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These notes were written for the letures of Statistial Physis at the Master ourse at

the Faulty of Physis at the University of Warsaw. The notes do not refer to the original
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of many other sattered soures.

2



Contents

1 Thermodynamics 5

1.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 State funtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Internal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Seond Law of Thermodynamis (SLT) . . . . . . . . . . . . . . . . . . . . 9

1.6 Carnot yle and absolute temperature . . . . . . . . . . . . . . . . . . . . 9

2 Thermodynamical processes 13

2.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Equations of state (EoS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Thermodynamial potentials . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Thermodynamial inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Thermodynamical processes 19

3.1 Thermodynamial identities . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Joule-Thomson e�et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Entropy of an Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Entropy of the VdW gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Entropy of the gas of photons . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Phase transitions 25

4.1 Chemial potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Clausius-Clapeyron equation . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Phase transition in VdW equation of state . . . . . . . . . . . . . . . . . . 27

4.4 Critial point in VdW equation of state . . . . . . . . . . . . . . . . . . . 28

4.5 Critial exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Classical statistical physics 33

5.1 Liouville theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Poinar�e reurrene theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Liouville's equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Derivation of the Gibbs-Boltzmann fator . . . . . . . . . . . . . . . . . . 36

3



Contents

7 Classical statistical physics 39
7.1 Miroanonial ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 Canonial ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Grand canonical ensemble 43
8.1 Classial grand anonial ensemble . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Quantum grand anonial ensemble . . . . . . . . . . . . . . . . . . . . . 43

8.3 Plank distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.4 Distributions at low temperatures . . . . . . . . . . . . . . . . . . . . . . 46

9 Bose-Einstein condensates and Chandrasekhar limit 47
9.1 Bose-Einstein ondensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.2 White dwarfs { Chandrasekhar limit . . . . . . . . . . . . . . . . . . . . . 48

9.3 Small white dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Imperfect gases 53
10.1 Partition funtion with interations . . . . . . . . . . . . . . . . . . . . . . 53

10.2 Approximations of the interating partition funtion . . . . . . . . . . . . 53

10.3 Cluster expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.4 Hard disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11 Debye theory of solids 59
11.1 Equipartition of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.2 Debye theory of spei� heat of solids . . . . . . . . . . . . . . . . . . . . 60

11.3 Eletroni spei� heat in metals . . . . . . . . . . . . . . . . . . . . . . . 64

12 Thermodynamics of the Universe 67
12.1 Temperature in the Universe . . . . . . . . . . . . . . . . . . . . . . . . . 67

13 Thermodynamics of magnetic systems 71
13.1 Thermodynamis of the magneti �eld . . . . . . . . . . . . . . . . . . . . 71

13.2 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13.3 Ising model in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

13.4 Ising model in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

14 Applications 79
14.1 Osmoti pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

14.2 Pressure and temperature in the Sun . . . . . . . . . . . . . . . . . . . . . 80

15 Appendix 83
15.1 Di�erential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

15.2 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

15.3 Areas and volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

15.4 Legendre transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

15.5 Maxwell relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4



1 Thermodynamics

1.1 Introduction

The enormous suess of the Newton's equations with the subsequent development of

eletrodynamis did not touh large part of everyday's life experiene like boiling of

water or burning wood. Wherever there was a large number of partiles (in the mod-

ern language) these equations of Newton or Coulomb had no hane of explaining any

phenomena involved. In the XIXth entury the e�ort to �ll this gap was undertaken by

people not onneted to physis or mathematis { the beer brewer and a dotor. They

notied that the work done on any objet is somehow related to heat, although the last

notion was very vague. It has taken quite some time to start to de�ne objets and �nd

relations between work, heat transfer, temperature et.

The �rst observation done millennia ago is that a body left alone in some favorable

onditions attains a state that is stable (or metastable as we now know). It was a ruial

observation that even if we start with a ompliated state of a large marosopi body

requiring a lot of data to desribe it one the stable state is attained it is independent of

the path leading to it and of initial onditions and requires only a ouple of numbers to

desribe it in the �nal equilibrium. The quest to identify those numbers led �nally to the

formulation of thermodynamis that was purely phenomenologial but very suessful.

The insight provided by thermodynamial onsiderations is surprisingly rih and deep

taking into aount that in XIXth entury even the existene of atoms was unlear, the

�rst diret proof being provided by Smoluhowski and Einstein in 1905. We now now

the mirosopi ontent of matter and we derive the thermodynami properties from

statistial physis but the ideas borne out in the ontext of thermodynamis are still

extremely important.

As already said in thermodynamis we assume that a given body is in an equilibrium

state { no marosopi properties of the body hange with time. Of ourse we annot

assume that it is stritly kept sine we would like to hange the state in some proesses.

To use the thermodynami onepts we assume that any proess is so slow that the

system is (approximately) always in some equilibrium or extremely lose to it.

It is also (now) lear that the equilibrium state is very dynamial and interpolates

between extremely large number of mirostates approximately indistinguishable among
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1. Thermodynamis

themselves marosopially. What utuations are suÆiently lose to eah other and

an be treated as indistinguishable as a marostate and how probable they are in om-

parison to the large utuations is the question that an be posed only within statistial

physis and will be disussed at length later.

The general onservation of energy did not belong to the Newton's theory { in the

latter only the onept of the onservation of mehanial energy for potential fores

was introdued. The �rst quantitative observation of the possible relation of suh a

general nature is now alled the �rst law of thermodynamis. It identi�es some, as yet

not well spei�ed, internal energy U assumed to be the same for a given body in the

same external onditions. It therefore belongs to the so alled state funtions, i.e. the

numbers haraterizing a given body in these onditions. In some instanes it is possible

to identify what the U is omposed of { for example for a very weakly interating gas it

should be the sum of the kineti energies of the partiles of the gas.

The fundamental statement (the �rst law of thermodynamis) reads

dU =

=

dW +

=

dQ (1.1)

where U is the internal energy of the body, W is the work done on the body and Q is the

energy in the form of heat added to the body. The �rst and seond notions are (more

or less) well de�ned, it is the third one that goes beyond the mehanial notions and

de�nitions present in the Newton's theory. Within thermodynamis the best approah

is to treat this equation as a de�nition of the energy transfer in the form of heat i.e.

=

dQ = dU �

=

dW .

It is important to emphasize the usage of

=

d on the right-hand side of this equation.

The d symbol usually used un the theory of forms means a di�erential and ating on an

n-form produes an (n+1)-form. On the LHS we have this symbol sine we assume that

the internal energy U is a well de�ned funtion. However, neither the work nor the heat

transfer are well de�ned state funtions so we annot treat their hange as di�erentials

and that's why we use a di�erent symbol to denote their ontribution to the hange of

internal symmetry.

1.2 State functions

We will now disuss possible andidates for the state funtions haraterizing any equi-

librium. To be more onrete we disuss a gas in a ontainer. One the system 'settles

down' there is a number of properties that are rather obvious as state funtions. This

'settling down' when no further marosopi hanges are observed is alled thermody-

namial equilibrium. Although the system is omposed of extremely large number of

partiles the thermodynamial equilibrium is haraterized by only a few numbers (state

funtions).

We distinguish extensive and intensive state funtions. The �rst ones are propor-

tional to the size of the system; if we add two idential systems and neglet their mutual

interations an extensive funtion would double its value. As an example one ould

quote the internal energy U or the volume of the gas V .
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K.A. Meissner

On the other hand an intensive state funtion for suh a doubled system remains the

same as in eah of the individual systems. As an example one an quote here the pressure

or the temperature (although the de�nition of the latter remains to be provided).

