Why $\mathrm{B}\left(\ell^{2}\right)$ IS NOT $L^{\infty}(\mathbb{G})$ AND RELATED TOPICS

Seminarium Dyskretned Analizy Harmoniczned

Piotr M. Sołtan
 (based on joint work with Jacek Krajczok)

Department of Mathematical Methods in Physics
Faculty of Physics, University of Warsaw
October 12, 2023
(1) COMPACT GUANTUM GROUPS
(2) The structure of $L^{\infty}(\mathbb{G})$
(3) What if $L^{\infty}(\mathbb{G}) \cong \mathrm{B}\left(\ell^{2}\right)$?
(4) OTHER INJECTIVE FACTORS
(5) More invariants
(6) EXAMPLES
(7) Comments and a conjecture
(8) More examples
(9) I.C.C.-TYPE CONDITIONS
(10) EXAMPLE

The BASICS

Definition

A compact quantum group \mathbb{G} is described by

- a von Neumann algebra $L^{\infty}(\mathbb{G})$,
- a unital *-homomorphism $\Delta: L^{\infty}(\mathbb{G}) \rightarrow L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$
(continuous in the σ-weak topology) such that
- $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$,
- there exists a faithful state \boldsymbol{h} on $L^{\infty}(\mathbb{G})$ such that

$$
\begin{equation*}
\forall x \in L^{\infty}(\mathbb{G})(\boldsymbol{h} \otimes \mathrm{id}) \Delta(x)=\boldsymbol{h}(x) \mathbb{1}=(\operatorname{id} \otimes \boldsymbol{h}) \Delta(x) . \tag{৫}
\end{equation*}
$$

- The condition (S) determines \boldsymbol{h} uniquely. We call this state the Haar measure of \mathbb{G}.

DEfinition

Let \mathbb{G} be a compact quantum group. A finite-dimensional unitary
representation of \mathbb{G} is a unitary $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ (with H a finite-dimensional Hilbert space) such that

$$
(\mathrm{id} \otimes \Delta)(U)=U_{12} U_{13}
$$

where

- $U_{12}=U \otimes \mathbb{1} \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$,
- $U_{13}=(\mathrm{id} \otimes$ flip $)\left(U_{12}\right) \in \mathrm{B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$.
- We say that a representation $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ is irreducible if $(T \otimes \mathbb{1}) U=U(T \otimes \mathbb{1})$ implies $T=\lambda \mathbb{1}_{H}$.
- Representations $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ and $V \in \mathrm{~B}(\mathrm{~K}) \otimes L^{\infty}(\mathbb{G})$ are equivalent if there is a unitary $S \in B(H, K)$ such that $(S \otimes \mathbb{1}) U=V(S \otimes \mathbb{1})$.

MATRIX ELEMENTS OF IRREPS

- Let $U \in \mathrm{~B}(\mathrm{H}) \otimes L^{\infty}(\mathbb{G})$ be a representation. Then any $\omega \in \mathrm{B}(\mathrm{H})^{*}$ defines $(\omega \otimes \mathrm{id})(U) \in L^{\infty}(\mathbb{G})$ which is called a matrix element or a coefficient of U.
- Typically we take $\omega(\cdot)=\langle\xi| \cdot|\eta\rangle$ for some vectors $\xi, \eta \in \mathrm{H}$.
- Choosing an orthonormal basis $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ of H yields $U_{i, j}=\left(\omega_{i, j} \otimes i d\right)(U)$ where $\omega_{i, j}=\left\langle\xi_{i}\right| \cdot\left|\xi_{j}\right\rangle$.
- From now on we denote by $\operatorname{Irr}(\mathbb{G})$ the set of equivalence classes of irreps of \mathbb{G}. For each $\alpha \in \operatorname{Irr}(\mathbb{G})$ we fix $U^{\alpha} \in \alpha$. Then any orthonormal basis $\xi_{1}^{\alpha}, \ldots, \xi_{n_{\alpha}}^{\alpha}$ of the carrier Hilbert space H^{α} of U^{α} defines the matrix elements $U_{i, j}^{\alpha}$.

THEOREM

$\operatorname{span}\left\{U_{i, j}^{\alpha} \mid \alpha \in \operatorname{Irr}(\mathbb{G}), i, j \in\left\{1, \ldots, n_{\alpha}\right\}\right\}$ is σ-weakly dense in $L^{\infty}(\mathbb{G})$.

THE ρ-OPERATORS

- For each $\alpha \in \operatorname{Irr}(\mathbb{G})$ let $V^{\alpha}=(j \otimes \mathrm{id})\left(U^{\alpha *}\right) \in \mathrm{B}\left(\mathrm{H}^{\alpha *}\right) \otimes L^{\infty}(\mathbb{G})\left(j: \mathrm{B}\left(\mathrm{H}^{\alpha}\right) \rightarrow \mathrm{B}\left(\mathrm{H}^{\alpha *}\right)\right.$ maps T to the operator $\left.\langle\psi| \mapsto\left\langle T^{*} \psi\right|\right)$.
- Next we let $\rho_{\alpha}=$ const $\cdot j\left((\operatorname{id} \otimes \boldsymbol{h})\left(V^{\alpha *} V^{\alpha}\right)\right)$ with the constant chosen so that $\operatorname{Tr}\left(\rho_{\alpha}\right)=\operatorname{Tr}\left(\rho_{\alpha}^{-1}\right)$.
- Note that ρ_{α} is positive.
- From now on for each $\alpha \in \operatorname{Irr}(\mathbb{G})$ we fix an orthonormal basis of H^{α} in which ρ_{α} is diagonal:

$$
\rho_{\alpha}=\left[\begin{array}{lll}
\rho_{\alpha, 1} & & \\
& \ddots & \\
& & \rho_{\alpha, n_{\alpha}}
\end{array}\right]
$$

and $\rho_{\alpha, 1} \geqslant \cdots \geqslant \rho_{\alpha, n_{\alpha}}$.

