QUANTUM FAMILIES OF MAPS

BANACH ALGEBRAS 2019 UNIVERSITY OF MANITOBA

Piotr M. Sołtan

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

July 17, 2019

P.M. SOLTAN (WARSAW)

JULY 17, 2019 1/20

1 QUANTUM SPACES

- The Gelfand-Naimark Duality
- Quantum spaces
- Classical families of maps
- Quantum families of maps

2 QUANTUM FAMILIES OF MAPS

- Quantum family of all maps
- Composition of quantum families
- Invariant states
- Quantum commutants
- Quantum gauge groups

THEOREM

The assignment to a locally compact topological space X the C^{*}-algebra $C_0(X)$ defines an anti-equivalence of categories between

 the category of commutative C*-algebras with morphisms of C*-algebras

and

- *the category of locally compact topological spaces with continuous maps.*
- A locally compact space is by definition Hausdorff.
- The "inverse" functor is defined as the assignment to a commutative C*-algebra A its spectrum \hat{A} .
- A morphism of C*-algebras from A to B is a *-homomorphism $\Phi : A \to M(B)$ such that $\overline{\Phi(A)B} = B$.

L.C. Top. Sp.	Commutative C*-algs.
X	$C_0(X)$
$\varphi:X\to Y$	$\Phi \in \mathrm{Mor}\big(\mathrm{C}_0(Y)\mathrm{C}_0(X)\big)$
X – compact	$C_0(X)$ – unital
X – finite	$C_0(X)$ – finite-dimensional
X – metrizable	$C_0(X)$ – separable
probab. measure on X	state on $C_0(X)$
X imes Y	$\mathrm{C}_0(X)\otimes\mathrm{C}_0(Y)$

• Note: $M(C_0(X)) = C_b(X)$.

A **Guantum space** is an object of the category dual to the category of C*-algebras.

- A theorem about quantum spaces is nothing else than a theorem about C*-algebras.
- A quantum space \mathcal{X} is called **compact** if the corresponding C*-algebra $C_0(\mathcal{X})$ is unital (in this case we write $C(\mathcal{X})$).
- Similarly, **finite** quantum spaces correspond to finite-dimensional C*-algebras.
- Classical (ordinary) locally compact spaces are particular examples of quantum spaces.

THEOREM (JAMES R. JACKSON, 1952)

Let *X*, *Y* and *Z* be topological spaces such that *X* is Hausdorff and *Z* is locally compact. Then the assignment to any $\psi \in C(X \times Z, Y)$ of the map

$$Z \ni \mathbf{z} \longmapsto \psi(\cdot, \mathbf{z}) \in \mathbf{C}(X, Y)$$

is a homeomorphism of $C(X \times Z, Y)$ onto C(Z, C(X, Y)) with all three spaces of maps topologized by their respective compact-open topologies.

• Assume that *X*, *Y* and *Z* are locally compact. Then a continuous family of continuous maps from *X* to *Y* indexed by *Z*, i.e. a continuous map from *Z* to C(*X*, *Y*) is the same thing as an element of

$$\operatorname{Mor}(\operatorname{C}_0(Y), \operatorname{C}_0(X) \otimes \operatorname{C}_0(Z)).$$

Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be quantum spaces. A **quantum family of maps** from \mathcal{X} to \mathcal{Y} indexed by \mathcal{Z} is an element

 $\Phi \in \mathrm{Mor}\big(\mathrm{C}_0(\boldsymbol{\mathcal{Y}}), \mathrm{C}_0(\boldsymbol{\mathcal{X}}) \otimes \mathrm{C}_0(\boldsymbol{\mathcal{Z}})\big).$

- A quantum family of maps is a very general object.
- Consequently interesting quantum families of maps must have additional features.
- How about a quantum version of the space C(*X*, *Y*) of all continuous maps from *X* to *Y*?

Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be quantum spaces and let $\Phi \in \operatorname{Mor}(C_0(\mathcal{Y}), C_0(\mathcal{X}) \otimes C_0(\mathcal{Z}))$ be a quantum family of maps. We say that

 $\bullet~ {\mathcal Z}$ is the quantum~space~of~all~maps from ${\mathcal X}$ to ${\mathcal Y}$ and

• Φ is the **quantum family of all maps** from \mathcal{X} to \mathcal{Y} if for any quantum space \mathcal{Z}' and any quantum family $\Psi \in \operatorname{Mor}(C_0(\mathcal{Y}), C_0(\mathcal{X}) \otimes C_0(\mathcal{Z}'))$ there exists a unique $\Lambda \in \operatorname{Mor}(C_0(\mathcal{Z}), C_0(\mathcal{Z}'))$ such that

$$\begin{array}{c} C_0(\mathcal{Y}) & \xrightarrow{\Phi} & C_0(\mathcal{X}) \otimes C_0(\mathcal{Z}) \\ \\ \\ \\ \\ \\ \\ \\ C_0(\mathcal{Y}) & \xrightarrow{\Psi} & C_0(\mathcal{X}) \otimes C_0(\mathcal{Z}') \end{array}$$

- Let *X*, *Y* and *Z* be locally compact spaces. For the quantum space of all maps from *X* to *Y* to exist it is necessary that C(X, Y) be locally compact in the compact-open topology.
- This will certainly be the case when *X* is finite and *Y* is compact.

THEOREM (S.L. WORONOWICZ 1979, P.S. 2009)

Let \mathcal{X} be a finite quantum space and let \mathcal{Y} be a compact quantum space such that $C(\mathcal{Y})$ is finitely generated. Then the quantum space of all maps from \mathcal{X} to \mathcal{Y} exists and it is compact.

- Let \mathcal{Z} be the quantum space of all maps $\mathcal{X} \to \mathcal{Y}$.
- The universal family

$$\boldsymbol{\Phi} \in \mathrm{Mor}\big(C(\boldsymbol{\mathcal{Y}}), C(\boldsymbol{\mathcal{X}}) \otimes C(\boldsymbol{\mathcal{Z}})\big)$$

corresponds to the evaluation mapping

$$X\times \mathrm{C}(X,Y)\ni (\mathbf{X},\psi)\longmapsto \psi(\mathbf{X})\in Y$$

for classical spaces X and Y.

EXAMPLE

- Let *X* be the classical two-point space.
- The classical space of all maps $X \to X$ is a four-point space.
- The quantum space \mathcal{Z} of all maps $X \to X$ exists and

$$C(\boldsymbol{\mathcal{Z}}) \cong \mathbb{C}^2 * \mathbb{C}^2 \cong C^*(\mathbb{Z}_2 * \mathbb{Z}_2) \cong C(\mathbb{T}) \rtimes \mathbb{Z}_2$$
$$\cong \left\{ f \in C([0,1], M_2) \, \middle| \, f(0), f(1) \text{ are diagonal} \right\}$$

and $\Phi : \mathbb{C}^2 \to \mathbb{C}^2 \otimes C(\mathcal{Z})$ maps $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ to $\begin{bmatrix} 1\\ 0 \end{bmatrix} \otimes p + \begin{bmatrix} 0\\ 1 \end{bmatrix} \otimes q$, where

$$p(t) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \qquad q(t) = \frac{1}{2} \begin{bmatrix} 1 - \cos \pi t & i \sin \pi t \\ -i \sin \pi t & 1 + \cos \pi t \end{bmatrix}$$

Let $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3, \mathcal{P}_1$ and \mathcal{P}_2 be quantum spaces and let

$$\begin{split} \Psi_{12} &\in \mathrm{Mor}\big(\mathrm{C}(\mathcal{X}_2), \mathrm{C}(\mathcal{X}_1) \otimes \mathrm{C}(\mathcal{P}_1)\big), \\ \Psi_{23} &\in \mathrm{Mor}\big(\mathrm{C}(\mathcal{X}_3), \mathrm{C}(\mathcal{X}_2) \otimes \mathrm{C}(\mathcal{P}_2)\big) \end{split}$$

be quantum families of maps. The **composition** of Ψ_{32} and Ψ_{21} is

 $\Psi_{12} \vartriangle \Psi_{23} = (\Psi_{12} \otimes id) \circ \Psi_{23} \in \operatorname{Mor} \big(C(\boldsymbol{\mathcal{X}}_3), C(\boldsymbol{\mathcal{X}}_1) \otimes (C(\boldsymbol{\mathcal{P}}_2) \otimes C(\boldsymbol{\mathcal{P}}_2)) \big).$

