |0, 1] there exists uncountably many pairwise non-isomorphic
compact quantum groups with L*(G) the injective factor of type III,.

o These compact quantum groups are constructed as bicrossed products

o0

' X Hy, q, with I a subgroup of R (taken with discrete topology) acting by
n=1

the scaling automorphisms.

o We distinguish between them using the following invariants:
o T7(G) = {teR|7f =id},

(G) = {teR|7f e Inn(L*(G))}.

o TZ(G) = {te R|7f € in(L*(G))}.

o 1T

Inn!
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MORE INVARIANTS

FULL LIST OF INVARIANTS

DEFINITION

DEFINITION

Let G be a locally compact quantum group. We define

T'(G) =
TInn(G)
m(C) =
“(G) =
a(G) =
(G) =
Mod(G)

T
TC
In
L

{teR|7f =1d},
{tER‘Tt € Inn(L*(G))},
{teR|7f e Imn(L*(G))},
{teR|of =id},
{teR|of eInn(L*(G))},
{teR|of e Inn(L*(G))},
{teR|s" =1},

where ¢ is the modular element of G.
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MORE INVARIANTS SOME PROPERTIES OF THE INVARIANTS

o The sets T, (G) are subgroups of R and are isomorphism invariants of the
quantum group G.

o T7(G) = T"(G).

o T*G), T7—(G), and Mod(G) are closed.

© We would obtain the same groups 77(G), 11,,(G). and 17—(G) if we chose the
right Haar measure instead of the left one.

o 17 (G) is equal to the Connes’ invariant T(L*(G)). Consequently, 7{ (G)
depends only on the von Neumann algebra L*(G). It is also the case for
T°_(G).

Inn
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MORE INVARIANTS SOME PROPERTIES OF THE INVARIANTS

PROPOSITION

For any locally compact quantum group G we have

T°(G) = T™(G) n Mod(G),
TEu(G) 0 Mod(G) = T7,(G) N Mod(G)
TZ(G) n Mod(G) = TE—(G) n Mod(G)
Mod(G) n Mod(G) c 1 T7(G).

o The first equality above together with 77(G) = TT(@) reduces the list to 11

(invariants 7°(G), T"(G) and TT(G) are determined by the remaining ones).
o If G is compact then Mod(G) = T}, (G) = 77 (G) = TZ_(G) = TZ(G) = R.
o If additionally L*(G) is semifinite then 77 (G) = T7—(G) = R.
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EXAMPLES QUANTUM E(2)

EXAMPLE: THE QUANTUM E(2) GROUP
With G = E4(2) for some g € |0, 1] we have

T(G) = Tful(G) = T5(G) = T9(G) = T"(G) = T°(G) = Mod(G) = (Z-Z,
T5u(G) = TZ(G) = T (G) = TE=(G) = T5,(G) = TZ-(G) = Mod(G) = R.
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EXAMPLES QUANTUM “az + b”

EXAMPLE: QUANTUM “az + b” GROUPS
Let G be the quantum “az + b” group for the deformation parameter q in one of
the three cases:

@ gq=e¥ withN=86,8,...,

@ ge]0,1],
@ g=e”withRep <0, Imp= - with N = +2,+4,....
Then

~ ~

CTfr—m((G') = TI:TH(G) = CTfr—ln((G’) = TI:TH(@) = Tﬂm(G) = TI(;TH(G) = TICITm(G) _ TIC;TH((G\') _ R,
T(G) = TT((@) = T°(G) = TU(@) — Mod(G) = Mod(@) _ {{2} in cases @ and @ .

loqu in case @
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EXAMPLES U}'

EXAMPLE: Uf
Let G be the quantum group Uj. Then L*(G) is a full factor so
Inn(L*(G)) = Inn(L*(G)) (Vaes).
o G is compact, so Mod(G) = T}, (G) = TZ_(G) = T,(G) = T2 (G) = R,
o If G is not of Kac type (F*F = 1) then

T7(G) = Tfn(G) = T7(G) = N ooty Z1
AeSp(F*FQ(F*F)~1)\{1}
while Mod(@) = ﬂ WZ where )\ = %

AeSp(F*F)\{A—1}
o If G is not of Kac type then L*(G) is a type III,, factor for some (€ |0, 1] and
T7—(G) = T1,(G) = 37, Z (otherwise T7—(G) = Tﬂm( ) = R).