- We have $\boldsymbol{h}\left(U_{k, l}^{\alpha}{ }^{*} U_{i, j}^{\beta}\right)=\delta_{\alpha \beta} \frac{\delta_{k i} \rho_{\alpha, j}^{-1} \delta_{l, j}}{\operatorname{Tr}\left(\rho_{\alpha}\right)}$, so $\left\{U_{i, j}^{\alpha}\right\}$ are linearly independent.

THE MODULAR GROUP AND THE SCALING GROUP

Theorem

There exist two σ-weakly continuous one-parameter groups $\sigma^{\boldsymbol{h}}$ and $\tau^{\mathbb{G}}$ of automorphisms of $L^{\infty}(\mathbb{G})$ such that

$$
\begin{aligned}
\tau_{t}^{\mathbb{G}}\left(U_{i, j}^{\alpha}\right) & =\rho_{\alpha, i}^{\mathrm{i} t} U_{i, j}^{\alpha} \rho_{\alpha, j}^{-\mathrm{i} t} \\
\sigma_{t}^{\boldsymbol{h}}\left(U_{i, j}^{\alpha}\right) & =\rho_{\alpha, i}^{\mathrm{i} t} U_{i, j}^{\alpha} \rho_{\alpha, j}^{\mathrm{i} t}
\end{aligned}
$$

for all $\alpha \in \operatorname{Irr}(\mathbb{G}), i, j \in\left\{1, \ldots, n_{\alpha}\right\}$ and $t \in \mathbb{R}$.

- Clearly the two groups commute.

What IF?

Suppose that there is a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(H)$, where H is a Hilbert space such that $\operatorname{dim} \mathrm{H}>1$.

- If H were finite-dimensional then $\mathrm{B}(\mathrm{H})$ would be simple, but a finite dimensional $L^{\infty}(\mathbb{G})$ admits a character, so this is impossible.
- The case $\operatorname{dim} H>\aleph_{0}$ is ruled out by the fact that there are no faithful normal states on $B(H)$ for non-separable H.
- Thus we are left with $\mathrm{H} \cong \ell^{2}$.
- We will show that this leads to a contradiction.

Step 1.

- Suppose \mathbb{G} is a compact quantum group with $L^{\infty}(\mathbb{G}) \cong B(H)$.
- The state \boldsymbol{h} cannot be a trace because there are no traces on $B(H)$.
- It is known that in this case (\boldsymbol{h} not a trace) there exists $\alpha \in \operatorname{Irr}(\mathbb{G})$ with

$$
\left(\rho_{\alpha, 1}, \ldots, \rho_{\alpha, n_{\alpha}}\right) \neq(1, \ldots, 1) .
$$

- Let us assume that the set $\left\{\rho_{\alpha, 1}, \ldots, \rho_{\alpha, n_{\alpha}}\right\}$ is invariant under taking inverses.

If this doesn't hold we can show that the compact quantum group $\mathbb{G} \times \mathbb{G}$ has $\beta \in \operatorname{Irr}(\mathbb{G} \times \mathbb{G})$ such that ρ_{β} is non-trivial and $\left\{\rho_{\beta, 1}, \ldots, \rho_{\beta, n_{\beta}}\right\}=\left\{\rho_{\beta, 1}^{-1}, \ldots, \rho_{\beta, n_{\beta}}^{-1}\right\}$. Still $L^{\infty}(\mathbb{G} \times \mathbb{G})=L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G}) \cong B(H) \bar{\otimes} B(H) \cong B(H)$.

Step 2.

- Let $\pi: L^{\infty}(\mathbb{G}) \rightarrow B(H)$ be the assumed isomorphism.
- The state \boldsymbol{h} must be of the form

$$
\boldsymbol{h}(x)=\operatorname{Tr}(A \pi(x)), \quad x \in L^{\infty}(\mathbb{G})
$$

for some positive trace-class operator A on H with eigenvalues $q_{1}>q_{2}>\cdots>0$.

- For each n let $\mathrm{H}\left(A=q_{n}\right)$ be the corresponding eigenspace, so that

$$
\mathrm{H}=\bigoplus_{n=1}^{\infty} \mathrm{H}\left(A=q_{n}\right) .
$$

Moreover, we have $\operatorname{dim} \mathrm{H}\left(A=q_{n}\right)<+\infty$ for all n.

- We have

$$
\pi\left(\sigma_{t}^{\boldsymbol{h}}(x)\right)=A^{\mathrm{i} t} \pi(x) A^{-\mathrm{i} t}, \quad x \in L^{\infty}(\mathbb{G}), t \in \mathbb{R}
$$

Step 3.

- There is a strictly positive self-adjoint operator B on H such that

$$
\pi\left(\tau_{t}^{\mathbb{G}}(x)\right)=B^{\mathrm{i} t} \pi(x) B^{-\mathrm{i} t}, \quad x \in L^{\infty}(\mathbb{G}), t \in \mathbb{R}
$$

(this is a consequence of Stone's theorem).