We have to always ompare intensive with intensive and extensive with extensive

state funtions.

If we have a state funtion, say V , it is legitimate to use dV as a di�erential of

the state funtion. Sine pressure p is another state funtion for the extremely slow,

reversible proesses (we will disuss these onditions later on) we an write

=

dW = �pdV (1.2)

where the minus sign omes from our de�nition that

=

dW is the work performed on the

body (if the volume grows it is the body that performs work on the environment). In

the language of di�erential forms p is an integrating fator sine it brings

=

dW to a bona

�de di�erential

�

=

dW

p

= dV (1.3)

We will now disuss the 'thermal' part of (1.1).

1.3 Temperature

Although the notion of being 'hotter' or 'older' is known for millennia the more preise

de�nition had to wait until mid XIX entury. It is the ore of thermodynamis so we

have to disuss it in great detail. As we emphasized the heat transfer

=

dQ goes beyond

the Newton's theory so we have to resort to a di�erent reasoning.

The notion of 'temperature' as state funtion is based on the following phenomeno-

logial observation. A body left alone homogenizes 'the temperature' (whatever it is) in

suh a way that there are no internal marosopi heat transfers. If two bodies are in

a diabati (i.e. allowing for heat transfers) ontat then, after some time, the ommon

'temperature' for both bodies is settled and there are no further heat transfers. Two

bodies have the same 'temperature' if after bringing them to a diabati ontat there

are no marosopi heat transfers { then we say that they are in thermal equilibrium.

On the basis of these observations a 0th Law of Thermodynamis was proposed:

if two bodies A and B are in thermal equilibrium and also B and C are in thermal

equilibrium then also A and C are in thermal equilibrium

This simple and intuitive fat leads to the notion of 'temperature' as a state fun-

tion.Imagine that the body A is in thermal ontat with a hosen �xed body K. Then

we hange the state funtions of the body A (like its volume or pressure) in suh a way

that the thermal ontat with K does not spoil the thermal equilibrium with K { we

all suh a hypersurfae isotherm. Denoting these state funtions by x

A

i

we an write

�

A

(x

A

i

) = t (1.4)
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1. Thermodynamis

where the funtion �

A

is suh that in spite of hanging x

i

along the isotherm its value

does not hange. The ondition an be written as

d�

A

=

X

i

�

i

�

A

dx

A

i

= 0 (1.5)

when dx

A

i

are tangent to the isotherm but is non vanishing when they are not. Then

we an all �

A

an empirial temperature in the viinity of t. This proedure does not

speify whih hoie of � is the most 'physial' or the most onvenient. It however

suggests the proedure how to de�ne empirial temperature for t + �t: we hoose dx

A

i

orthogonally to the isotherm t, alulate new t + �t, then �nd a new body K

0

that

is in thermal equilibrium with new �

A

0 and repeat the proedure with K

0

and t + �t

extending the de�nition to t+ 2Æt and so on. We have the freedom to reparametrize the

empirial temperature t ! f(t) as long as the derivative is everywhere positive. Sine

this proedure is neither unique nor the most useful, below we will introdue the notion

of 'absolute temperature' based on the Carnot yles.

1.4 Internal energy

We will now disuss the notion of internal energy U used already in the First Law. We

imagine a gas in a ontainer that is adiabati i.e. to a good approximation it does not

allow for any heat transfers so that

=

dQ = 0. However, there is a possibility to provide or

extrat energy to or from the ontainer by means of a piston. Then the First Law reads

dU =

=

dW (1.6)

and it seems straightforward to measure hanges in the internal energy U sine we an

measure very preisely the work done or extrated to or from the system.

However, we must be areful. Imagine two situations: the �rst one when we move the

piston extremely slowly going through intermediate equilibrium states. Then indeed the

pressure is well de�ned all along and we an use the formula

=

dW = �pdV . The seond

situation is when we violently jerk the piston. Then there will be sound waves exited

in the gas and to bring the equilibrium to the system these waves should be absorbed

by the walls of the ontainer. Therefore even if we measure preisely the external work

done in the proess we don't know exatly how muh energy was absorbed by gas as an

internal energy and how muh by the walls. We usually assume that the ontainer is

so big that the bulk energy absorbed is muh bigger than the energy absorbed by the

walls so this absorption is negligible. It may indeed be so in most situations but we have

to remember about subtleties onneted to eventual non-equlibrium intermediate states

and the exat energy bilane.

Barring these diÆulties we an write for a situation with the walls non-permeable

to heat transfer

�U = �W (1.7)

what allows us to determine the di�erenes of the internal energy of a given system. If

we additionally add the ondition that U ! 0 when the temperature goes to 0 then we
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an introdue the notion of 'absolute' internal energy. It is a state funtion so it does

not depend how we arrived at given onditions but for a given body only on the atual

pressure and volume or volume and temperature.

1.5 Second Law of Thermodynamics (SLT)

We will now introdue the notion of entropy as a ore notion both in thermodynam-

is and in statistial physis. The de�nition in statistial physis relates the entropy

with the number of mirostates realizing the same (within some interval) marostate

- we will disuss it in great detail later on sine it is of fundamental importane. In

thermodynamis, as a phenomenologial theory, suh an approah is impossible.

It was a great ahievement in the middle of XIXth entury to �nd the relevant

funtions of state and the integrating fator (in the modern language) for

=

dQ. As we

said this notion is based on the First Law (in some spei�, ontrolled situations)

=

dQ = dU �

=

dW (1.8)

and it de�nes the heat transfer.

We on�ne ourselves again to extremely slow (quasi-stati) proesses. Rudolf Clau-

sius in 1850 formulated a law, the elebrated Seond Law of Thermodynamis SLT(C)

It is impossible to devise an engine whih, working in a yle, shall produe no

e�et other than the transfer of heat from a older body to a hotter body

usually quoted in the equivalent later formulation in 1851 by Kelvin SLT(K):

It is impossible to devise an engine whih, working in a yle, would produe no

e�et other than the extration of heat from a reservoir and performane of an

equivalent amount of mehanial work

We will see in a moment how these formulations are related to the most famous

statement

Entropy never dereases

It is important to introdue now an idea muh earlier than the SLT whih was

atually a motivation to introdue SLT.

1.6 Carnot cycle and absolute temperature

In 1824, muh earlier than the introdution of the notion of entropy and the Seond Law

of Thermodynamis, Sadi Carnot introdued a yle (engine) if we have at our disposal

two reservoirs of di�erent temperatures T

1

and T

2

(T

2

> T

1

).

The yle is omposed of 4 quasi-stati proesses:

� ontat with reservoir with temperature T

2

(isothermi expansion)

� adiabati expansion from T

2

to T

1

� ontat with reservoir with temperature T

1

(isothermi ontration)
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1. Thermodynamis

� adiabati ontration from T

1

to T

2

The work done by the ontainer after the yle (sine the internal energy returns to its

original value)

W = Q

2

�Q

1

(1.9)

Therefore the eÆieny i.e the ratio of the work to the absorbed heat is equal to

� =

W

Q

2

= 1�

Q

1

Q

2

(1.10)

There are two fats that follow from SLT.

