Why $B(\ell^2)$ is not $L^{\infty}(\mathbb{G})$ and related topics Seminarium Dyskretnej Analizy Harmonicznej

Piotr M. Sołtan (based on joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

October 12, 2023

- 1 Compact quantum groups
- 2 The structure of $L^\infty(\mathbb{G})$
- **3** What if $L^{\infty}(\mathbb{G}) \cong \mathrm{B}(\ell^2)$?
- 4 OTHER INJECTIVE FACTORS
- 5 MORE INVARIANTS
- 6 EXAMPLES
- 7 Comments and a conjecture
- 8 More examples
- 9 I.C.C.-TYPE CONDITIONS

D EXAMPLE

THE BASICS

DEFINITION

A compact quantum group $\mathbb G$ is described by

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- a unital *-homomorphism $\Delta \colon L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$

(continuous in the $\sigma\text{-weak}$ topology) such that

•
$$(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$$
,

 ${\, \bullet \, }$ there exists a faithful state ${\, \pmb{h} \, }$ on $L^\infty(\mathbb{G})$ such that

$$\forall x \in L^{\infty}(\mathbb{G}) \ (\boldsymbol{h} \otimes \mathrm{id}) \Delta(x) = \boldsymbol{h}(x) \mathbb{1} = (\mathrm{id} \otimes \boldsymbol{h}) \Delta(x). \tag{(\heartsuit)}$$

The condition (♡) determines *h* uniquely. We call this state the Haar measure of G.

DEFINITION

Let \mathbb{G} be a compact quantum group. A **finite-dimensional unitary representation** of \mathbb{G} is a unitary $U \in B(H) \otimes L^{\infty}(\mathbb{G})$ (with H a finite-dimensional Hilbert space) such that

 $(\mathrm{id}\otimes\Delta)(U)=U_{12}U_{13},$

where

- $U_{12} = U \otimes \mathbb{1} \in B(\mathsf{H}) \otimes L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G}),$
- $U_{13} = (\mathrm{id} \otimes \mathrm{flip})(U_{12}) \in \mathrm{B}(\mathsf{H}) \otimes L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G}).$
- We say that a representation $U \in B(H) \otimes L^{\infty}(\mathbb{G})$ is **irreducible** if $(T \otimes \mathbb{1})U = U(T \otimes \mathbb{1})$ implies $T = \lambda \mathbb{1}_{H}$.
- Representations $U \in B(H) \otimes L^{\infty}(\mathbb{G})$ and $V \in B(K) \otimes L^{\infty}(\mathbb{G})$ are **equivalent** if there is a unitary $S \in B(H, K)$ such that $(S \otimes 1)U = V(S \otimes 1)$.

4/40

MATRIX ELEMENTS OF IRREPS

- Let $U \in B(H) \otimes L^{\infty}(\mathbb{G})$ be a representation. Then any $\omega \in B(H)^*$ defines $(\omega \otimes id)(U) \in L^{\infty}(\mathbb{G})$ which is called a **matrix element** or a **coefficient** of *U*.
- Typically we take $\omega(\cdot) = \langle \xi | \cdot | \eta \rangle$ for some vectors $\xi, \eta \in H$.
- Choosing an orthonormal basis $\{\xi_1, \ldots, \xi_n\}$ of H yields $U_{i,j} = (\omega_{i,j} \otimes \mathrm{id})(U)$ where $\omega_{i,j} = \langle \xi_i | \cdot | \xi_j \rangle$.
- From now on we denote by Irr(𝔅) the set of equivalence classes of irreps of 𝔅. For each α ∈ Irr(𝔅) we fix U^α ∈ α. Then any orthonormal basis ξ^α₁,...,ξ^α_{nα} of the carrier Hilbert space H^α of U^α defines the matrix elements U^α_{i,j}.

THEOREM

 $\operatorname{span}\left\{U_{i,j}^{\alpha} \mid \alpha \in \operatorname{Irr}(\mathbb{G}), i, j \in \{1, \ldots, n_{\alpha}\}\right\}$ is σ -weakly dense in $L^{\infty}(\mathbb{G})$.

