# RESTRICTING REPRESENTATIONS TO A NORMAL SUBGROUP

COMPACT QUANTUM GROUPS
ALFRIED KRUPP WISSENSCHAFTSKOLLEG GREIFSWALD

Piotr M. Sołtan (joint work with M. Kalantar, P. Kasprzak, & A. Skalski)

> Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

> > July 11, 2016

## A.H. Clifford (1937), also G. Frobenius (1898): let

- G be a group,
- $K \subset G$  a normal subgroup,
- $U: G \longrightarrow B(\mathcal{H}_U)$  a finite dimensional irreducible representation.

Restricting U to K we obtain a finite dimensional representation  $U|_K$  of K on  $\mathscr{H}_U$ .

#### **THEOREM**

- ① The representation  $U\big|_K$  is either irreducible or fully reducible,
- ② in case  $U|_K$  is reducible, its irreducible components constitute precisely one orbit of the action of G on Irr K, each entering  $U|_K$  with the same multiplicity.
  - *G* acts on Irr *K* in the following way:

$$(V \cdot g)(k) = V(gkg^{-1}), \qquad V \in Irr K, \ g \in G, \ k \in K.$$

- G will denote a compact quantum group.
- A **representation** of  $\mathbb G$  on a Hilbert space  $\mathscr H$  is a unitary  $u \in \mathrm{B}(\mathscr H) \otimes \mathrm{C}(\mathbb G)$  such that

$$(\mathrm{id}\otimes\Delta)u=u_{12}u_{13}$$

or in other words

$$u = \begin{bmatrix} u_{1,1} & \dots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \dots & u_{n,n} \end{bmatrix}$$

with 
$$\Delta(u_{i,j}) = \sum_{k=1}^n u_{i,k} \otimes u_{k,j}$$
.

• All representations are fully reducible.

- Let  $\{u^{\alpha}\}_{{\alpha}\in Irr\,\mathbb{G}}$  be a complete collection of representatives of equivalence classes of irreps of G,
- define

$$\mathbf{W}^{\mathbb{G}} = \bigoplus_{\alpha \in \operatorname{Irr} \mathbb{G}} \mathbf{u}^{\alpha} \in \ell^{\infty}(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G}),$$

where 
$$\ell^{\infty}(\widehat{\mathbb{G}}) = \bigoplus_{\alpha \in Irr \mathbb{G}} B(\mathscr{H}_{\alpha})$$
.

## **FACT**

Any representation of  $\mathbb{G}$  is of the form

$$u^{\pi} = (\pi \otimes id)W^{\mathbb{G}}$$

for a unique representation of  $\pi: \ell^{\infty}(\widehat{\mathbb{G}}) \longrightarrow B(\mathscr{H}_{\pi})$ .

•  $\ell^{\infty}(\widehat{\mathbb{G}})$  has a coproduct  $\widehat{\Delta}$  such that  $(\widehat{\Delta} \otimes \mathrm{id})W^{\mathbb{G}} = W_{23}^{\mathbb{G}}W_{13}^{\mathbb{G}}$ .

- We sometimes speak about  $\pi \colon \ell^{\infty}(\widehat{\mathbb{G}}) \longrightarrow B(\mathscr{H}_{\pi})$  as a representation of  $\mathbb{G}$ .
- The irreducible representations correspond to projections

$$\ell^{\infty}(\widehat{\mathbb{G}}) = \bigoplus_{\alpha \in \operatorname{Irr} \mathbb{G}} B(\mathscr{H}_{\alpha}) \longrightarrow B(\mathscr{H}_{\alpha_{0}})$$

for some  $\alpha_0 \in \operatorname{Irr} \mathbb{G}$ .