- The fact that the groups $\left\{\sigma_{t}^{\boldsymbol{h}}\right\}_{t \in \mathbb{R}}$ and $\left\{\tau_{t}^{\mathbb{G}}\right\}_{t \in \mathbb{R}}$ commute implies that A and B strongly commute.
- Hence for any n the operator B restricts to a positive operator on the finite-dimensional Hilbert space $\mathrm{H}\left(A=q_{n}\right)$.
- Let $\mu_{n, 1}>\cdots>\mu_{n, P_{n}}$ be the complete list of eigenvalues of this restriction.
- We have

$$
\mathrm{H}=\bigoplus_{n=1}^{\infty} \bigoplus_{p=1}^{P_{n}} \mathrm{H}\left(A=q_{n}\right) \cap \mathrm{H}\left(B=\mu_{n, p}\right) .
$$

Step 4.

- Claim: $\pi\left(U_{k, 1}^{\alpha}\right)$ maps $\mathrm{H}\left(A=q_{n}\right)$ into $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{n}\right)$.
- Indeed: take $\xi \in \mathrm{H}\left(A=q_{n}\right)$. Then

$$
\begin{aligned}
A^{\mathrm{it}} \pi\left(U_{k, 1}^{\alpha}\right) \xi & =A^{\mathrm{it}} \pi\left(U_{k, 1}^{\alpha}\right) A^{-\mathrm{i} t} A^{\mathrm{it}} \xi=\pi\left(\sigma_{t}^{\mathbf{h}}\left(U_{k, 1}^{\alpha}\right)\right) q_{n}^{\mathrm{i} t} \xi \\
& =\pi\left(\rho_{\alpha, k}^{\mathrm{i} t} U_{k, 1}^{\alpha} \rho_{\alpha, 1}^{\mathrm{it}}\right) q_{n}^{\mathrm{it}} \xi=\left(\rho_{\alpha, k} \rho_{\alpha, 1} q_{n}\right)^{\mathrm{it}} \pi\left(U_{k, 1}^{\alpha}\right) \xi .
\end{aligned}
$$

- Claim: $\pi\left(U_{k, 1}^{\alpha}\right)$ maps $\mathrm{H}\left(B=\mu_{n, p}\right)$ into $\mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{n, p}\right)$.
- Indeed: take $\eta \in \mathrm{H}\left(B=\mu_{n, p}\right)$. Then

$$
\begin{aligned}
B^{\mathrm{it}} \pi\left(U_{k, 1}^{\alpha}\right) \eta & =B^{\mathrm{it}} \pi\left(U_{k, 1}^{\alpha}\right) B^{-\mathrm{it}} B^{\mathrm{it}} \eta=\pi\left(\tau_{t}^{\mathrm{H}}\left(U_{k, 1}^{\alpha}\right)\right) \mu_{n, p}^{\mathrm{it}} \eta \\
& =\pi\left(\rho_{\alpha, k}^{\mathrm{it}} U_{k, 1}^{\alpha} \rho_{\alpha, 1}^{-\mathrm{it} t}\right) \mu_{n, p}^{\mathrm{it}} \eta=\left(\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{n, p}\right)^{\mathrm{it}} \pi\left(U_{k, 1}^{\alpha}\right) \eta .
\end{aligned}
$$

- Let ζ be a non-zero element of $\mathrm{H}\left(A=q_{1}\right) \cap \mathrm{H}\left(B=\mu_{1, P_{1}}\right)$. We will show that $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$ for all $k \in\left\{1, \ldots, n_{\alpha}\right\}$.

Step 4. (continued)

- By the previous claims we have

$$
\pi\left(U_{k, 1}^{\alpha}\right) \zeta \in \mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right) \cap \mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)
$$

- If $\rho_{\alpha, k}=\rho_{\alpha, 1}$ then $\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}=\rho_{\alpha, 1}^{2} q_{1}>q_{1}=\|A\|$, so $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\}$ and consequently $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$.
- If $\rho_{\alpha, k}<\rho_{\alpha, 1}$ then first of all

$$
\rho_{\alpha, k} \rho_{\alpha, 1} q_{1} \geqslant\left(\min _{i}\left\{\rho_{\alpha, i}\right\}\right) \rho_{\alpha, 1} q_{1}=\rho_{\alpha, 1}^{-1} \rho_{\alpha, 1} q_{1}=q_{1}
$$

(invariance of $\left\{\rho_{\alpha, 1}, \ldots, \rho_{\alpha, n_{\alpha}}\right\}$ under taking inverses!). Thus

$$
\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\mathrm{H}\left(A=q_{1}\right) \quad \text { or } \quad \mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\} .
$$

Clearly, if $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\}$ then $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$.