It was experimentally obvious for Carnot but was proven only later with SLT that if

W > 0 then also Q

2

; Q

1

> 0 (and, respetively, if W < 0 then also Q

2

; Q

1

< 0). Indeed,

assume that W;Q

2

> 0 and Q

1

< 0 with T

2

> T

1

. Then we take Q

2

from reservoir 2

and return W = Q

2

�Q

1

> Q

2

in the form of heat to the same reservoir { the only net

e�et is to transfer heat �Q1 from the older reservoir 1 to the hotter reservoir 2 and

this is impossible aording to SLT(C).

The seond fat is that the eÆieny (1.10) is the maximal one for any engine ab-

sorbing heat Q

2

and giving away heat Q

1

. Imagine that we have two suh engines, one

Carnot and the other arbitrary, both working between temperatures T

2

and T

1

, T

2

> T1.

Then

W = Q

2

�Q

1

;

~

W =

~

Q

2

�

~

Q

1

(1.11)

If we �nd suh N and

~

N that

Q

2

~

Q

2

=

~

N

N

(1.12)

then running both engines bakwards, respetively N times and

~

N times, we get

W

tot

=

~

N

~

W �NW = (

~

N

~

Q

2

�NQ

2

)� (

~

N

~

Q

1

�NQ

1

) = �(

~

N

~

Q

1

�NQ

1

) (1.13)

But the work annot be positive aording to SLT(K) so that

~

N

~

Q

1

�NQ

1

> 0 ) Q

2

~

Q

1

�

~

Q

2

Q

1

> 0 (1.14)

hene

1�

Q

1

Q

2

> 1�

~

Q

1

~

Q

2

(1.15)

what was to be proven. The proof also shows that all Carnot engines working between

the same temperatures have the same eÆieny.

Based on these fats about the Carnot yle one introdues the absolute temperature

T by the relation

Q

1

T

1

=

Q

2

T

2

(1.16)

that onnets any two reservoirs by the Carnot yle. Then we have the eÆieny of

the Carnot yle

� = 1�

T

1

T

2

(1.17)
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De�ning the temperature of some reservoir, onneting it to any other reservoir by a

Carnot yle and measuring the heat transfers we an theoretially measure the tem-

perature of any reservoir. The de�ned temperature is usually taken as the triple point

of water de�ned as 273.16 K at 611.73 Pa { then it de�nes the so alled absolute tem-

perature (measured in Kelvin). It orresponds approximately to more frequently used

273.15 K at 1 atm.

There are many types of 'thermometers', easier to use than the Carnot yle { from

the point of view of thermodynamis the best are gaseous ones sine they approximately

are proportional to the absolute temperature.

It is important to note that suh a temperature sale has a point '0' where the

eÆieny of the Carnot yle is equal to 1 { the neessity of the existene of suh an

'absolute zero' in temperature was disovered by William Thomson (lord Kelvin) in 1848,

hene the name of the unit of absolute temperature. Suh a point annot be attained

sine extrating the heat is more and more diÆult when we approah this point. The

physial reason for the existene of suh a point an be justi�ed only within statistial

physis.
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2 Thermodynamical processes

2.1 Entropy

Using the relation (1.16) and SLT(K) Clausius has shown that for an arbitrary yle

between a given reservoir of temperature T

0

and many others with temperatures T

i

we

have along the yle

X

i

Q

i

T

i

6 0 (2.1)

sine along the yle the absorbed heat from the given reservoir is equal to

Q =

X

i

Q

i

= T

0

X

i

Q

i

T

i

(2.2)

and by SLT(K) it has to be negative.

If we additionally assume that the proess is reversible then we an run the yle in

the opposite way getting the result

X

i

Q

i

T

i

= 0 (2.3)

Therefore in a sequene of quasistati, reversible proesses from state A to state B the

quantity

X

i

=

dQ

i

T

i

(2.4)

is independent of the path form A to B. It suggested that there exists a state funtion

that Clausius in 1865 alled 'entropy' and denoted by S. The name was oined from

Greek en- 'in' and tropos 'hange,transformation' from Praindoeuropean trep- 'turn';

hene for example 'troposphere' the lowest part of the atmosphere rotating with the

Earth, 'psyhotropi' 'hanging the mind', 'tropi' 'where the Sun hanges diretion'. It

is interesting to note the origin of 'energy' - it omes from Greek en- and ergon 'work'

from PIE 'werg'{ hene for example allergy ('allos' strange), argon ('not working'),

lethargy ('lethe' forgetfulness'); organ; and work itself.

13



2. Thermodynamial proesses

Therefore for quasistati, reversible proesses we an write

=

dQ

T

= dS (2.5)

and the �rst Law reads

dU = TdS � pdV (2.6)

It is important to emphasize that the First Law in this form is valid for all quasistati

proesses but for not reversible ones TdS does not have the meaning of the transferred

heat and �pdV does orrespond to the performed work.

The fundamental role of entropy as a state funtion will be disussed in detail in

quantum statistial physis later on sine only there it has a deep physial meaning {

in thermodynamis its meaning is rather vague and unlear.

2.2 Equations of state (EoS)

The First Law for a �xed number of partiles

dU = TdS � pdV (2.7)

suggests that there are two independent state funtions and all the other depend on

them. It means that on top of U and S there should be a third relation involving p, V

and T . This relation is alled the equation of state. We will derive later on the equation

of state for the ideal gas of noninterating partiles

pV = nkT (2.8)

where n is the number of partiles and k := 1:380649 � 10

�23

J/K is the de�ned value

of the Boltzmann's onstant. Introduing the more pratial measure of the number of

partiles by de�ning a mole N

A

N

A

:= 6:02214076 � 10

23

(2.9)

we rewrite (2.8) as

pV = nRT (2.10)

where n is expressed in moles and the gas onstant R := N

A

k := 8:31446261815324

J/K/mol.

Inluding the other real fators like the interations leads to more ompliated equa-

tions. The most famous is the Van der Waals equation that takes into aount both the

interations and the volume of the partiles themselves { it reads

 

p +

an

2

V

2

!

(V � nb) = nRT (2.11)

b represents the volume of one mole of partiles. It was proposed by Johannes Van

der Waals in 1873 in his PhD thesis at the University of Leiden { he postulated the
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K.A. Meissner

existene of moleules and the fores between them. At that time the idea of moleules

was generally rejeted but the VdW equation and the explanation of liquid-gas phase

transition raised enthusiasti reation for example from James C. Maxwell. The �rst

atual proof of the existene of moleules was given 30 years later by Smoluhowski and

Einstein from the theoretial explanation of the Brownian motion and the dipole-dipole

long range fores between moleules were given the name Van der Waals fores. To

justify the introdution of a as a result of intermoleular interations we rewrite (2.11)

as

p =

nRT

V � nb

�

an

2

V

2

=

RT

v � b

�

a

v

2

(2.12)

where v is the molar volume. We see that positive a dereases the pressure by a fator

proportional to the number of pairwise attrative interations between partiles.

We will disuss this equation in detail in the ontext of liquid-gas phase transitions

although VdW equation of state is rather inaurate in the liquid part (for small v). For

water in the gaseous state

a � 0:55 Pa �m

6

=mol

2

; b � 3 � 10

�5

m

3

=mol (2.13)

so it is lear that the VdW EoS annot be used in the liquid part sine v � 1:8 �

10

�5

m

3

=mol is less than b.