- Irreps of  $\mathbb{G}$  are thus in bijection with the set of minimal central projections in  $\ell^{\infty}(\widehat{\mathbb{G}})$ . For  $\alpha \in \operatorname{Irr} \mathbb{G}$  we write  $p_{\alpha}$  for the corresponding projection.
- Summary of notation:

$$\pi \colon \ell^{\infty}(\widehat{\mathbb{G}}) \longrightarrow \mathrm{B}(\mathscr{H}_{\pi}), \quad u^{\pi} = (\pi \otimes \mathrm{id})\mathrm{W}^{\mathbb{G}}, \quad p_{\pi} \in \ell^{\infty}(\widehat{\mathbb{G}}).$$

- $\mathbb{K}$  is a closed quantum subgroup of  $\mathbb{G}$  if  $\ell^{\infty}(\widehat{\mathbb{K}})$  is embedded as a subalgebra of  $\ell^{\infty}(\widehat{\mathbb{G}})$  in a  $\widehat{\Delta}$ -preserving way.
- If  $\pi \colon \ell^{\infty}(\widehat{\mathbb{G}}) \longrightarrow B(\mathscr{H}_{\pi})$  is a representation then the **restriction of**  $\pi$  **to**  $\mathbb{K}$  is the representation of  $\mathbb{K}$  corresponding to

$$\pi|_{\ell^{\infty}(\widehat{\mathbb{K}})} \colon \ell^{\infty}(\widehat{\mathbb{K}}) \to B(\mathscr{H}_{\pi}).$$

•  $\mathbb{K}$  is **normal** if  $W^{\mathbb{G}}(\ell^{\infty}(\widehat{\mathbb{K}}) \otimes \mathbb{1})W^{\mathbb{G}^*} \subset \ell^{\infty}(\widehat{\mathbb{K}}) \bar{\otimes} L^{\infty}(\mathbb{G})$ .

## **THEOREM**

If  $\mathbb{K}$  is normal then

$$\ell^\infty(\widehat{\mathbb{K}})\ni x\longmapsto W^\mathbb{G}(x\otimes \mathbb{1})W^{\mathbb{G}^*}\in \ell^\infty(\widehat{\mathbb{K}})\,\bar{\otimes}\,\,L^\infty(\mathbb{G}).$$

restricts to an action of  $\mathbb G$  on  $\mathscr Z(\ell^\infty(\widehat{\mathbb K}))$ .

Alternative way of expressing normality of  $\ensuremath{\mathbb{K}}$  is

$$W^{\mathbb{G}^*}\big(\ell^\infty(\widehat{\mathbb{K}})\otimes 1\!\!1\big)W^{\mathbb{G}}\subset \,\ell^\infty(\widehat{\overline{\mathbb{K}}})\,\bar{\otimes}\, L^\infty(\mathbb{G}).$$

Take  $y \in \ell^{\infty}(\widehat{\mathbb{K}})$ . For  $x \in \mathscr{Z}(\ell^{\infty}(\widehat{\mathbb{K}}))$  we have

$$\begin{split} \mathbf{W}^{\mathbb{G}}(x \otimes 1) \mathbf{W}^{\mathbb{G}^*}(y \otimes 1) &= \mathbf{W}^{\mathbb{G}}(x \otimes 1) \mathbf{W}^{\mathbb{G}^*}(y \otimes 1) \mathbf{W}^{\mathbb{G}} \mathbf{W}^{\mathbb{G}^*} \\ &= \mathbf{W}^{\mathbb{G}} \mathbf{W}^{\mathbb{G}^*}(y \otimes 1) \mathbf{W}^{\mathbb{G}}(x \otimes 1) \mathbf{W}^{\mathbb{G}^*} \\ &= (y \otimes 1) \mathbf{W}^{\mathbb{G}}(x \otimes 1) \mathbf{W}^{\mathbb{G}^*} \end{split}$$

which means that the left leg of  $W^{\mathbb{G}}(x \otimes 1)W^{\mathbb{G}^*}$  belongs to  $\mathscr{Z}\big(\ell^\infty(\widehat{\mathbb{K}})\big)$ . The fact that  $x \longmapsto W^{\mathbb{G}}(x \otimes 1)W^{\mathbb{G}^*}$  is an action of  $\mathbb{G}$  on  $\mathscr{Z}\big(\ell^\infty(\widehat{\mathbb{K}})\big)$  is easily checked.