The $\rho\text{-operators}$

- For each $\alpha \in \operatorname{Irr}(\mathbb{G})$ let $V^{\alpha} = (j \otimes \operatorname{id})(U^{\alpha*}) \in \operatorname{B}(\operatorname{H}^{\alpha*}) \otimes L^{\infty}(\mathbb{G})$ $(j: \operatorname{B}(\operatorname{H}^{\alpha}) \to \operatorname{B}(\operatorname{H}^{\alpha*})$ maps T to the operator $\langle \psi | \mapsto \langle T^* \psi |)$.
- Next we let $\rho_{\alpha} = \text{const} \cdot j((\text{id} \otimes \boldsymbol{h})(V^{\alpha*}V^{\alpha}))$ with the constant chosen so that $\text{Tr}(\rho_{\alpha}) = \text{Tr}(\rho_{\alpha}^{-1}).$
- Note that ρ_{α} is positive.
- From now on for each $\alpha \in Irr(\mathbb{G})$ we fix an orthonormal basis of H^{α} in which ρ_{α} is diagonal:

$$ho_{lpha} = egin{bmatrix}
ho_{lpha,1} & & \ & \ddots & \ & & &
ho_{lpha,n_{lpha}} \end{bmatrix}$$

and $\rho_{\alpha,1} \ge \cdots \ge \rho_{\alpha,n_{\alpha}}$.

• We have $\boldsymbol{h}(U_{k,l}^{\alpha}^{*}U_{i,j}^{\beta}) = \delta_{\alpha\beta} \frac{\delta_{kl}\rho_{\alpha,j}^{-1}\delta_{l,j}}{\operatorname{Tr}(\rho_{\alpha})}$, so $\{U_{i,j}^{\alpha}\}$ are linearly independent.

THE MODULAR GROUP AND THE SCALING GROUP

THEOREM

There exist two σ -weakly continuous one-parameter groups $\sigma^{\mathbf{h}}$ and $\tau^{\mathbb{G}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that

$$au_t^{\mathbb{G}}(U_{i,j}^{lpha}) =
ho_{lpha,i}^{\mathrm{i}t} U_{i,j}^{lpha}
ho_{lpha,j}^{-\mathrm{i}t}$$

$$\sigma^{m{h}}_t(U^{lpha}_{i,j})=
ho^{\mathrm{i}t}_{lpha,i}U^{lpha}_{i,j}
ho^{\mathrm{i}t}_{lpha,j}$$

for all $\alpha \in Irr(\mathbb{G})$, $i, j \in \{1, \ldots, n_{\alpha}\}$ and $t \in \mathbb{R}$.

• Clearly the two groups commute.

WHAT IF?

Suppose that there is a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(\mathsf{H})$, where H is a Hilbert space such that $\dim \mathsf{H} > 1$.

- If H were finite-dimensional then B(H) would be simple, but a finite dimensional $L^{\infty}(\mathbb{G})$ admits a character, so this is impossible.
- The case $\dim H > \aleph_0$ is ruled out by the fact that there are no faithful normal states on B(H) for non-separable H.
- Thus we are left with $H \cong \ell^2$.
- We will show that this leads to a contradiction.

Step 1.

- Suppose \mathbb{G} is a compact quantum group with $L^{\infty}(\mathbb{G}) \cong B(\mathsf{H})$.
- The state h cannot be a trace because there are no traces on B(H).
- It is known that in this case (**h** not a trace) there exists $\alpha \in Irr(\mathbb{G})$ with

$$(\rho_{\alpha,1},\ldots,\rho_{\alpha,n_{\alpha}}) \neq (1,\ldots,1).$$

• Let us assume that the set $\{\rho_{\alpha,1}, \ldots, \rho_{\alpha,n_{\alpha}}\}$ is invariant under taking inverses.

If this doesn't hold we can show that the compact quantum group $\mathbb{G} \times \mathbb{G}$ has $\beta \in \operatorname{Irr}(\mathbb{G} \times \mathbb{G})$ such that ρ_{β} is non-trivial and $\{\rho_{\beta,1}, \ldots, \rho_{\beta,n_{\beta}}\} = \{\rho_{\beta,1}^{-1}, \ldots, \rho_{\beta,n_{\beta}}\}$. Still $L^{\infty}(\mathbb{G} \times \mathbb{G}) = L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G}) \cong B(\mathsf{H}) \overline{\otimes} B(\mathsf{H}) \cong B(\mathsf{H})$.

9/40

Step 2.

- Let $\pi \colon L^{\infty}(\mathbb{G}) \to B(\mathsf{H})$ be the assumed isomorphism.
- The state **h** must be of the form

$$\boldsymbol{h}(\boldsymbol{x}) = \mathrm{Tr} ig(A \pi(\boldsymbol{x}) ig), \qquad \boldsymbol{x} \in L^\infty(\mathbb{G})$$

for some positive trace-class operator A on H with eigenvalues $q_1 > q_2 > \cdots > 0$.