2.3 Thermodynamical potentials

The �rst Law of Thermodynamis written in the form

dU = TdS � pdV (2.14)

allows to use the powerful language of di�erential forms to derive many, sometimes

very nontrivial, identities among physially measured quantities. We start from using

Legendre transform to introdue new state funtions than the ones used in FLT. At this

point we assume that the number of partiles in the system is �xed { a possibility of

the exhange of partiles with the reservoir will be disussed separately later.

1. Free energy F

We de�ne

F := U � TS (2.15)

Then

dF = dU � dTS � TdS = �SdT � pdV (2.16)

so that the independent variables for F are temperature and volume. Temperature

is usually muh more easily ontrolled than entropy so F is usually more useful

than the internal energy U . We have

�

�F

�T

�

V

= �S;

�

�F

�V

�

T

= �p (2.17)
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2. Thermodynamial proesses

For onstant temperature we an write SLT as

�Q

T

6 �S (2.18)

Hene

W 6 ��F (2.19)

where the equality is for a reversible proess. For W = 0 we have the statement

that F for an isolated system at onstant temperature does not grow and

therefore the equilibrium at onstant temperature is attained for minimal F . If

two systems are in equilibrium and in ontat at a �xed temperature and their

volumes are left free (but dV

1

= �dV

2

) then

0 = dF = �p

1

dV

1

� p

2

dV

2

= �(p

1

� p

2

)dV

1

) p

1

= p

2

(2.20)

leading to an (obvious) onlusion that their pressures have to be equal.

2. Enthalpy H

We de�ne

H := U + pV (2.21)

Then

dH = dU + dpV + pdV = TdS + V dp (2.22)

so that the independent variables for H are entropy and pressure. Enthalpy is very

often used in hemistry sine we often interested in the released heat of a given

reation at a �xed pressure. From the 0LT we have under onstant pressure p

Q = U

f

� U

i

+ p(V

f

� V

i

) = H

f

�H

i

(2.23)

i.e. the absorbed or released heat is a di�erene of the �nal and initial enthalpies.

We have

�

�H

�S

�

p

= T;

�

�H

�p

�

S

= V (2.24)

3. Free enthalpy (Gibbs potential) G
We de�ne

G := U � TS + pV (2.25)

Then

dG = dU � dTS � TdS + dpV + pdV = �SdT + V dp (2.26)

so that the independent variables for G are temperature and pressure. It is im-

portant to emphasize that G is an extensive quantity so it annot depend only on

intensive quantities { it still depends on the number of partiles N not written up

to now expliitly.
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For onstant temperature and pressure we an write SLT as

�Q

T

6 �S (2.27)

Hene

p�V + �F 6 0 (2.28)

where the equality is for a reversible proess. Then we have the statement that

G for an isolated system at onstant temperature and pressure does not grow

and therefore the equilibrium in these onditions is attained for minimal G. We

have

�

�G

�T

�

p

= �S;

�

�G

�p

�

T

= V (2.29)

2.4 Thermodynamical inequalities

We assume that the system has �xed temperature T and pressure p. Then Gibbs poten-

tial G has a minimum in equilibrium. We therefore have the ondition that all deviations

from the equilibrium should lead to a growth of G

ÆG = ÆU � TÆS + pÆV > 0 (2.30)

We expand ÆU up to quadrati deviations in ÆS and ÆV

ÆU =

�U

�S

ÆS +

�U

�V

ÆV +

1

2

 

�

2

U

�S

2

ÆS

2

+ 2

�

2

U

�S�V

ÆSÆV +

�

2

U

�V

2

ÆV

2

!

+ : : : (2.31)

The linear parts anel in (2.30) (sine G is in the minimum) and the matrix of quadrati

parts should be a positive matrix what gives two onditions. The �rst one reads

�

2

U

�S

2

=

�

�T

�S

�

V

=

T

T

�

�S

�T

�

V

=

T

C

V

> 0 (2.32)

i.e. spei� heat at onstant volume has to be positive.

The seond ondition of a positive determinant reads

�

2

U

�S

2

�

2

U

�V

2

�

 

�

2

U

�S�V

!

2

> 0 (2.33)

It an be written as a jaobian

�

�

�U

�S

;

�U

�V

�

�(S; V )

=

�(T;�p)

�(S; V )

> 0 (2.34)

We transform this inequality

�

�(T; p)

�(S; V )

= �

�(T;p)

�(T;V )

�(S;V )

�(T;V )

> 0 (2.35)

17



2. Thermodynamial proesses

and hene

�

�p

�V

�

T

�

�S

�T

�

V

=

T

C

V

�

�p

�V

�

T

< 0 (2.36)

i.e.

�

�p

�V

�

T

< 0 (2.37)

so pressure has to derease with the growth of volume.
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3 Thermodynamical processes

3.1 Thermodynamical identities

It is important to onnet the thermodynamial notions like for example spei� heats

to the diretly measurable quantities like isothermi ompressibility.

From FLT we have

dS =

C

V

T

dT +

1

T

��

�U

�V

�

T

+ p

�

dV (3.1)

where

C

V

=

�

�U

�T

�

V

(3.2)

Ating with d we get

�

�

�V

�

T

�

C

V

T

�

dV ^ dT =

�

�

�T

�

V

�

1

T

�

�U

�V

�

T

+

p

T

�

dV ^ dT (3.3)

what leads to (using

�

2

U

�V �T

=

�

2

U

�T�V

)

�

�U

�V

�

T

= T

�

�p

�T

�

V

� p (3.4)

If we plug in the ideal gas EoS then we get

�

�U

�V

�

T

= 0 (3.5)

so the internal energy of an ideal gas depends only on temperature (and obviously the

number of partiles). For the Van der Waals equation (3.29) we get a non zero result

�

�U

�V

�

T

=

an

2

V

2

)

U

n

= B(T )� a

n

V

(3.6)

so the spei� internal energy for a given temperature dereases with density (beause

of attrative fores between the partiles).
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3. Thermodynamial proesses

We derive more suh identities. From S = �

�

�F

�T

�

V

we get

�

�C

V

�V

�

T

= T

�

2

S

�V �T

= �T

�

2

�T

2

�

�F

�V

�

T

= T

�

2

p

�T

2

(3.7)

Returning to the FLT we an write

TdS = C

V

dT + T

�

�p

�T

�

V

dV (3.8)

On the other hand starting from

dS =

1

T

dH �

V

T

dp =

1

T

 

�

�H

�T

�

p

dT +

�

�H

�p

�

T

dp

!

�

V

T

dp (3.9)

we get from ddS = 0 (

�

�H

�T

�

p

= C

p

)

�

�H

�p

�

T

= V � T

�

�V

�T

�

p

(3.10)

and then

TdS = C

p

dT � T

�

�V

�T

�

p

dp (3.11)

Introduing

� :=

1

V

�

�V

�T

�

p

(oeÆient of thermal expansion)

�

T

:= �

1

V

�

�V

�p

�

T

(oeÆient of isothermal ompressibility)

and using

�

�p

�T

�

V

= �

1

�

�T

�V

�

p

�

�V

�p

�

T

= �

�

�V

�T

�

p

�

�V

�p

�

T

=

�

�

T

(3.12)

we an write

TdS = C

V

dT +

�T

�

T

dV

TdS = C

p

dT � �TV dp

Subtrating these two equations and treating (p; V ) as independent variables we get as

a oeÆient in front of dV

(C

p

� C

V

)

�

�T

�V

�

p

�

�T

�

T

= 0 (3.13)

and hene

C

p

� C

V

=

�

2

TV

�

T

(3.14)

so it is positive.
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3.2 Joule-Thomson effect

If we deompress the ideal gas into the vauum without any heat exhange its temper-

ature does not hange. However, for real gases the temperature hanges and that e�et

was disovered by Joule and Thomson (lord Kelvin) in 1852. We want to alulate the

rate of hange

�

JT

:=

�

�T

�p

�

H

(3.15)

Using a triple produt identity we rewrite it as

�

�T

�p

�

H

= �

�

�H

�p

�

T

�

�H

�T

�

p

(3.16)

Sine

dH = TdS + V dp = T

 

�

�S

�T

�

p

dT +

�

�S

�p

�

T

dp

!