Step 4. (continued further)

- We have $\pi\left(U_{k, 1}^{\alpha}\right) \zeta \in \mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right) \cap \mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)$ and $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\mathrm{H}\left(A=q_{1}\right)$ or $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\{0\}$.
- What happens if $\mathrm{H}\left(A=\rho_{\alpha, k} \rho_{\alpha, 1} q_{1}\right)=\mathrm{H}\left(A=q_{1}\right)$?
- In this case $\rho_{\alpha, k}$ must be $\rho_{\alpha, 1}^{-1}$, so

$$
\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}=\rho_{\alpha, 1}^{-2} \mu_{1, P_{1}}<\mu_{1, P_{1}}=\min \operatorname{Sp}\left(\left.B\right|_{H\left(A=q_{1}\right)}\right) .
$$

Consequently $\mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)=\{0\}$ and

$$
\pi\left(U_{k, 1}^{\alpha}\right) \zeta \in \mathrm{H}\left(A=q_{1}\right) \cap \mathrm{H}\left(B=\rho_{\alpha, k} \rho_{\alpha, 1}^{-1} \mu_{1, P_{1}}\right)=\{0\} .
$$

In particular $\pi\left(U_{k, 1}^{\alpha}\right) \zeta=0$.

Step 5.

- We have shown that there is a non-zero $\zeta \in \mathrm{H}$ with

$$
\pi\left(U_{k, 1}^{\alpha}\right) \zeta, \quad k=1, \ldots, n_{\alpha}
$$

- But $U^{\alpha}=\left[\begin{array}{ccc}U_{1,1}^{\alpha} & \cdots & U_{1, n_{\alpha}}^{\alpha} \\ \vdots & \ddots & \vdots \\ U_{n_{\alpha}, 1}^{\alpha} & \cdots & U_{n_{\alpha}, n_{\alpha}}^{\alpha}\end{array}\right]$ is a unitary matrix, so

$$
0 \neq \zeta=\sum_{k=1}^{n_{\alpha}} \pi\left(U_{k, 1}^{\alpha}\right)^{*} \pi\left(U_{k, 1}^{\alpha}\right) \zeta=0
$$

- This contradiction shows that the existence of \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong B(H)$ is impossible.

REMARKS

(1) The proof can be tweaked to obtain

Theorem (J. Krajczok \& P.M.S.)
There does not exist a compact quantum group \mathbb{G} such that $L^{\infty}(\mathbb{G}) \cong N \oplus B(H)$ with N an arbitrary von Neumann algebra or the zero vector space and H of infinite dimension.

Remarks

(2) Similar techniques yield the following

Theorem (A. Chirvasitu, J. Krajczok \& P.M.S.)
Let \mathbb{G} be a compact quantum group such that the C^{*}-algebra $\mathrm{C}(\mathbb{G})$ fits into the exact sequence

with X a compact space. The \mathbb{G} is finite $(\operatorname{dim} C(\mathbb{G})<+\infty)$.
(3) It follows that the Podleś spheres and the quantum disk do not admit a structure of a compact quantum group.

Theorem (J. Krajczok \& M. Wasilewski)

Let $q \in]-1,1\left[\backslash\{0\}\right.$ and $\nu \in \mathbb{R} \backslash\{0\}$ and consider the action α^{ν} of \mathbb{Q} with discrete topology on $\mathrm{SU}_{q}(2)$ given by

$$
\alpha_{r}^{\nu}(x)=\tau_{\nu r}^{\operatorname{SU}_{q}(2)}(x), \quad x \in L^{\infty}\left(\mathrm{SU}_{q}(2)\right), r \in \mathbb{Q} .
$$

Let $\mathbb{H}_{\nu, q}$ be the corresponding bicrossed product:

$$
\mathbb{H}_{\nu, q}=\mathbb{Q} \bowtie \mathrm{SU}_{q}(2) .
$$

Then
(1) $\mathbb{H}_{\nu, q}$ is a compact quantum group,
(2) $\mathbb{H}_{\nu, q}$ is coamenable and hence $L^{\infty}\left(\mathbb{H}_{\nu, q}\right)$ is injective,
(3) if $\nu \log |q| \notin \pi \mathbb{Q}$ then $L^{\infty}\left(\mathbb{H}_{\nu, q}\right)$ is the injective factor of type II_{∞},
(4) the spectrum of the modular operator for the Haar measure $\boldsymbol{h}_{\nu, q}$ of $\mathbb{H}_{\nu, q}$ is $\{0\} \cup q^{2 \mathbb{Z}}$.

- Let $\left(\left(\nu_{n}, q_{n}\right)\right)_{n \in \mathbb{N}}$ be a sequence of parameters as described above ($\nu_{n} \log \left|q_{n}\right| \notin \pi \mathbb{Q}$ for all n) and consider the compact quantum group
- In particular $L^{\infty}(\mathbb{G})=\bigotimes_{n=1}^{\infty} L^{\infty}\left(\mathbb{H}_{\nu_{n}, q_{n}}\right)$.

EXAMPLE

If the sequence $\left(\left(\nu_{n}, q_{n}\right)\right)_{n \in \mathbb{N}}$ is constant then $L^{\infty}(\mathbb{G})$ is the injective factor of type III $_{q^{2}}$ with separable predual.

- $T\left(L^{\infty}(\mathbb{G})\right)=\frac{\pi}{\log |q|} \mathbb{Z}$,
- $S\left(L^{\infty}(\mathbb{G})\right)=\{0\} \cup|q|^{2 \mathbb{Z}}$.