• For each n let $H(A = q_n)$ be the corresponding eigenspace, so that

$$\mathsf{H} = \bigoplus_{n=1}^{\infty} \mathsf{H}(A = q_n).$$

Moreover, we have $\dim H(A = q_n) < +\infty$ for all n.

• We have

$$\pi\big(\sigma^{\boldsymbol{h}}_t(\boldsymbol{x})\big) = A^{\mathrm{i}t}\pi(\boldsymbol{x})A^{-\mathrm{i}t}, \qquad \boldsymbol{x}\in L^\infty(\mathbb{G}), \ t\in\mathbb{R}.$$

Step 3.

• There is a strictly positive self-adjoint operator B on H such that

$$\pi\big(\tau^{\mathbb{G}}_t(\boldsymbol{x})\big) = B^{\mathrm{i}t}\pi(\boldsymbol{x})B^{-\mathrm{i}t}, \qquad \boldsymbol{x}\in L^{\infty}(\mathbb{G}), \ t\in\mathbb{R}$$

(this is a consequence of Stone's theorem).

- The fact that the groups $\{\sigma_t^h\}_{t\in\mathbb{R}}$ and $\{\tau_t^{\mathbb{G}}\}_{t\in\mathbb{R}}$ commute implies that A and B strongly commute.
- Hence for any *n* the operator *B* restricts to a positive operator on the finite-dimensional Hilbert space $H(A = q_n)$.
- Let $\mu_{n,1} > \cdots > \mu_{n,P_n}$ be the complete list of eigenvalues of this restriction.
- We have

$$\mathsf{H} = igoplus_{n=1}^{\infty} igoplus_{p=1}^{P_n} \mathsf{H}(A = q_n) \cap \mathsf{H}(B = \mu_{n,p}).$$

Step 4.

- Claim: $\pi(U_{k,1}^{\alpha})$ maps $H(A = q_n)$ into $H(A = \rho_{\alpha,k}\rho_{\alpha,1}q_n)$.
- Indeed: take $\xi \in H(A = q_n)$. Then

$$\begin{aligned} A^{it}\pi(U^{\alpha}_{k,1})\xi &= A^{it}\pi(U^{\alpha}_{k,1})A^{-it}A^{it}\xi = \pi\left(\sigma^{\mathbf{h}}_{t}(U^{\alpha}_{k,1})\right)q^{it}_{n}\xi \\ &= \pi\left(\rho^{it}_{\alpha,k}U^{\alpha}_{k,1}\rho^{it}_{\alpha,1}\right)q^{it}_{n}\xi = (\rho_{\alpha,k}\rho_{\alpha,1}q_{n})^{it}\pi(U^{\alpha}_{k,1})\xi. \end{aligned}$$

- Claim: $\pi(U_{k,1}^{\alpha})$ maps $\mathsf{H}(B = \mu_{n,p})$ into $\mathsf{H}(B = \rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{n,p})$.
- Indeed: take $\eta \in H(B = \mu_{n,p})$. Then

$$\begin{split} B^{\mathbf{i}t}\pi(U^{\alpha}_{k,1})\eta &= B^{\mathbf{i}t}\pi(U^{\alpha}_{k,1})B^{-\mathbf{i}t}B^{\mathbf{i}t}\eta = \pi\big(\tau^{\mathbb{H}}_t(U^{\alpha}_{k,1})\big)\mu^{\mathbf{i}t}_{n,p}\eta \\ &= \pi\big(\rho^{\mathbf{i}t}_{\alpha,\mathbf{k}}U^{\alpha}_{k,1}\rho^{-\mathbf{i}t}_{\alpha,1}\big)\mu^{\mathbf{i}t}_{n,p}\eta = \big(\rho_{\alpha,\mathbf{k}}\rho^{-1}_{\alpha,1}\mu_{n,p}\big)^{\mathbf{i}t}\pi(U^{\alpha}_{k,1})\eta \end{split}$$

• Let ζ be a non-zero element of $\mathsf{H}(A = q_1) \cap \mathsf{H}(B = \mu_{1,P_1})$. We will show that $\pi(U_{k,1}^{\alpha})\zeta = 0$ for all $k \in \{1, \dots, n_{\alpha}\}$.