+ V dp (3.17)

we get

�

�H

�T

�

p

= C

p

(3.18)

Therefore (using (3.10) and the oeÆient of thermal expansion � =

�

�V

�T

�

p

=V )

�

JT

=

V (�T � 1)

C

p

(3.19)

For an ideal gas it is identially 0 but for real gases it is not and even hanges sign.

At room temperature all gases exept hydrogen, helium, and neon ool upon expansion

(�

JT

> 0) but �

JT

dereases with growing temperature and at some T (alled the

inversion temperature) it hanges sign and above this temperature the gas warms with

dereasing pressure. Nitrogen has inversion temperature 621 K (348

Æ

C), oxygen 764 K

(491

Æ

C) and hydrogen 202 K (-71

Æ

C).

3.3 Entropy of an Ideal Gas

We know the equation of state and the internal energy of an ideal gas

pV = nRT; U(T; V ) = 

v

nT (3.20)

We have

�

�U

�T

�

V

= T

�

�S

�T

�

V

T

�

�S

�V

�

T

= p +

�

�U

�V

�

T

(3.21)
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3. Thermodynamial proesses

Using

�

�U

�V

�

T

= 0 and solving these equations we get

S(T; V ) = 

v

n ln T + nR ln

�

V

n

�

+ onst (3.22)

where we added n under ln V to make S extensive. It was an argument of Gibbs that

without adding 1=n under the logarithm of V dividing (mentally) a ontainer into two

parts we would get a di�erent result than for the undivided ontainer what is nonsensial.

We will derive this equation (together with the value of the onstant) as the so alled

Sakur-Tetrode equation in the framework of the lassial statistial theory and disuss

it at length later on sine it was a hint on the quantum nature of matter long before

quantum mehanis was born. On the other hand it annot be the full story sine the

entropy diverges as T ! 0 { quantum statistial theory orrets this expression to avoid

suh a onlusion.

We an also write the formula for the entropy of an ideal gas as a funtion of T and

p

S(T; p) = (

v

+ R)n ln T � nR ln p + onst (3.23)

If we have two di�erent ideal gases with idential pressures and temperatures in two

ontainers of volumes V

1

and V

2

and we onnet them then the di�erene of the �nal

entropy (entropy of mixing) reads

ÆS(T; V ) = n

1

R ln

�

V

V

1

�

+ n

2

R ln

�

V

V

2

�

= �RV (x

1

ln x

1

+ x

2

ln x

2

) > 0 (3.24)

where

x

1

=

n

1

n

1

+ n

2

; x

2

=

n

2

n

1

+ n

2

(3.25)

If we know entropy as a funtion of U and V we know everything about the system.

In the present ase we write

S(U; V ) = 

v

n ln

�

U

n

�

+ nR ln

�

V

n

�

+ onst (3.26)

Then we use FLT

dS =

dU

T

+

p

T

dV (3.27)

to get

U = 

v

nT; pV = nRT (3.28)

so we reover both the expression for U and the equation of state.

3.4 Entropy of the VdW gas

Using the EoS for the Van der Waals gas

p =

RT

v � b

�

a

v

2

(3.29)
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and the result for the internal energy U (using

�

�U

�V

�

T

= T

�

�p

�T

�

V

� p;

�

�U

�T

�

V

= 

V

)

U

n

= 

v

T � a

1

v

) 

v

T =

�

U

n

+

a

v

�

(3.30)

we an write the FLT as

�

�S

�U

�

V

=

1

T

;

�

�S

�V

�

U

=

p

T

=

R

v � b

�

a

v

2

T

(3.31)

Hene we get for the VdW gas the expression for the entropy

S = 

v

n ln

�

U

n

+

a

v

�

+ nR ln (v � b) + onst (3.32)

We rewrite it in a slightly di�erent way

S = (

v

+ R)n ln T � nR ln

�

p +

a

v

2

�

+ onst (3.33)

3.5 Entropy of the gas of photons

The fundamental property of photons is that the internal energy does not depend on

the number of photons. If they are losed in a box then the fore on a wall is given by

F =

2h�v

z

=

2

2L=v

z

=

h�

L

v

z



2

=

1

3

U

L

(3.34)

Hene

pV =

1

3

U ) p =

1

3

� (3.35)

Assuming that nothing depends on the number of photons we substitute

S = �T

m

V; p = �T

N

; ) U = 3�T

n

V (3.36)

Using

dU = TdS � pdV (3.37)

we get

3�nT

n�1

V dT + 3�T

n

dV = �mT

m

V dT + �T

m+1

dV � �T

n

dV (3.38)

Comparing the expressions we get

� = 4�; m = 3; n = 4 (3.39)

so that

U = 3�T

4

V; p = �T

4

; S = 4�T

3

V (3.40)

and we reover Stefan-Boltzmann law U � T

4

V

U = �T

4

V; S =

4

3

�T

3

V; p =

�T

3

3

(3.41)
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3. Thermodynamial proesses

It turns out (from the Plank blak body distribution) that

� =

�

2

k

4

45

3ℏ3
) U =

�

2

k

4

15

3ℏ3
T

4

V; S =

4�

2

k

3

45

3ℏ3
T

3

V (3.42)

the number of photons is given by

N =

2�(3)k

2

�

2



3ℏ3
T

3

V =

45�(3)

2�

4

S (3.43)
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4 Phase transitions

4.1 Chemical potential

In this setion we would like to generalize the FLT. The �rst natural move is to inlude

the number of partiles (up to now treated as onstant) as a funtion of state{ although

it is not a ontinuous variable even in the lassial ase, the number is so huge in the

generi systems that it an be approximately treated as suh. We assume that adding

a partile to the system hanges its internal energy U by the very fat of its presene.

The measure of this hange is the so alled hemial potential �. Therefore we write

dU = TdS � pdV + �dN (4.1)

Writing

dT ^ dS � dp ^ dV + d� ^ dN = 0 (4.2)

and hoosing di�erent 3 variables as independent leads to 20 (6!=(3! �3!) Maxwell identi-

ties with signi�antly more ompliated manipulations than before with only 2 variables.

We would like to emphasize here one important point: if we make a Legendre trans-

form with respet to all extensive variables (S; V;N) and assuming that there no other

extensive variables we obtain a funtion of state that is extensive but formally should de-

pend only on intensive quantities and it is impossible. Therefore we draw the onlusion

that suh an equation of state should vanish (Euler equation):

U � TS + pV � �N = 0 (4.3)

Ating with d on this equation we get

�SdT + V dp�Nd� = 0 (4.4)

what shows that (T; p; �) are not independent. If the dependene on N is nontrivial

(what is not the ase for photons) then

�

��

�T

�

p

= �s

�

��

�p

�

T

= v (4.5)
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4. Phase transitions

where s and v are spei� entropy and volume, respetively.