EXAMPLE

If there are two subsequences $\left(q_{n_{1, p}}\right)_{p \in \mathbb{N}}$ and $\left(q_{n_{2, p}}\right)_{p \in \mathbb{N}}$ such that

$$
\left\{n_{1, p} \mid p \in \mathbb{N}\right\} \cap\left\{n_{2, p} \mid p \in \mathbb{N}\right\}=\varnothing
$$

and

$$
q_{n_{1, p}} \underset{p \rightarrow \infty}{ } r_{1}, \quad q_{n_{2, p}} \xrightarrow[p \rightarrow \infty]{ } r_{2}
$$

for some $\left.r_{1}, r_{2} \in\right]-1,1\left[\backslash\{0\}\right.$ such that $\frac{\pi}{\log \left|r_{1}\right|} \mathbb{Z} \cap \frac{\pi}{\log \left|r_{2}\right|} \mathbb{Z}=\{0\}$ then $L^{\infty}(\mathbb{G})$ is the injective factor of type III_{1} with separable predual.

- $T\left(L^{\infty}(\mathbb{G})\right)=\{0\}$,
- $S\left(L^{\infty}(\mathbb{G})\right)=\mathbb{R}_{\geqslant 0}$.

Theorem (J. Krajczok \& P.M.S.)

There exist a family $\left\{\mathbb{G}_{s}\right\}_{s \in] 0,1[}$ of compact quantum groups such that the von Neumann algebras $\left\{L^{\infty}\left(\mathbb{G}_{s}\right)\right\}_{s \in] 0,1[}$ are pairwise non-isomorphic factors of type III_{0}.

- $T\left(L^{\infty}\left(\mathbb{G}_{s}\right)\right) \supset \mathbb{Q}$,
- defining

$$
\left.t_{s}=\sum_{p=1}^{\infty} \frac{\left\lfloor p^{1-s}\right\rfloor}{p!}, \quad s \in\right] 0,1[
$$

we have

$$
\left(t_{s^{\prime}} \in T\left(L^{\infty}\left(\mathbb{G}_{s}\right)\right)\right) \Longleftrightarrow\left(s^{\prime}>s\right)
$$

- For each $\lambda \in] 0,1]$ there exists uncountably many pairwise non-isomorphic compact quantum groups with $L^{\infty}(\mathbb{G})$ the injective factor of type III_{λ}.
- These compact quantum groups are constructed as bicrossed products $\Gamma \bowtie \underset{n=1}{\underset{\sim}{\infty}} \mathbb{H}_{\nu_{n}, q_{n}}$ with Γ a subgroup of \mathbb{R} (taken with discrete topology) acting by the scaling automorphisms.
- We distinguish between them using the following invariants:
- $T^{\tau}(\mathbb{G})=\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}}=\mathrm{id}\right\}$,
- $T_{\text {Inn }}^{\tau}(\mathbb{G})=\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}} \in \operatorname{Inn}\left(L^{\infty}(\mathbb{G})\right)\right\}$,
- $T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G})=\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}} \in \overline{\operatorname{Inn}}\left(L^{\infty}(\mathbb{G})\right)\right\}$.

Full List of invariants

DEFINITION

Let \mathbb{G} be a locally compact quantum group. We define

$$
\begin{aligned}
T^{\tau}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}}=\operatorname{id}\right\}, \\
T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}} \in \operatorname{Inn}\left(L^{\infty}(\mathbb{G})\right)\right\}, \\
T_{\overline{\operatorname{Inn}}}^{\tau}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \tau_{t}^{\mathbb{G}} \in \overline{\operatorname{Inn}}\left(L^{\infty}(\mathbb{G})\right)\right\}, \\
T^{\sigma}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \sigma_{t}^{\varphi}=\operatorname{id}\right\}, \\
T_{\operatorname{Inn}}^{\sigma}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \sigma_{t}^{\varphi} \in \operatorname{Inn}\left(L^{\infty}(\mathbb{G})\right)\right\}, \\
T \overline{\operatorname{Inn}}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \sigma_{t}^{\varphi} \in \overline{\operatorname{Inn}}\left(L^{\infty}(\mathbb{G})\right)\right\}, \\
\operatorname{Mod}(\mathbb{G}) & =\left\{t \in \mathbb{R} \mid \delta^{i t}=\mathbb{1}\right\},
\end{aligned}
$$

where δ is the modular element of \mathbb{G}.

- The sets $T_{\bullet}^{\circ}(\mathbb{G})$ are subgroups of \mathbb{R} and are isomorphism invariants of the quantum group \mathbb{G}.
- $T^{\tau}(\mathbb{G})=T^{\tau}(\widehat{\mathbb{G}})$.
- $T^{\bullet}(\mathbb{G}), T_{\overline{\mathrm{Inn}}}^{\bullet}(\mathbb{G})$, and $\operatorname{Mod}(\mathbb{G})$ are closed.
- We would obtain the same groups $T^{\sigma}(\mathbb{G}), T_{\text {Inn }}^{\sigma}(\mathbb{G})$, and $T_{\overline{I n n}}^{\sigma}(\mathbb{G})$ if we chose the right Haar measure instead of the left one.
- $T_{\text {Inn }}^{\sigma}(\mathbb{G})$ is equal to the Connes' invariant $T\left(L^{\infty}(\mathbb{G})\right)$. Consequently, $T_{\text {Inn }}^{\sigma}(\mathbb{G})$ depends only on the von Neumann algebra $L^{\infty}(\mathbb{G})$. It is also the case for $T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G})$.