- If  $\mathbb{K}$  is a normal closed quantum subgroup of  $\mathbb{K}$  then  $\mathbb{G}$  acts of  $\mathscr{Z}(\ell^{\infty}(\widehat{\mathbb{K}}))$ . Call this action  $\alpha \colon \ell^{\infty}(\mathbb{N}) \longrightarrow \ell^{\infty}(\mathbb{N}) \, \bar{\otimes} \, L^{\infty}(\mathbb{G})$ .
- $\mathscr{Z}(\ell^{\infty}(\widehat{\mathbb{K}}))$  is isomorphic to  $\ell^{\infty}(\mathbb{N})$ .
- Let  $(e_i)_{i\in\mathbb{N}}$  be the "standard basis" of  $\ell^{\infty}(\mathbb{N})$ . We can express the action  $\alpha$  as

$$\alpha(e_j) = \sum_{i=1}^{\infty} e_i \otimes s_{i,j}$$

for some elements  $\{s_{i,j}\}_{i,j\in\mathbb{N}}$  of  $L^{\infty}(\mathbb{G})$  ( $s_i$ 's are projections and the sum is strongly convergent).

• Easy to see form unitality of  $\alpha$  that

$$\sum_{i=1}^{\infty} s_{i,j} = \mathbb{1}, \qquad i \in \mathbb{N}.$$

#### **DEFINITION**

Define a subset  $\mathcal{R}$  of  $\mathbb{N} \times \mathbb{N}$  by

$$((k,l)\in\mathscr{R})$$
  $\iff$   $(s_{k,l}\neq 0).$ 

#### THEOREM

*The subset*  $\mathcal{R} \subset \mathbb{N} \times \mathbb{N}$  *is an equivalence relation.* 

- We interpret the equivalence as being in the same orbit of the action of  $\mathbb{G}$ .
- ullet In case of the action of  $\Bbb G$  on  ${\rm Irr}\,\Bbb K$  this is the action on irreps by automorphisms induced on  $\mathbb{K}$  by inner automorphisms of  $\mathbb{G}$

## **PROPOSITION**

For any  $i \in \mathbb{N}$  let [i] be the class of i w.r.t. the relation  $\mathcal{R}$ . The element

$$x = \sum_{j \in [i]} e_j$$

of  $\ell^{\infty}(\mathbb{N})$  is invariant:

$$\alpha(x) = x \otimes 1$$
.

Moreover  $\alpha$  restricts to an action of  $\mathbb{G}$  on  $x \ell^{\infty}(\mathbb{N}) = \ell^{\infty}([i])$ .

## **COROLLARY**

If  $\alpha$  is ergodic, then  $\mathcal{R}$  is a total relation.

#### **THEOREM**

There does not exist an ergodic action of a compact quantum group on  $\ell^{\infty}(\mathbb{N})$ .

## PROOF.

We have an invariant faithful state  $\rho$  on  $\ell^{\infty}(\mathbb{N})$ . We have

$$\sum_{i=1}^{\infty} \varrho(e_i) s_{i,j} = \varrho(e_j) \mathbb{1},$$
 (invariance)  $\sum_{i=1}^{\infty} \varrho(e_i) = 1$  ( $\varrho$  is a state)

Take  $\xi$  a unit vector in the range of  $\mathbf{s}_{i,j}$  and apply  $\langle \xi | \cdot \xi \rangle$  to both sides of the first equation

$$\varrho(\mathbf{e}_j) + \sum_{i \neq j} \varrho(\mathbf{e}_i) \langle \xi | \mathbf{s}_{i,j} \xi \rangle = \varrho(\mathbf{e}_j).$$

Since all  $\varrho(e_i)$  are non zero, we find that for  $i \neq j$  the range of  $s_{i,j}$ is orthogonal to the range of  $s_{i,i}$ .

## PROOF.

Fix  $k \neq i$  and let  $\eta$  be a unit vector in the range of  $s_{k,i}$ . Apply  $\langle \eta | \cdot \eta \rangle$  to both sides of

$$\varrho(e_j)\mathbb{1} = \sum_{i=1}^{\infty} \varrho(e_i) s_{i,j}$$

to get

$$\varrho(e_j) = \varrho(e_j) \left\langle \eta \middle| s_{j,j} \eta \right\rangle + \varrho(e_k) \left\langle \eta \middle| s_{k,j} \eta \right\rangle + \sum_{k \neq i \neq j}^{\infty} \varrho(e_i) \left\langle \eta \middle| s_{i,j} \eta \right\rangle.$$

The first term on the right is 0, the second is  $\rho(e_k)$  and the third is  $\geq 0$ , so  $\varrho(e_j) \leq \varrho(e_k)$ . By symmetry all  $\varrho(e_i)$ 's are equal which contradicts  $\sum_{i=1}^{\infty} \varrho(e_i) = 1$ .