The previously introdued Gibbs potential is therefore equal to

G(T; p;N) = U � TS + pV = �(T; p)N (4.6)

Sine G attains a minimum at a given T and p if we have two parts of a system that

an exhange partiles we have

0 = �G = �

1

�N

1

+ �

2

�N

2

= �N

1

(�

1

� �

2

) ) �

1

= �

2

(4.7)

so that the hemial potentials in thermodynamial equilibrium have to be equal.

If we plug in the expressions for photons (3.41) we get

� = 0 (4.8)

onsistently with the assumption leading to the photon EoS where nothing depends on

the number of photons.

If we plug in the expressions for ideal gas pV = RT we get

�(T; p) = f(T ) + RT ln p = �

0

(T; p = p

0

) + RT ln

p

p

0

(4.9)

where �

0

is the value at a given temperature and pressure

If we treat (T; V;N) as independent we get

dF = �SdT � pdV + �(T; V )dN (4.10)

4.2 Clausius-Clapeyron equation

We disuss now the liquid-gas transition. We start from the fat that the mass transfer

from the liquid to the gas phase and vie versa is at onstant pressure and onstant

temperature. As we argued the hemial potentials of both phases should be equal

but the derivatives an be di�erent for both phases. We reall the equations for these

derivatives

d� = �sdT + vdp (4.11)

and therefore

�

��

�T

�

p

= �s

�

��

�p

�

T

= v (4.12)

where s and v are spei� entropy and volume, respetively. We will use the subsripts

'l' and 'g' for the liquid and gas phases respetively.

We write (�� = �

g

� �

l

)

�

���

�T

�

p

= �(s

g

� s

l

) = ��s < 0;

�

���

�p

�

T

= (v

g

� v

l

) = �v > 0 (4.13)
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We now use the identity (valid sine �� is a funtion of (T; p))

�

���

�T

�

p

�

�T

�p

�

��

�

�p

���

�

T

= �1 (4.14)

to arrive at

�

�p

�T

�

��=0

=

�

dp

dT

�

=

�s

�v

(4.15)

Sine T�s = Q

t

is the spei� latent heat of transition we �nally get the Clausius-

Clapeyron equation

�

dp

dT

�

=

Q

t

T�v

(4.16)

that desribes the hange of the pressure at transition as a funtion of temperature of

transition.

For the liquid-gas transition �v is always positive (below the ritial point) but for

the solid-liquid transition it an have either sign { for water it is negative but for vast

majority of substanes it is positive.

This equation is valid for the so alled �rst order transition when the �rst derivatives

of a state funtion (in this ase it is g) have a jump at transition.

4.3 Phase transition in VdW equation of state

If we have a maximum and a minimum (i.e. T < T



) part of the isotherm is unphysial

sine it leads to a negative ompressibility what points to instability. We an orret it

by assuming that there are two oexisting phases and we use only leftmost and rightmost

part of the urve joining them by a horizontal line. To the left we have only liquid phase

then for some volume we start to have two phases at onstant pressure that gradually

hange the relative abundane until at some volume only the gaseous phase remains and

we an again use the VdW equation.

If T < T



the medium part of the isotherm is non-physial. One usually introdues

the so alled Maxwell onstrution that will not be desrribed here sine it is non physial

as well. If we assume that the RHS of the urve desribing the gas phase is physial (what

is well justi�ed) and the LHS of the urve is physial (what is qualitatively justi�ed but

quantitatively not so) then we an onnet the LHS with the RHS by a horizontal line

desribing the oexistene of the liquid and the gas phases. The question where the line

should be drawn an be answered in the following way.

We reall the expression for the entropy of the VdW uid:

S = (

v

+ R)n ln T � nR ln

�

p +

a

v

2

�

+ onst (4.17)

Sine the phase transition is at onstant pressure and temperature the di�erene of

entropies between the RHS and the LHS should be equal to �S = �Q=T = nQ

t

=T
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where Q

t

is the latent heat of vaporization and this ondition gives the position of the

horizontal line. For one mole we get

�S = �R ln

 

p +

a

v

2

g

!

+ R ln

 

p +

a

v

2

l

!

=

Q

t

T

(4.18)

Hene

p +

a

v

2

l

p +

a

v

2

g

= exp

�

Q

t

RT

�

(4.19)

Knowing Q

t

and a and assuming that VdW EoS is valid on both sides of the urve we

ould �x the position of the horizontal line onneting the gas and the liquid phase.

Applying this equation to water and the liquid-vapour phase transition

a � 0:55 Pa �m

6

=mol

2

; p � 10

5

Pa; T � 373 K; v

l

� 1:8 �10

�5

m

3

v

g

� 2:2 �10

�2

m

3

(4.20)

we get

Q

t

(373 K) � 30000 J=mol (4.21)

to be ompared with the atual 40000 J/mol with the di�erene mostly due to inap-

pliability of the VdW EoS to the liquid phase of water. It is, however, important to

emphasize that this approah gives automatially Q(T



) = 0 when v

g

(T



) = v

l

(T



).

Another way to approah this problem is via the hemial potential. If we start from

the left part of the urve at some pressure and volume (p

l

; v

l

) and we go to the right

along the isotherm then the hemial potential hanges as

�(v) = �(v

l

) +

Z

p

p

l

dp

0

v(p

0

) (4.22)

where we used the equation ��=�p = v. Sine at the end on the right hand side we have

to end up with the same hemial in the gaseous phase. It gives the so alled Maxwell

onstrution giving us the pressure of liquid-gas equilibrium for a given isotherm: sine

�(v

g

) = �(v

l

) +

Z

v

g

v

l

dv(p� p

0

(v)) = �(v

l

) (4.23)

the areas below the horizontal p line and above this line have to be equal. This approah

has a drawbak sine it uses the unphysial part of the VdW urve to �nd the pressure

of equilibrium at a given temperature but it is easy to visualize.

4.4 Critical point in VdW equation of state

We will now disuss the EoS for the Van der Waals gas

p =

RT

v � b

�

a

v

2

(4.24)
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Depending on T the isotherms an have purely negative

�

�p

�V

�

T

(for T > T



), one saddle

point (for T = T



), or one minimum and one maximum (for T < T



). We an alulate

T



�

�p

�v

�

T

= 0 = �

RT



(v



� b)

2

+

2a

v

3



 

�

2

p

�v

2

!

T

= 0 =

2RT



(v



� b)

3

�

6a

v

4



(4.25)

Hene

v



= 3b; RT



=

8a

27b

; p



=

a

27b

2

(4.26)

If we measure all quantities relative to the ritial values we have

~p =

8

~

T

3~v � 1

�

3

~v

2

(4.27)

We an ompare the parameters of the ritial point of the atual gases with the

VdW equation. We introdue

Z



=

p



v



RT



(4.28)

We read o� Z



for the VdW equation

Z

V dW



=

3

8

(4.29)

For water we have

p



� 2:2 � 10

7

Pa; v



� 56 m

3

=mol; T



� 647K (4.30)

hene

Z

H

2

O



� 0:23 (4.31)

For the arbon dioxide we have

p



� 7:4 � 10

6

Pa; v



� 94 m

3

=mol; T



� 304K (4.32)

hene

Z

CO

2



� 0:27 (4.33)

For the oxygen we have

p



� 5 � 10

6

Pa; v



� 73 m

3

=mol; T



� 155K (4.34)

hene

Z

O

2



� 0:28 (4.35)

To be loser to the observed values we would have to assume some modi�ed equation of

state espeially on the liquid branh.
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4.5 Critical exponents

We notie that several quantities go to 0 when we approah the ritial point. It is

important to ask about the rate of this approah { it is enoded in the so alled ritial

exponents. It is a very important area of researh in statistial physis onneted with

the onformal invariane at the ritial point, onformal �eld theory and the renormal-

ization group introdued by Kenneth Wilson. We will show the idea on the example of

VdW equation of state.