Inn

1og H
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COMMENTS AND A CONJECTURE

REMARKS

o In the course of constructing families of L*(G) isomorphic to factors of type
III, for any subgroup I' of R we constructed second countable compact
quantum group K such that 77 (K) =T

o The equality 77(Uf) = 17 (Uf) says that the compact quantum group Uz
belongs to the class for which the following statement is true:
CONJECTURE (*)
If G is a second countable compact quantum group and 77 (G) = R then G is of

Kac type.

o We were able to prove that this conjecture is true for many compact
quantum groups including duals of second countable type I discrete
quantum groups (e.g. g-deformations of compact semisimple Lie groups).
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MORE EXAMPLES q-DEFORMATIONS

EXAMPLE: q-DEFORMATIONS
Let G be a compact semisimple Lie group with root system ® and let g € |0, 1].
o Since Gq is compact we again have

Mod(Gq) = T1yn(Gq) = Tﬂl—n(Gq) = T1in(Gq) = Tf;—n(Gq) =R
© Furthermore Ty (Gq) = T _(Gq) = R because C(Gq) is a C*-algebra of type L

© We have T7(Gq) = 1554Z and

T1un(Gq) = TﬂTn(Gq) = Mod(Gyq)

_ ™
~ Ty log qZ’

where T3 is a positive integer determined by Lie-theoretic data (see next two
slides).
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MORE EXAMPLES

q-DEFORMATIONS

EXAMPLE: g-DEFORMATIONS (CONTINUED)

o Let ® = ®; u--- U P; be the decomposition of ¢ into irreducible parts. Then

o We have

P.M. SoLTAN (KMMF)

Tq> = ng(Tq>1, 00005 Yq,l).
type group range of n | Vo | 17 (Gq)
> s
An | SUm+1 [R=ledd | 1| g
n>1leven | 2 ﬁgq
n>2 odd 1 a
B in(2 1 = log g
n Sigthe(Ca7) == 1) n > 2 even 2 ﬁgq
Cn Sp(2n) n>=3 2 Tlozd
Z s
D, Spin(2n) Uz 4 eed z 2logq
n =4 even 1 log_q
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MORE EXAMPLES g-DEFORMATIONS

EXAMPLE: g-DEFORMATIONS (CONTINUED)
o And for the exceptional cases we have

o type Eg: To = 2 and T1,,(Gq) = 515,52
o type E7: To = 1 and T, (Gq) = 15552

o type Es: To = 2 and T1;,(Gq) = 57552
o type Fy: Yo = 2 and 17 (Gq) = 57552
o type Ga: To = 2 and T, (Gq) = 570.52-
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MORE EXAMPLES g-DEFORMATIONS

SPECIAL CASE

o Consider the compact quantum group SU¢(3).
o Then Tg = 2, so
Tﬂm(SUq(?’)) = ﬁ;z

while T7(SUq(3)) = 15552

o This means that there are non-trivial inner scaling automorphisms.

o SUq(8) does not have non-trivial one-dimensional representations, so these
scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let G be such that T¢ = 2. Then a unitary implementing the scaling
automorphism for t = 57— does not belong to C(Gy). In particular, the
restriction of this automorphlsm to C(Gy) is not inner.
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I.C.C.-TYPE CONDITIONS CLASSICAL DISCRETE GROUPS

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

PROPOSITION

Let I' be a discrete group. Then the following are equivalent:
@ T'isi.c.c.,
@ L(T) is a factor,
® A (L)) A LID)® - ® L(T) = C1 for some ne N,

"

n+1
@ AY(LI) ALID)® -+ ® L(I) = Cl forall ne N.

. _/

n+1
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I.C.C.-TYPE CONDITIONS DISCRETE QUANTUM GROUPS

PROPOSITION
Let G be a locally compact quantum group and assume that

A (L®(G)) A L*(G)® - ® L®(G) = C1

e
n+1

for some n € N. Then L*(G) is a factor.

DEFINITION
Let [ be a discrete quantum group. We say that [ is n-i.c.c. if

AY(L*([F) A L*([O)® - ® L(T) = C1.

n+1
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EXAMPLE U}'

PROPOSITION
Let [ be a discrete quantum group. If [ is n-i.c.c. for some n then [ is m-i.c.c. for
all natural m < n.

THEOREM
Let G be a second countable compact quantum group whose dual is 1-i.c.c.
Then conjecture () holds for G.
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EXAMPLE U;’

o Recall that Irr(Uf) = Z, » Z, with the two copies of Z, generated by the class

« of the defining representation and 3 = @.
o ForxeZ, xZ, put

x,n =

" 2(+1) _ 1
Hp)zc -1 HpHﬂ,Xuz_l px # 1 .

o Let D,, = max{Dqg n, Dga,n, Dazp n}-

THEOREM
1 2(7—4Dn)Dn 1 TF ia
If D, <1 73 and SI=D?-1 < VntT then Uy is n-i.c.c.
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EXAMPLE U;:

THEOREM

Take n € N and write ¢ = max{”)\F*F — 1|, [AF*F)~! — ]l||} where

Tr((F*F)~!
van+1)e2+c)(1+c)*" < L

then Uj is n-i.c.c.
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ANNOUNCEMENT

POST-DOC POSITION IN WARSAW

- A position for one year starting March
2024 is being announced.

- Please e-mail me if you are interested.
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Thank you for your attention