Step 4. (continued)

• By the previous claims we have

$$\pi(U_{k,1}^{\alpha})\zeta\in\mathsf{H}(A=\rho_{\alpha,k}\rho_{\alpha,1}q_1)\cap\mathsf{H}(B=\rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1}).$$

- If $\rho_{\alpha,k} = \rho_{\alpha,1}$ then $\rho_{\alpha,k}\rho_{\alpha,1}q_1 = \rho_{\alpha,1}^2q_1 > q_1 = ||A||$, so $\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\}$ and consequently $\pi(U_{k,1}^{\alpha})\zeta = 0$.
- If $\rho_{\alpha,k} < \rho_{\alpha,1}$ then first of all

$$\left(
ho_{lpha,k}
ho_{lpha,1} q_1 \geqslant \left(\min_i \{
ho_{lpha,i} \}
ight)
ho_{lpha,1} q_1 =
ho_{lpha,1}^{-1}
ho_{lpha,1} q_1 = q_1$$

(invariance of $\{\rho_{\alpha,1},\ldots,\rho_{\alpha,n_\alpha}\}$ under taking inverses!). Thus

$$\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \mathsf{H}(A = q_1) \quad \text{or} \quad \mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\}.$$

Clearly, if $H(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{0\}$ then $\pi(U_{k,1}^{\alpha})\zeta = 0$.

Step 4. (continued further)

• We have
$$\pi(U_{k,1}^{\alpha})\zeta \in \mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) \cap \mathsf{H}(B = \rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1})$$
 and $\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \mathsf{H}(A = q_1)$ or $\mathsf{H}(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = \{\mathsf{0}\}.$

• What happens if $H(A = \rho_{\alpha,k}\rho_{\alpha,1}q_1) = H(A = q_1)$?

• In this case $\rho_{\alpha,k}$ must be $\rho_{\alpha,1}^{-1}$, so

$$\rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1} = \rho_{\alpha,1}^{-2}\mu_{1,P_1} < \mu_{1,P_1} = \min \operatorname{Sp}(B|_{\mathsf{H}(A=q_1)}).$$

Consequently $H(B = \rho_{\alpha,k}\rho_{\alpha,1}^{-1}\mu_{1,P_1}) = \{0\}$ and

$$\pi(U^{\alpha}_{\boldsymbol{k},1})\zeta\in\mathsf{H}(A=q_1)\cap\mathsf{H}\big(B=\rho_{\alpha,\boldsymbol{k}}\rho_{\alpha,1}^{-1}\mu_{1,P_1}\big)=\{0\}.$$

In particular $\pi(U_{k,1}^{\alpha})\zeta = 0.$

Step 5.

• We have shown that there is a non-zero $\zeta \in \mathsf{H}$ with

$$\pi(U_{k,1}^{\alpha})\zeta, \qquad k = 1, \dots, n_{\alpha}.$$
• But $U^{\alpha} = \begin{bmatrix} U_{1,1}^{\alpha} & \cdots & U_{1,n_{\alpha}}^{\alpha} \\ \vdots & \ddots & \vdots \\ U_{n_{\alpha},1}^{\alpha} & \cdots & U_{n_{\alpha},n_{\alpha}}^{\alpha} \end{bmatrix}$ is a unitary matrix, so
$$0 \neq \zeta = \sum_{k=1}^{n_{\alpha}} \pi(U_{k,1}^{\alpha})^{*} \pi(U_{k,1}^{\alpha})\zeta = 0.$$

• This contradiction shows that the existence of \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(\mathsf{H})$ is impossible.

REMARKS

1) The proof can be tweaked to obtain

THEOREM (J. KRAJCZOK & P.M.S.)

There does not exist a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong \mathbb{N} \oplus B(\mathbb{H})$ with \mathbb{N} an arbitrary von Neumann algebra or the zero vector space and \mathbb{H} of infinite dimension.

REMARKS

② Similar techniques yield the following

THEOREM (A. CHIRVASITU, J. KRAJCZOK & P.M.S.)

Let $\mathbb G$ be a compact quantum group such that the C^* -algebra $C(\mathbb G)$ fits into the exact sequence

$$0 \longrightarrow \bigoplus_{i=1}^{N} \mathcal{K}(\mathsf{H}_{i}) \longrightarrow \mathrm{C}(\mathbb{G}) \longrightarrow \mathrm{C}(X) \longrightarrow 0$$

with X a compact space. The \mathbb{G} is finite (dim $C(\mathbb{G}) < +\infty$).