First we ask about the di�erene v

g

� v

l

as we approah T ! T



from below. An

argument would be to write

~p =

8

~

T

3~v

l

� 1

�

3

~v

2

l

=

8

~

T

3~v

g

� 1

�

3

~v

2

g

(4.36)

Calulating

~

T we get

8

~

T =

(~v

l

+ ~v

g

)

~v

2

l

~v

2

g

(9~v

l

~v

g

� 3~v

l

� 3~v

g

+ 1) (4.37)

The seond equation is onneted to the equality of hemial potentials

0 =

Z

~v

g

~v

l

dv(~p� ~p

0

(v)) = (~v

g

� ~v

l

)~p�

8

~

T

3

ln

�

3~v

g

� 1

3~v

l

� 1

�

�

3

~v

g

+

3

~v

l

(4.38)

Solving these two equations in the viinity of the ritial point it turns out that

1

2

(~v

g

+ ~v

l

) = 1 +

18

5

(1�

~

T ) +O((1�

~

T )

2

); ~v

g

� ~v

l

= 4(1�

~

T )

1

2

+O((1�

~

T )

3=2

) (4.39)

and writing in general

~v

g

� ~v

l

� (1�

~

T )

�

(4.40)

we have � = 1=2.

The next exponent is related to the question how the pressure hanges when we

approah the volume to v



. Sine �p=�v = �

2

p=�v

2

= 0 at the ritial temperature and

lose to the ritial pressure and density we immediately write

~p� 1 � (~v � 1)

Æ

(4.41)

with Æ = 3.

The third question onerns the ompressibility of the gas. As we know it goes to

in�nity at the ritial point and we observe that

�~p

�~v

� �6(

~

T � 1) (4.42)

so that

� = �

�~v

�~p

� (

~

T � 1)

�

(4.43)
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with  = 1

For real gases and liquids the ritial exponents are slightly di�erent:

� � 0:32; Æ � 4:8;  � 1:2 (4.44)

and it is still an unsolved problem to alulate them analytially in any 3-dimensional

model.
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5 Classical statistical physics

5.1 Liouville theorem

Imagine the ow of (q

a

; p

a

) i.e. a tube of lose trajetories (in the phase spae). Its

volume is

Æ� = dq

1

: : : dq

n

dp

1

: : : dp

n

(5.1)

We ask what will be this in�nitesimal volume after time dt. Then

q

a

! ~q

a

= q

a

+

�H

�p

a

dt; p

a

! ~p

a

= p

a

�

�H

�q

a

dt; (5.2)

The jaobian from � to

~

� reads

J =

 

�~q

a

�q

b

�~q

a

�p

b

�~p

a

�q

b

�~p

a

�p

b

!

(5.3)

We now use the formula

exp(Tr lnM) = detM (5.4)

for an arbitrary matrix M with positive eigenvalues. It an be proven using the fat

that any matrix an be brought to the diagonal (or Jordan) form by some (omplex)

matrix A. Indeed, writing

M = 1 + Æ (5.5)

we have (M

0

is in the diagonal or Jordan form)

M

0

= AMA

�1

) Tr lnM = Tr

�

Æ +

1

2

Æ

2

+ : : :

�

= Tr

�

Æ

0

+

1

2

Æ

02

+ : : :

�

=

X

ln �

i

(5.6)

and we see that both sides of the equation (5.4) are equal to the produt of the eigen-

values. In our ase

M = 1 + Æ ) detM = 1 + TrÆ + O(Æ

2

) (5.7)

but

TrÆ =

X

a

 

�

2

H

�q

a

�p

a

�

�

2

H

�p

a

�q

a

!

dt = 0 (5.8)

so that

Æ� =

~

Æ� (5.9)

It says that 'squeezing' the trajetories in q requires 'expanding' them in p { it resembles

quantum unertainty relation but it is very di�erent being purely lassial.
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5.2 Poincaré recurrence theorem

We now prove one of the most striking theorems in lassial mehanis.

We assume that the phase spae is of �nite phase volume (for example of �nite energy

and in �nite spatial volume). We onsider �nite time steps 0; T; 2T; : : :. The theorem

says that for any point P

0

and for any neighborhood D

0

of P

0

in the phase spae there

exists suh n that

D

n

\D

0

6= ; (5.10)

where D

n

is D

0

transformed by H after time nT .

The proof onsists in showing that sine for all n regions D

n

have the same volume

then there must exist suh n

0

and n

00

(di�erent from eah other) for whih

D

n

0

\D

n

00

6= ; (5.11)

sine otherwise the volume of the phase spae would be in�nite. Taking for example

n

0

< n

00

then ating with H bakwards n times (ation of the hamiltonian is reversible)

we get

D

0

\D

n

00

�n

0

6= ; (5.12)

what �nishes the proof.

5.3 Liouville’s equation

For a system of N bodies we an introdue a density on the phase spae �(q; p). Sine

the volume of the phase spae is onstant we get

d�

dt

=

��

�t

+

X

a

�

��

�q

a

_q

a

+

��

�p

a

_p

a

�

= 0 (5.13)

what gives the Liouville equation

��

�t

= �

X

a

�

��

�q

a

�H

�p

a

�

��

�p

a

�H

�q

a

�

= �f�;Hg

PB

(5.14)

where we used here the notion of a Poisson Braket de�ned as

ff; gg

PB

:=

X

a

�f

�q

a

�g

�p

a

�

�f

�p

a

�g

�q

a

(5.15)

An important role is played by time independent densities for whih

��

�t

= 0. The

most important example of suh stationary distributions is given by

� = �(H(q; p)) (5.16)

where H does not depend on time. Then indeed

��

�t

=

��

�H

�

�

�H

�q

a

�H

�p

a

+

�H

�p

a

�H

�q

a

�

= 0 (5.17)
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There are two most famous examples of suh a distribution. The �rst one is the

miroanonial ensemble where

�(H(q; p)) = � (U �H(q; p)) (5.18)

The seond example of suh a distribution is the Gibbs-Boltzmann fator in the

anonial ensemble

�(H(q; p)) = exp

�

�

H(q; p)

kT

�

(5.19)

whih in lassial statistial physis for free partiles is proven to desribe the most

probable distribution (if H desribes free partiles the distribution is usually alled

Maxwell-Boltzmann distribution).

5.4 Entropy

We have introdued already the onept of entropy in thermodynamis but it is of suh

a fundamental importane in many di�erent aspets that we will now disuss it in more

detail.

As we disussed the onept and the name was introdued by Clausius in 1865. It

was soon used by Gibbs and Helmholtz in the de�nition of other funtions of state. In

1877 Ludwig Boltzmann proposed his famous formula

S = k ln 
 (5.20)

where k is a onstant (later renamed k

B

, the Boltzmann onstant) and 
 is a number

of mirostates realizing a given marostate. It was loosely treated and understood as a

'measure of disorder' but in fat the equation remained totally mysterious and started

to have a meaning only 50 years later in the framework of quantum mehanis. About

the same time Erwin Shr�odinger introdued a onept of 'negative entropy' when some

states are distinguished and have higher probability than the others as in the example

of gene repliation.