- The composition of classical families (with classical parameter spaces) is exactly the family of all compositions of elements of both families.
- Composition is associative:

$$(\Psi_{12} \bigtriangleup \Psi_{23}) \bigtriangleup \Psi_{34} = \Psi_{12} \bigtriangleup (\Psi_{23} \bigtriangleup \Psi_{34}).$$

THEOREM

Let \mathcal{X} be a finite quantum space and let \mathcal{Z} be the quantum space of all maps $\mathcal{X} \to \mathcal{X}$ with universal family

 $\Phi \in Mor(C(\mathcal{X}), C(\mathcal{X}) \otimes C(\mathcal{Z})).$

Then there exists a unique

 $\Delta \in \mathrm{Mor}\big(\mathrm{C}(\boldsymbol{\mathcal{Z}}), \mathrm{C}(\boldsymbol{\mathcal{Z}}) \otimes \mathrm{C}(\boldsymbol{\mathcal{Z}})\big)$

such that $(id \otimes \Delta) \circ \Phi = \Phi \triangle \Phi$. This defines on \mathcal{Z} a structure of a compact quantum semigroup.

- We have $(id \otimes \Delta) \circ \Delta = (\Delta \otimes id) \circ \Delta$.
- \mathcal{Z} is not a compact quantum group (unless dim C(\mathcal{X}) = 1).
- For \mathcal{X} a two-point space

$$\begin{split} \Delta(p) &= p \otimes (\mathbb{1} - p) + \mathbb{1} \otimes \mathbb{1} + (\mathbb{1} - p) \otimes p \\ \Delta(q) &= q \otimes (\mathbb{1} - q) + \mathbb{1} \otimes \mathbb{1} + (\mathbb{1} - q) \otimes q. \end{split}$$

- \mathcal{X} finite quantum space, ω state on $C(\mathcal{X})$.
- A quantum family of maps

$$\Psi \in \mathrm{Mor}\big(C(\boldsymbol{\mathcal{X}}), C(\boldsymbol{\mathcal{X}}) \otimes C(\boldsymbol{\mathcal{M}})\big)$$

preserves ω (or ω is **invariant** for Ψ) if

$$(\omega \otimes \mathrm{id})\Psi(a) = \omega(a)\mathbb{1}, \qquad a \in \mathrm{C}(\mathcal{X}).$$

• The **quantum family of all maps preserving** ω is a quantum family

$$\Phi_{\omega} \in \operatorname{Mor}(C(\mathcal{X}), C(\mathcal{X}) \otimes C(\mathcal{Z}_{\omega}))$$

such that for any quantum family Ψ preserving ω (as above) there exists a unique $\Gamma : C(\mathcal{Z}_{\omega}) \to C(\mathcal{M})$ such that

$$\begin{array}{ccc} C_{0}(\mathcal{X}) & \xrightarrow{\Phi_{\omega}} & C_{0}(\mathcal{X}) \otimes C_{0}(\mathcal{Z}_{\omega}) \\ & & & & \downarrow^{id\otimes\Gamma} \\ C_{0}(\mathcal{X}) & \xrightarrow{\Psi} & C_{0}(\mathcal{X}) \otimes C_{0}(\mathcal{M}) \end{array}$$

EXAMPLE

- Put $X_n = \{1, ..., n\}.$
- Let ω be the uniform probability measure on X_n .
- Then
 - the quantum space \mathcal{Z}_{ω} of all maps $X_n \to X_n$ preserving ω is the quantum permutation group S_n^+ ,
 - the universal family

$$\Phi_{\omega} \in \operatorname{Mor}(\operatorname{C}(X_n), \operatorname{C}(X_n) \otimes \operatorname{C}(\boldsymbol{\mathcal{Z}}_{\omega}))$$

is the action of S_n^+ on X_n .