3 It follows that the Podleś spheres and the quantum disk do not admit a structure of a compact quantum group.

THEOREM (J. KRAJCZOK & M. WASILEWSKI) Let $q \in]-1, 1[\setminus\{0\}$ and $\nu \in \mathbb{R}\setminus\{0\}$ and consider the action α^{ν} of \mathbb{Q} with discrete topology on $SU_q(2)$ given by

$$lpha_r^
u(m{x})= au_{
u r}^{\mathrm{SU}_q(2)}(m{x}), \qquad m{x}\in L^\inftyig(\mathrm{SU}_q(2)ig), \ r\in\mathbb{Q}.$$

Let $\mathbb{H}_{\nu,q}$ be the corresponding bicrossed product:

 $\mathbb{H}_{\nu,q} = \mathbb{Q} \bowtie \mathrm{SU}_q(2).$

Then

- **1** $\mathbb{H}_{\nu,q}$ is a compact quantum group,
- ② $\mathbb{H}_{\nu,q}$ is coamenable and hence $L^{\infty}(\mathbb{H}_{\nu,q})$ is injective,
- ③ if $\nu \log |q| \notin \pi \mathbb{Q}$ then $L^{\infty}(\mathbb{H}_{\nu,q})$ is the injective factor of type II_∞,
- **4** the spectrum of the modular operator for the Haar measure $h_{\nu,q}$ of $\mathbb{H}_{\nu,q}$ is $\{0\} \cup q^{2\mathbb{Z}}$.

• Let $((\nu_n, q_n))_{n \in \mathbb{N}}$ be a sequence of parameters as described above $(\nu_n \log |q_n| \notin \pi \mathbb{Q}$ for all n) and consider the compact quantum group

$$\mathbb{G}= \bigotimes_{n=1}^{\infty} \mathbb{H}_{\nu_n,q_n}.$$

• In particular
$$L^{\infty}(\mathbb{G}) = \bigotimes_{n=1}^{\infty} L^{\infty}(\mathbb{H}_{\nu_n,q_n}).$$

EXAMPLE

If the sequence $((\nu_n, q_n))_{n \in \mathbb{N}}$ is constant then $L^{\infty}(\mathbb{G})$ is the injective factor of type III_{a^2} with separable predual.

•
$$T(L^{\infty}(\mathbb{G})) = \frac{\pi}{\log |q|}\mathbb{Z},$$

• $S(L^{\infty}(\mathbb{G})) = \{0\} \cup |q|^{2\mathbb{Z}}.$

EXAMPLE

If there are two subsequences $(q_{n_{1,p}})_{p\in\mathbb{N}}$ and $(q_{n_{2,p}})_{p\in\mathbb{N}}$ such that

$$\left\{ n_{1,p} \, \big| \, p \in \mathbb{N}
ight\} \cap \left\{ n_{2,p} \, \big| \, p \in \mathbb{N}
ight\} = arnothing$$

and

$$q_{n_{1,p}} \xrightarrow[p \to \infty]{} r_1, \quad q_{n_{2,p}} \xrightarrow[p \to \infty]{} r_2$$

for some $r_1, r_2 \in]-1, 1[\setminus\{0\}$ such that $\frac{\pi}{\log |r_1|}\mathbb{Z} \cap \frac{\pi}{\log |r_2|}\mathbb{Z} = \{0\}$ then $L^{\infty}(\mathbb{G})$ is the injective factor of type III₁ with separable predual.

•
$$T(L^{\infty}(\mathbb{G})) = \{0\},\$$

•
$$S(L^{\infty}(\mathbb{G})) = \mathbb{R}_{\geq 0}.$$

THEOREM (J. KRAJCZOK & P.M.S.)

There exist a family $\{\mathbb{G}_s\}_{s\in[0,1[}$ of compact quantum groups such that the von Neumann algebras $\{L^{\infty}(\mathbb{G}_s)\}_{s\in]0,1[}$ are pairwise non-isomorphic factors of type III_0 .

•
$$T(L^{\infty}(\mathbb{G}_s)) \supset \mathbb{Q}$$
,

defining

$$t_s = \sum_{p=1}^{\infty} rac{\lfloor p^{1-s}
floor}{p!}, \qquad s \in \left]0,1
ight[$$

we have

$$\Big(t_{\mathbf{s}'} \in T \big(L^{\infty}(\mathbb{G}_{\mathbf{s}}) \big) \Big) \iff \Big(\mathbf{s}' > \mathbf{s} \Big).$$

- For each $\lambda \in [0, 1]$ there exists uncountably many pairwise non-isomorphic compact quantum groups with $L^{\infty}(\mathbb{G})$ the injective factor of type III_{λ}.
- These compact quantum groups are constructed as bicrossed products α $\Gamma \bowtie \times \mathbb{H}_{\nu_n, q_n}$ with Γ a subgroup of \mathbb{R} (taken with discrete topology) acting by n=1

the scaling automorphisms.