#### **COROLLARY**

- The orbits of  $\alpha$  are finite,
- the counting measure on  $\mathbb{N}$  is invariant for  $\alpha$ , in particular

$$\sum_{i=1}^{\infty} s_{i,j} = \sum_{i \in [i]} s_{i,j} = \mathbb{1}, \qquad j \in \mathbb{N}.$$

Let  $\mathbb{K}$  be a normal closed quantum subgroup of the compact quantum group  $\mathbb{G}$ . Let  $\pi$  be an irreducible representation of  $\mathbb{G}$ . Then there exists an irreducible representation  $\sigma$  of  $\mathbb{K}$  such that

- ① for all irreducible representations  $\tau$  of  $\mathbb{K}$  we have  $\pi(p_{\tau}) \neq 0$  if and only if  $\tau \in [\sigma]$ ,
- ② we have  $\pi\left(\sum\limits_{
  ho\in[\sigma]}p_{
  ho}\right)=1$  .
  - This becomes Clifford's theorem in the classical case.
  - Classically degrees of all irreps in one orbit are equal.

Assume  $\mathbb{G}$  is of Kac type. Then if  $\sigma_1$  and  $\sigma_2$  are irreducible representations of  $\mathbb{K}$  in the same orbit under the action of  $\mathbb{G}$  then for any irreducible representation  $\pi$  of  $\mathbb{G}$  we have

$$\dim \pi(p_{\sigma_1}) = \dim \pi(p_{\sigma_2}).$$

• This means that the dimension of isotypical components corresponding to  $\sigma_1$  and  $\sigma_2$  are the same in the restriction of  $\pi$  to  $\mathbb{K}$ .

Let  $\sigma \in \operatorname{Irr} \mathbb{K}$ . Then the sum

$$\sum_{
ho \in [\sigma]} p_
ho$$

is the central support of  $p_{\sigma}$  in  $\ell^{\infty}(\widehat{\mathbb{G}})$ .

• Note that all projections above are central in  $\ell^{\infty}(\widehat{\mathbb{K}})$ .

- Let  $\Gamma$  be a discrete quantum group and  $\Lambda$  its closed quantum subgroup.
- Then  $\mathbb{A}$  is discrete and  $\operatorname{Irr} \widehat{\mathbb{A}} \subset \operatorname{Irr} \widehat{\mathbb{F}}$ .
- R. Vergnioux and later R. Vergnioux & C. Voigt used the following relation on  $Irr \widehat{\Gamma}$ :

$$\left(\alpha \approx \beta\right) \Longleftrightarrow \left(\exists \, \gamma \in \operatorname{Irr} \widehat{\mathbb{A}} \text{ s.t. } \beta \subset \alpha \oplus \gamma\right)$$

- $\bullet \approx$  is an equivalence relation.
- For a class *A* of this relation we write

$$p_A = \sum_{lpha \in A} p_lpha.$$

• The set of such  $p_A$ 's over all distinct classes is a collection of pairwise orthogonal central projections in  $\ell^{\infty}(\mathbb{F})$  summing up to  $\mathbb{1}$ .

- Consider a particular case:
  - $\quad \mathbb{\Gamma} = \widehat{\mathbb{G}},$
  - $\bullet \ \ \mathbb{\Lambda} = \widehat{\mathbb{G}/\mathbb{K}}.$

Let A be a class of the equivalence relation  $\approx$  on Irr  $\mathbb{G}$ . Then there exists an irreducible representation  $\sigma$  of  $\mathbb{K}$  such that

$$p_A = \sum_{
ho \in [\sigma]} p_
ho.$$

In particular

$$z(p_{\sigma}) = \sum_{lpha \in A} p_{lpha}$$

is the expression of the central projection  $\mathbf{z}(p_{\sigma})$  as a sum of orthogonal minimal central projections.

Thank you for your attention.