PROPOSITION

For any locally compact quantum group \mathbb{G} we have

$$
\begin{aligned}
T^{\sigma}(\mathbb{G}) & =T^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}), \\
T_{\text {Inn }}^{\sigma}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) & =T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}), \\
T_{\operatorname{Inn}}^{\sigma}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) & =T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}), \\
\operatorname{Mod}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) & \subset \frac{1}{2} T^{\tau}(\mathbb{G}) .
\end{aligned}
$$

- The first equality above together with $T^{\tau}(\mathbb{G})=T^{\tau}(\widehat{\mathbb{G}})$ reduces the list to 11 (invariants $T^{\sigma}(\mathbb{G}), T^{\sigma}(\widehat{\mathbb{G}})$ and $T^{\tau}(\widehat{\mathbb{G}})$ are determined by the remaining ones).
- If \mathbb{G} is compact then $\operatorname{Mod}(\mathbb{G})=T_{\text {Inn }}^{\tau}(\widehat{\mathbb{G}})=T_{\text {Inn }}^{\sigma}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}})=\mathbb{R}$.
- If additionally $L^{\infty}(\mathbb{G})$ is semifinite then $T_{\mathrm{Inn}}^{\sigma}(\mathbb{G})=T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G})=\mathbb{R}$.

EXAMPLE: THE QUANTUM $E(2)$ GROUP

With $\mathbb{G}=\mathrm{E}_{q}(2)$ for some $\left.q \in\right] 0,1[$ we have

$$
\begin{gathered}
T^{\tau}(\mathbb{G})=T_{\operatorname{Inn}}^{\tau}(\mathbb{G})=T_{\mathrm{Inn}}^{\tau}(\mathbb{G})=T^{\sigma}(\mathbb{G})=T^{\tau}(\widehat{\mathbb{G}})=T^{\sigma}(\widehat{\mathbb{G}})=\operatorname{Mod}(\widehat{\mathbb{G}})=\frac{\pi}{\log q} \mathbb{Z}, \\
T_{\operatorname{Inn}}^{\sigma}(\mathbb{G})=T_{\mathrm{Inn}}^{\sigma}(\mathbb{G})=T_{\operatorname{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\operatorname{Inn}}^{\sigma}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}})=\operatorname{Mod}(\mathbb{G})=\mathbb{R} .
\end{gathered}
$$

EXAMPLE: QUANTUM " $a z+b$ " GROUPS

Let \mathbb{G} be the quantum " $a z+b$ " group for the deformation parameter q in one of the three cases:
(1) $q=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{N}}$ with $N=6,8, \ldots$,
(2) $q \in] 0,1[$,
(3) $q=\mathrm{e}^{1 / \rho}$ with $\operatorname{Re} \rho<0, \operatorname{Im} \rho=\frac{N}{2 \pi}$ with $N= \pm 2, \pm 4, \ldots$.

Then

$$
\begin{gathered}
T_{\mathrm{Inn}}^{\tau}(\mathbb{G})=T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G})=T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\sigma}(\mathbb{G})=T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G})=T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}})=T_{\overline{\mathrm{Inn}}}^{\sigma}(\widehat{\mathbb{G}})=\mathbb{R}, \\
T^{\tau}(\mathbb{G})=T^{\tau}(\widehat{\mathbb{G}})=T^{\sigma}(\mathbb{G})=T^{\sigma}(\widehat{\mathbb{G}})=\operatorname{Mod}(\mathbb{G})=\operatorname{Mod}(\widehat{\mathbb{G}})= \begin{cases}\{0\} & \text { in cases (1) and © } 3 \\
\frac{\pi}{\log q} \mathbb{Z} & \text { in case (2) }\end{cases}
\end{gathered}
$$

EXAMPLE: U_{F}^{+}

Let \mathbb{G} be the quantum group U_{F}^{+}. Then $L^{\infty}(\mathbb{G})$ is a full factor so $\operatorname{Inn}\left(L^{\infty}(\mathbb{G})\right)=\overline{\operatorname{Inn}}\left(L^{\infty}(\mathbb{G})\right)$ (Vaes).

- \mathbb{G} is compact, so $\operatorname{Mod}(\mathbb{G})=T_{\operatorname{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}})=T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}})=\mathbb{R}$.
- If \mathbb{G} is not of Kac type $\left(F^{*} F=\mathbb{1}\right)$ then

$$
T_{\mathrm{Inn}}^{\tau}(\mathbb{G})=T_{\operatorname{Inn}}^{\tau}(\mathbb{G})=T^{\tau}(\mathbb{G})=\bigcap_{\Lambda \in \operatorname{Sp}\left(F^{*} F \otimes\left(F^{*} F\right)^{-1}\right) \backslash\{1\}} \frac{2 \pi}{\log (\Lambda)} \mathbb{Z}
$$

while $\operatorname{Mod}(\widehat{\mathbb{G}})=\bigcap_{\Lambda \in \operatorname{Sp}\left(F^{*} F\right) \backslash\left\{\lambda^{-1}\right\}} \frac{2 \pi}{\log \lambda+\log (\Lambda)} \mathbb{Z}$, where $\lambda=\sqrt{\frac{\operatorname{Tr}\left(\left(F^{*} F\right)^{-1} 1\right)}{\operatorname{Tr}\left(F^{*} F\right)}}$.

- If \mathbb{G} is not of Kac type then $L^{\infty}(\mathbb{G})$ is a type III_{μ} factor for some $\left.\left.\mu \in\right] 0,1\right]$ and $T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G})=T_{\mathrm{Inn}}^{\sigma}(\mathbb{G})=\frac{2 \pi}{\log \mu} \mathbb{Z}$ (otherwise $T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G})=T_{\mathrm{Inn}}^{\sigma}(\mathbb{G})=\mathbb{R}$).