We distinguish between them using the following invariants: ۲

•
$$T^{\tau}(\mathbb{G}) = \{t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} = \mathrm{id}\},$$

• $T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \operatorname{Inn}(L^{\infty}(\mathbb{G})) \},$

•
$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = \{ t \in \mathbb{R} \, | \, \tau^{\mathbb{G}}_t \in \overline{\mathrm{Inn}}(L^{\infty}(\mathbb{G})) \}.$$

FULL LIST OF INVARIANTS

DEFINITION

Let ${\mathbb G}$ be a locally compact quantum group. We define

$$\begin{split} T^{\tau}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} = \mathrm{id} \right\}, \\ T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \mathrm{Inn}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \overline{\mathrm{Inn}}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ T^{\sigma}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \sigma_t^{\varphi} = \mathrm{id} \right\}, \\ T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \mathrm{Inn}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \overline{\mathrm{Inn}}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ \mathrm{Mod}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \delta^{\mathrm{i}t} = 1 \right\}, \end{split}$$

where δ is the modular element of \mathbb{G} .

- The sets $T^{\circ}_{\bullet}(\mathbb{G})$ are subgroups of \mathbb{R} and are isomorphism invariants of the quantum group \mathbb{G} .
- $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}).$
- $T^{\bullet}(\mathbb{G}), T^{\bullet}_{\overline{\operatorname{Inn}}}(\mathbb{G}), \text{ and } \operatorname{Mod}(\mathbb{G}) \text{ are closed.}$
- We would obtain the same groups $T^{\sigma}(\mathbb{G})$, $T^{\sigma}_{Inn}(\mathbb{G})$, and $T^{\sigma}_{\overline{Inn}}(\mathbb{G})$ if we chose the right Haar measure instead of the left one.
- $T^{\sigma}_{\operatorname{Inn}}(\mathbb{G})$ is equal to the Connes' invariant $T(L^{\infty}(\mathbb{G}))$. Consequently, $T^{\sigma}_{\operatorname{Inn}}(\mathbb{G})$ depends only on the von Neumann algebra $L^{\infty}(\mathbb{G})$. It is also the case for $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G})$.

PROPOSITION

For any locally compact quantum group ${\mathbb G}$ we have

$$T^{\sigma}(\mathbb{G}) = T^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$\operatorname{Mod}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) \subset \frac{1}{2}T^{\tau}(\mathbb{G}).$$

- The first equality above together with T^τ(G) = T^τ(G) reduces the list to 11 (invariants T^σ(G), T^σ(G) and T^τ(G) are determined by the remaining ones).
- If \mathbb{G} is compact then $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = \mathbb{R}.$
- If additionally $L^{\infty}(\mathbb{G})$ is semifinite then $T^{\sigma}_{\text{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\text{Inn}}}(\mathbb{G}) = \mathbb{R}$.

EXAMPLE: THE QUANTUM E(2) GROUP With $\mathbb{G} = \mathbb{E}_q(2)$ for some $q \in]0, 1[$ we have $T^{\tau}(\mathbb{G}) = T^{\tau}_{\text{Inn}}(\mathbb{G}) = T^{\tau}_{\overline{\text{Inn}}}(\mathbb{G}) = T^{\sigma}(\widehat{\mathbb{G}}) = T^{\sigma}(\widehat{\mathbb{G}}) = \text{Mod}(\widehat{\mathbb{G}}) = \frac{\pi}{\log q}\mathbb{Z},$

$$T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) = T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G}) = T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\overline{\mathrm{Inn}}}^{\sigma}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathbb{R}.$$

Example: Quantum "az + b" groups

Let \mathbb{G} be the quantum "az + b" group for the deformation parameter q in one of the three cases:

1)
$$q = e^{\frac{2\pi i}{N}}$$
 with $N = 6, 8, ...,$
2) $q \in]0, 1[,$
3) $q = e^{1/\rho}$ with $\operatorname{Re} \rho < 0$, $\operatorname{Im} \rho = \frac{N}{2\pi}$ with $N = \pm 2, \pm 4, ...$

$$T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) = T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G}) = T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\overline{\mathrm{Inn}}}^{\tau}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = \mathbb{R},$$
$$T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}) = T^{\sigma}(\mathbb{G}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \begin{cases} \{\mathbf{0}\} & \text{in cases } \mathbf{1} \text{ and } \mathbf{3} \\ \frac{\pi}{\log q}\mathbb{Z} & \text{in case } \mathbf{2} \end{cases}.$$

EXAMPLE: U_F^+

Let \mathbb{G} be the quantum group U_F^+ . Then $L^{\infty}(\mathbb{G})$ is a full factor so $\operatorname{Inn}(L^{\infty}(\mathbb{G})) = \overline{\operatorname{Inn}}(L^{\infty}(\mathbb{G}))$ (Vaes).