Let $\boldsymbol{\mathcal{X}}$ be a finite quantum space and let

$$\begin{split} \Psi_1 &\in \operatorname{Mor} \big(C(\boldsymbol{\mathcal{X}}), C(\boldsymbol{\mathcal{X}}) \otimes C(\boldsymbol{\mathcal{P}}_1) \big) \\ \Psi_2 &\in \operatorname{Mor} \big(C(\boldsymbol{\mathcal{X}}), C(\boldsymbol{\mathcal{X}}) \otimes C(\boldsymbol{\mathcal{P}}_2) \big) \end{split}$$

be a quantum families of maps. We say that Ψ_1 and Ψ_2 **commute** if

$$\Psi_1 \bigtriangleup \Psi_2 = (\mathrm{id} \otimes \chi) \circ (\Psi_2 \bigtriangleup \Psi_1),$$

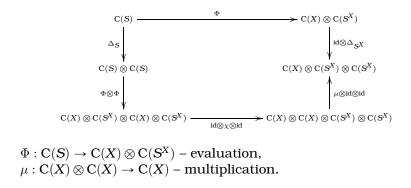
where $\chi : C(\mathcal{P}_2) \otimes C(\mathcal{P}_1) \to C(\mathcal{P}_1) \otimes C(\mathcal{P}_2)$ is the flip.

THEOREM

For any quantum family $\Psi \in Mor(C(\mathcal{X}), C(\mathcal{X}) \otimes C(\mathcal{P}))$ there exists a universal quantum family $\Phi_{\Psi} \in Mor(C(\mathcal{X}), C(\mathcal{X}) \otimes C(\mathcal{Z}_{\Psi}))$ commuting with Ψ .

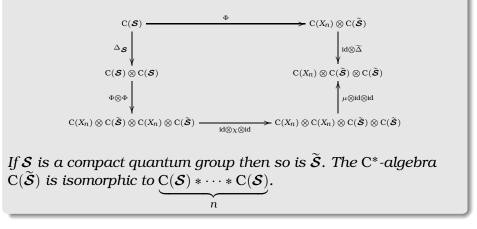
P.M. SOŁTAN (WARSAW)

- Classically if *X* is a topological space and *S* is a topological semigroup then C(X, S) has a structure of a topological semigroup.
- For simplicity let $X = \{1, \ldots, n\}$.
- If S is a compact semigroup then $C(X, S) = S^X$ is a compact semigroup and comultiplication on $C(S^X)$ is the unique Δ_{S^X} such that



THEOREM (M.M. SADR, P.S.)

Let S be a compact quantum semigroup and let \tilde{S} be the quantum space of all maps $X_n \to S$. Then there exists a unique $\tilde{\Delta}$ such that



- For a non-classical finite quantum space *X* the diagram defining comultiplication on the quantum space of all maps *X* → *S* makes no sense because *µ* is not a homomorphism.
- Nevertheless the quantum space of all maps from \mathcal{X} to \mathcal{S} exists...

EXAMPLE

- Consider \mathcal{X} such that $C(\mathcal{X}) = M_2$ and take $\mathcal{S} = \mathbb{Z}_2$ (classical finite group).
- Let $\widetilde{\mathcal{S}}$ be the quantum space of all maps $\mathcal{X} \to \mathcal{S}$.
- Then C(*S̃*) is the universal unital C*-algebra generated by three elements *p*, *q* and *z* with relations

$$p = p^*,$$
 $p = p^2 + z^* z,$ $zp = (1-q)z,$
 $q = q^*,$ $q = q^2 + zz^*.$

• $C(\widetilde{\boldsymbol{\mathcal{S}}})$ does not admit **any** compact quantum group structure.

Thank you for your attention.