REmARKs

- In the course of constructing families of $L^{\infty}(\mathbb{G})$ isomorphic to factors of type III, for any subgroup Γ of \mathbb{R} we constructed second countable compact quantum group \mathbb{K} such that $T_{\mathrm{Inn}}^{\tau}(\mathbb{K})=\Gamma$.
- The equality $T^{\tau}\left(\mathrm{U}_{F}^{+}\right)=T_{\operatorname{Inn}}^{\tau}\left(\mathrm{U}_{F}^{+}\right)$says that the compact quantum group U_{F}^{+} belongs to the class for which the following statement is true:

Conjecture (*)

If \mathbb{G} is a second countable compact quantum group and $T_{\text {Inn }}^{\tau}(\mathbb{G})=\mathbb{R}$ then \mathbb{G} is of Kac type.

- We were able to prove that this conjecture is true for many compact quantum groups including duals of second countable type I discrete quantum groups (e.g. q-deformations of compact semisimple Lie groups).

EXAMPLE: q-DEFORMATIONS

Let G be a compact semisimple Lie group with root system Φ and let $q \in] 0,1[$.

- Since G_{q} is compact we again have

$$
\operatorname{Mod}\left(G_{q}\right)=T_{\mathrm{Inn}}^{\tau}\left(\widehat{G_{q}}\right)=T_{\mathrm{Inn}}^{\tau}\left(\widehat{G_{q}}\right)=T_{\mathrm{Inn}}^{\sigma}\left(\widehat{G_{q}}\right)=T_{\overline{\mathrm{Inn}}}^{\sigma}\left(\widehat{G_{q}}\right)=\mathbb{R}
$$

- Furthermore $T_{\mathrm{Inn}}^{\sigma}\left(G_{q}\right)=T_{\mathrm{Inn}}^{\sigma}\left(G_{q}\right)=\mathbb{R}$ because $\mathrm{C}\left(G_{q}\right)$ is a C^{*}-algebra of type I .
- We have $T^{\tau}\left(G_{q}\right)=\frac{\pi}{\log q} \mathbb{Z}$ and

$$
T_{\operatorname{Inn}}^{\tau}\left(G_{q}\right)=T_{\frac{1}{\operatorname{Inn}}}^{\tau}\left(G_{q}\right)=\operatorname{Mod}\left(\widehat{G_{q}}\right)=\frac{\pi}{\Upsilon_{\Phi} \log q} \mathbb{Z}
$$

where Υ_{Φ} is a positive integer determined by Lie-theoretic data (see next two slides).

EXAMPLE: q-DEFORMATIONS (CONTINUED)

- Let $\Phi=\Phi_{1} \cup \cdots \cup \Phi_{l}$ be the decomposition of Φ into irreducible parts. Then

$$
\Upsilon_{\Phi}=\operatorname{gcd}\left(\Upsilon_{\Phi_{1}}, \ldots, \Upsilon_{\Phi_{l}}\right)
$$

- We have

type	group	range of n	Υ_{Φ}	$T_{\operatorname{Inn}}^{\tau}\left(G_{q}\right)$
A_{n}	$\mathrm{SU}(n+1)$	$n \geqslant 1$ odd	1	$\frac{\pi}{\log q} \mathbb{Z}$
		$n \geqslant 1$ even	2	$\frac{\pi}{2 \log q} \mathbb{Z}$
B_{n}	$\operatorname{Spin}(2 n+1)$	$n \geqslant 2$ odd	1	$\frac{\pi}{\log q} \mathbb{Z}$
		$n \geqslant 2$ even	2	$\frac{\pi}{2 \log q} \mathbb{Z}$
C_{n}	$\operatorname{Sp}(2 n)$	$n \geqslant 3$	2	$\frac{\pi}{2 \log q} \mathbb{Z}$
D_{n}	$\operatorname{Spin}(2 n)$	$n \geqslant 4$ odd	2	$\frac{\pi}{2 \log q} \mathbb{Z}$
		$n \geqslant 4$ even	1	$\frac{\pi}{\log q} \mathbb{Z}$

EXAMPLE: q-DEFORMATIONS (CONTINUED)

- And for the exceptional cases we have
- type $E_{6}: \Upsilon_{\Phi}=2$ and $T_{\operatorname{Inn}}^{\tau}\left(G_{q}\right)=\frac{\pi}{2 \log q} \mathbb{Z}$,
- type $E_{7}: \Upsilon_{\Phi}=1$ and $T_{\text {Inn }}^{\tau}\left(G_{q}\right)=\frac{\pi}{\log q} \mathbb{Z}$,
- type $E_{8}: \Upsilon_{\Phi}=2$ and $T_{\operatorname{Inn}}^{\tau}\left(G_{q}\right)=\frac{\pi}{2 \log q} \mathbb{Z}$,
- type $F_{4}: \Upsilon_{\Phi}=2$ and $T_{\operatorname{Inn}}^{\tau}\left(G_{q}\right)=\frac{\pi}{2 \log q} \mathbb{Z}$,
- type $G_{2}: \Upsilon_{\Phi}=2$ and $T_{\operatorname{Inn}}^{\tau}\left(G_{q}\right)=\frac{\pi}{2 \log q} \mathbb{Z}$.