• \mathbb{G} is compact, so $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = \mathbb{R}.$

• If \mathbb{G} is not of Kac type ($F^*F = 1$) then

$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}(\mathbb{G}) = \bigcap_{\Lambda \in \mathrm{Sp}(F^*F \otimes (F^*F)^{-1}) \setminus \{1\}} \frac{2\pi}{\log(\Lambda)} \mathbb{Z},$$

while
$$\operatorname{Mod}(\widehat{\mathbb{G}}) = \bigcap_{\Lambda \in \operatorname{Sp}(F^*F) \setminus \{\lambda^{-1}\}} \frac{2\pi}{\log \lambda + \log(\Lambda)} \mathbb{Z}$$
, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$.

• If \mathbb{G} is not of Kac type then $L^{\infty}(\mathbb{G})$ is a type III_{μ} factor for some $\mu \in]0, 1]$ and $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) = T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) = \frac{2\pi}{\log \mu}\mathbb{Z}$ (otherwise $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) = T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) = \mathbb{R}$).

REMARKS

- In the course of constructing families of $L^{\infty}(\mathbb{G})$ isomorphic to factors of type III, for any subgroup Γ of \mathbb{R} we constructed second countable compact quantum group \mathbb{K} such that $T_{\text{Inn}}^{\tau}(\mathbb{K}) = \Gamma$.
- The equality $T^{\tau}(U_F^+) = T_{\text{Inn}}^{\tau}(U_F^+)$ says that the compact quantum group U_F^+ belongs to the class for which the following statement is true:

CONJECTURE (*)

If $\mathbb G$ is a second countable compact quantum group and $T^\tau_{\rm Inn}(\mathbb G)=\mathbb R$ then $\mathbb G$ is of Kac type.

• We were able to prove that this conjecture is true for many compact quantum groups including duals of second countable type I discrete quantum groups (e.g. *q*-deformations of compact semisimple Lie groups).

EXAMPLE: q-DEFORMATIONS

Let *G* be a compact semisimple Lie group with root system Φ and let $q \in]0, 1[$.

• Since G_q is compact we again have

$$\operatorname{Mod}(G_q) = T_{\operatorname{Inn}}^{\tau}(\widehat{G_q}) = T_{\overline{\operatorname{Inn}}}^{\tau}(\widehat{G_q}) = T_{\overline{\operatorname{Inn}}}^{\sigma}(\widehat{G_q}) = T_{\overline{\operatorname{Inn}}}^{\sigma}(\widehat{G_q}) = \mathbb{R}.$$

Furthermore T^σ_{Inn}(G_q) = T^σ_{Inn}(G_q) = ℝ because C(G_q) is a C*-algebra of type I.
We have T^τ(G_q) = π/log q ℤ and

$$T_{\operatorname{Inn}}^{\tau}(G_q) = T_{\overline{\operatorname{Inn}}}^{\tau}(G_q) = \operatorname{Mod}(\widehat{G_q}) = \frac{\pi}{\Upsilon_{\Phi} \log q} \mathbb{Z},$$

where Υ_{Φ} is a positive integer determined by Lie-theoretic data (see next two slides).

EXAMPLE: q-DEFORMATIONS (CONTINUED)

• Let $\Phi = \Phi_1 \cup \cdots \cup \Phi_l$ be the decomposition of Φ into irreducible parts. Then

$$\Upsilon_{\Phi} = \gcd(\Upsilon_{\Phi_1}, \dots, \Upsilon_{\Phi_l}).$$

• We have

type	group	range of n	Υ_{Φ}	$T_{\mathrm{Inn}}^{ au}(G_q)$
A_n	$\mathrm{SU}(n+1)$	$n \ge 1$ odd	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \ge 1$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
B_n	$\operatorname{Spin}(2n+1)$	$n \geqslant 2 \mathrm{odd}$	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \ge 2$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
C_n	$\operatorname{Sp}(2n)$	$n \ge 3$	2	$\frac{\pi}{2\log q}\mathbb{Z}$
D_n	$\operatorname{Spin}(2n)$	$n \ge 4$ odd	2	$\frac{\pi}{2\log q}\mathbb{Z}$
		$n \ge 4$ even	1	$\frac{\pi}{\log q}\mathbb{Z}$

EXAMPLE: q-DEFORMATIONS (CONTINUED)

• And for the exceptional cases we have

• type
$$E_6$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}_{+}$

• type
$$E_7$$
: $\Upsilon_{\Phi} = 1$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{\log q} \mathbb{Z}$.

• type
$$E_8$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$

• type
$$F_4$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$

• type
$$G_2$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}_{+}$

SPECIAL CASE

- Consider the compact quantum group $SU_q(3)$.
- Then $\Upsilon_{\Phi} = 2$, so

$$T_{\text{Inn}}^{\tau}(\mathrm{SU}_q(3)) = \frac{\pi}{2\log q}\mathbb{Z},$$

while $T^{\tau}(SU_q(3)) = \frac{\pi}{\log q}\mathbb{Z}$.

- This means that there are non-trivial inner scaling automorphisms.
- $SU_q(3)$ does not have non-trivial one-dimensional representations, so these scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let *G* be such that $\Upsilon_{\Phi} = 2$. Then a unitary implementing the scaling automorphism for $t = \frac{\pi}{2 \log q}$ does not belong to $C(G_q)$. In particular, the restriction of this automorphism to $C(G_q)$ is not inner.

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

PROPOSITION

Let Γ be a discrete group. Then the following are equivalent:

① Γ is i.c.c.,

PROPOSITION

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group and assume that

$$\Delta^{(n)}_{\mathbb{G}} \big(L^{\infty}(\mathbb{G}) \big)' \cap \underbrace{L^{\infty}(\mathbb{G}) \,\overline{\otimes} \, \cdots \,\overline{\otimes} \, L^{\infty}(\mathbb{G})}_{n+1} = \mathbb{C}\mathbb{1}$$

for some $n \in \mathbb{N}$. Then $L^{\infty}(\mathbb{G})$ is a factor.

DEFINITION

Let \mathbb{F} be a discrete quantum group. We say that \mathbb{F} is *n*-i.c.c. if

$$\Delta_{\widehat{\mathbb{F}}}^{(n)} (L^{\infty}(\widehat{\mathbb{F}}))' \cap \underbrace{L^{\infty}(\widehat{\mathbb{F}}) \overline{\otimes} \cdots \overline{\otimes} L^{\infty}(\widehat{\mathbb{F}})}_{n+1} = \mathbb{C}\mathbb{1}.$$

PROPOSITION

Let \mathbb{F} be a discrete quantum group. If \mathbb{F} is *n*-i.c.c. for some *n* then \mathbb{F} is *m*-i.c.c. for all natural $m \leq n$.

THEOREM

Let $\mathbb G$ be a second countable compact quantum group whose dual is 1-i.c.c. Then conjecture (*) holds for $\mathbb G.$

- Recall that Irr(U⁺_F) = Z₊ ★ Z₊ with the two copies of Z₊ generated by the class *α* of the defining representation and *β* = *α*.
- For $x \in \mathbb{Z}_+ \star \mathbb{Z}_+$ put

$$D_{x,n} = egin{cases} \|
ho_x^2 - \mathbbm{1} \| rac{\|
ho_x \|^{2(n+1)} - 1}{\|
ho_x \|^2 - 1} &
ho_x
eq \mathbbm{1} \ 0 &
ho_X = \mathbbm{1} \end{cases}$$

• Let
$$D_n = \max\{D_{\alpha\beta,n}, D_{\beta\alpha,n}, D_{\alpha^2\beta,n}\}.$$

THEOREM

If
$$D_n < 1 - \frac{1}{\sqrt{2}}$$
 and $\frac{2(7-4D_n)D_n}{2(1-D_n)^2 - 1} < \frac{1}{\sqrt{n+1}}$ then $\widehat{U_F^+}$ is *n*-i.c.c.

THEOREM

Take
$$n \in \mathbb{N}$$
 and write $c = \max\left\{\|\lambda F^*F - \mathbb{1}\|, \|(\lambda F^*F)^{-1} - \mathbb{1}\|\right\}$, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$. If $\sqrt{n}(n+1)c(2+c)(1+c)^{4+6n} < \frac{1}{72}$ then $\widehat{\mathbb{U}_F^+}$ is *n*-i.c.c.

POST-DOC POSITION IN WARSAW

A position for one year starting March 2024 is being announced.
Please e-mail me if you are interested.

Thank you for your attention