Special case

- Consider the compact quantum group $\mathrm{SU}_{q}(3)$.
- Then $\Upsilon_{\Phi}=2$, so

$$
T_{\operatorname{Inn}}^{\tau}\left(\mathrm{SU}_{q}(3)\right)=\frac{\pi}{2 \log q} \mathbb{Z}
$$

while $T^{\tau}\left(\mathrm{SU}_{q}(3)\right)=\frac{\pi}{\log q} \mathbb{Z}$.

- This means that there are non-trivial inner scaling automorphisms.
- $\mathrm{SU}_{q}(3)$ does not have non-trivial one-dimensional representations, so these scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let G be such that $\Upsilon_{\Phi}=2$. Then a unitary implementing the scaling automorphism for $t=\frac{\pi}{2 \log q}$ does not belong to $\mathrm{C}\left(G_{q}\right)$. In particular, the restriction of this automorphism to $\mathrm{C}\left(G_{q}\right)$ is not inner.

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

PROPOSITION

Let Γ be a discrete group. Then the following are equivalent:
(1) Γ is i.c.c.,
(2) $L(\Gamma)$ is a factor,
(3) $\Delta_{\hat{\Gamma}}^{(n)}(L(\Gamma))^{\prime} \cap \underbrace{L(\Gamma) \bar{\otimes} \cdots \bar{\otimes} L(\Gamma)}_{n+1}=\mathbb{C} \mathbb{1}$ for some $n \in \mathbb{N}$,
(4) $\Delta_{\hat{\Gamma}}^{(n)}(L(\Gamma))^{\prime} \cap \underbrace{L(\Gamma) \bar{\otimes} \cdots \bar{\otimes} L(\Gamma)}_{n+1}=\mathbb{C} \mathbb{1}$ for all $n \in \mathbb{N}$.

PROPOSITION

Let \mathbb{G} be a locally compact quantum group and assume that

$$
\Delta_{\mathbb{G}}^{(n)}\left(L^{\infty}(\mathbb{G})\right)^{\prime} \cap \underbrace{L^{\infty}(\mathbb{G}) \bar{\otimes} \cdots \bar{\otimes} L^{\infty}(\mathbb{G})}_{n+1}=\mathbb{C} \mathbb{1}
$$

for some $n \in \mathbb{N}$. Then $L^{\infty}(\mathbb{G})$ is a factor.

DEFINITION

Let $\mathbb{\text { be }}$ a discrete quantum group. We say that $\mathbb{}$ is n-i.c.c. if

$$
\Delta_{\hat{\widetilde{ }}}^{(n)}(L^{\infty}(\hat{\widetilde{\widetilde{ }})})^{\prime} \cap \underbrace{L^{\infty}\left(\hat{\widetilde{\widetilde{ }})} \bar{\otimes} \cdots \bar{\otimes} L^{\infty}(\hat{\widetilde{\widetilde{ }}})\right.}_{n+1}=\mathbb{C} \mathbb{1} .
$$

PROPOSITION

Let $\mathbb{\text { be }}$ a discrete quantum group. If $\mathbb{\pi}$ is n-i.c.c. for some n then $\mathbb{}$ is m-i.c.c. for all natural $m \leqslant n$.

THEOREM

Let \mathbb{G} be a second countable compact quantum group whose dual is 1-i.c.c. Then conjecture (*) holds for \mathbb{G}.

- Recall that $\operatorname{Irr}\left(\mathrm{U}_{F}^{+}\right)=\mathbb{Z}_{+} \star \mathbb{Z}_{+}$with the two copies of \mathbb{Z}_{+}generated by the class α of the defining representation and $\beta=\bar{\alpha}$.
- For $x \in \mathbb{Z}_{+} \star \mathbb{Z}_{+}$put

$$
D_{x, n}= \begin{cases}\left\|\rho_{x}^{2}-\mathbb{1}\right\| \frac{\left\|\rho_{x}\right\|^{2(n+1)}-1}{\left\|\rho_{x}\right\|^{2}-1} & \rho_{x} \neq \mathbb{1} \\ 0 & \rho_{x}=\mathbb{1}\end{cases}
$$

- Let $D_{n}=\max \left\{D_{\alpha \beta, n}, D_{\beta \alpha, n}, D_{\alpha^{2} \beta, n}\right\}$.

THEOREM

If $D_{n}<1-\frac{1}{\sqrt{2}}$ and $\frac{2\left(7-4 D_{n}\right) D_{n}}{2\left(1-D_{n}\right)^{2}-1}<\frac{1}{\sqrt{n+1}}$ then $\widehat{\mathrm{U}_{F}^{+}}$is n-i.c.c.

THEOREM

Take $n \in \mathbb{N}$ and write $c=\max \left\{\left\|\lambda F^{*} F-\mathbb{1}\right\|,\left\|\left(\lambda F^{*} F\right)^{-1}-\mathbb{1}\right\|\right\}$, where $\lambda=\sqrt{\frac{\operatorname{Tr}\left(\left(F^{*} F\right)^{-1}\right)}{\operatorname{Tr}\left(F^{*} F\right)}}$. If

$$
\sqrt{n}(n+1) c(2+c)(1+c)^{4+6 n}<\frac{1}{72}
$$

then $\widehat{\mathrm{U}_{F}^{+}}$is n-i.c.c.

- A position for one year starting March 2024 is being announced.
- Please e-mail me if you are interested.

Thank you for your attention