John von Neumann in 1932 introdued the entropy in quantum mehanis using the

density matrix � reeting our knowledge about probabilities oming from the measure-

ments (and not the unitary evolution as in Heisenberg or Shr�odinger equations). He

de�ned

S = �Tr� ln � (5.21)

For the pure state we have �

2

= � and the entropy vanishes, for the maximally mixed

state the entropy is lnN

H

where N

H

is the size of the Hilbert spae (for example for a

system of N spins

1

2

the maximal entropy is N ln 2). In QM it has some strange prop-

erties like the entropy of an entangled state an be lower than the entropy of individual

omponents but we leave it aside here. In 1948 Claude Shannon introdued the same

onept in information theory and proved that there are intrinsi limits to the lossless

transmission of signals (both without noise and with noise).
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There are several properties of the de�nition

S = �

X

i

p

i

ln p

i

(5.22)

that justify its form. If we have a system onsisting of two subsystems A and B then

the joined probabilities are produts of the individual ones

p

ik

= p

Ai

p

Bk

;

X

ik

p

ik

=

X

i

p

Ai

X

k

p

Bk

= 1 (5.23)

Then

S

AB

= �

X

ik

p

ik

ln p

ik

= �

X

ik

p

Ai

p

Bk

ln(p

Ai

p

Bk

) =

= �

X

ik

p

Ai

p

Bk

ln(p

Ai

)�

X

ik

p

Ai

p

Bk

ln(p

Bk

) = S

A

+ S

B

(5.24)

5.5 Derivation of the Gibbs-Boltzmann factor

If we have a system that we an divide into two subsystems that an be treated (in �rst

approximation) as independent and in eah subsystem we have energy levels E

i

1

and E

k

2

,

i; k = 1; 2; : : : then we an write

E

i;k

= E

i

1

+ E

k

2

(5.25)

The probability to �nd suh a pair (again assuming independene) is given by

p

i;k

(E) = p

i

1

� p

k

2

(5.26)

We assume that the probabilities depend only on the energies i.e.

p

i;k

(E) = p

0

(E); p

i

1

= p

1

(E

i

); p

k

2

= p

2

(E

k

) (5.27)

Di�erentiating p

0

(E) wrt E

i

and E

k

and using (5.25) we get

� ln(p

0

(E))

�E

i

=

� ln(p

0

(E))

�E

k

)

� ln(p

1

(E

i

))

�E

i

=

� ln(p

2

(E

k

))

�E

k

(5.28)

But LHS depends only on E

i

and RHS only on E

k

so both sides have to be equal to a

onstant ��. Hene for all ases

p(E

i

) =

e

��E

i

P

i

e

��E

i

(5.29)

where we imposed that the probabilities have to be normalized to 1.

We an also use the original method of Boltzmann. If we divide a system into

subsystems with oupation numbers N

i

(N

1

is a number of subsystems in the ground

state, N

2

in the �rst exited state and so on) then the number of ways it an be done is

N !

N

1

!N

2

! : : :

(5.30)
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where N = N

1

+ N

2

+ : : :. Then we want to maximize this number (its logarithm)

keeping the total number N �xed and the total energy �xed. Therefore we have to

introdue Lagrange multipliers and maximize

L = ln

�

N !

N

1

!N

2

! : : :

�

+ �(N �

X

i

N

i

) + �(E �

X

i

N

i

E

i

) (5.31)

We use the Stirling approximation for large q

ln q! � q ln q � q +

1

2

ln 2�q + O(1=(12q)) (5.32)

Therefore

L � N lnN�N�

X

i

N

i

lnN

i

+

X

N

i

+�(N�

X

i

N

i

)+�(E�

X

i

N

i

E

i

)+O(ln(N

i

)) (5.33)

Di�erentiating wrt N

i

we get for eah i

� lnN

i

� �� �E

i

= 0 (5.34)

whih is the desired result.
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7 Classical statistical physics

7.1 Microcanonical ensemble

In lassial statistial physis we are interested in the lassial partition funtion. One

distinguishes di�erent ensembles: miroanonial (isolated, with �xed number of parti-

les and energy), anonial (with �xed number of partiles but exhanging energy with

a reservoir of a given temperature) and maroanonial (exhanging both the energy

and the number of partiles with the reservoir).

De�nition of an ensemble is not a mathematially well de�ned objet. We imag-

ine a set of many systems with (almost) the same marosopi properties or the same

system (in equilibrium) seen at many times but both desriptions are rather intuitive.

A fundamental assumption that all mirostates forming a given marostate are equally

aessible and should be ounted with equal probability (ergodi hypothesis) is not

rigorously proven until today.

The miroanonial ensemble is desribed by the number of partiles and the volume

of the phase spae (assuming that it is �nite) with the energy U in the small interval

�U . The number of 'states' in lassial physis is formally in�nite so to make it well

de�ned we need to appeal to quantum physis where there is a heuristi rule that a new

state is possible when �q�p di�ers by h (the Plank onstant). Using this heuristi rule

we alulate the number of states in an interval �U around

Z

N

(V; U;�U) =

 

Z

U

�

Z

U��U

!

d

3N

pd

3N

q

N !h

3N

� �U

Z

d

3N

pd

3N

q

N !h

3N

Æ(U�T

N

�V

N

) (7.1)

if �U �

U

N

. 1=N ! is the Gibbs fator, yet another fator that an be justi�ed only in

quantum physis (indistinguishability of idential partiles), although Gibbs introdued

it by onsidering the entropy of mixing of two gases and �nding a paradox when the

gases were idential. Z

N

(V; U) is then the number of states around U in the interval

�U .

Aording to the famous Boltzmann formula logarithm of Z

N

is equal to the entropy

(modulo a onstant)

S = k ln(W ) (7.2)
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This formula is on Boltzmann's grave in Vienna { it required an inredible ingenuity

of Boltzmann to write it down in 1875, 25 years before the Plank's assumption of

quantization of photon emissions and absorptions.

It an be justi�ed by the formula (also given by Boltzmann in 1866)

S = �

X

P lnP (7.3)

and using equal (maximal) probability P = 1=Z

N

for all states (

P

P = 1).

In the following we put the Boltzmann's onstant k equal to 1 (we measure tempera-

ture in units of 8:6173332 : : : �10

�5

eV). Knowing S we an reover all thermodynamial

funtions in this ensemble by

dS =

1

T

dU +

p

T

dV (7.4)

i.e.

1

T

=

�

�S

�U

�

V

;

p

T

=

�

�S

�V

�

U

(7.5)

As an example let us disuss free non-relativisti partiles. Then

Z

N

(V; U;�U) = �U

V

N




(3N�1)

N !h

3N

(2mU)

3N=2

(7.6)

where 


(3N�1)

is the volume of (3N � 1)-dimensional unit sphere




(3N�1)

=

2�

3N=2

�(3N=2)

(7.7)

Hene (using ln(N !) = ln(�(N + 1)) = N ln(N) �N +

1

2

ln(2�N) + O(1=N))

S

N

! ln(V=N) +

3

2

ln

�

4�mU

h

2

N

�

(7.8)

We see that without the N ! fator in the denominator S would not be proportional to

N but there would be logarithmi orretions to S=N growing like lnN . The result is

the so alled Sakur-Tetrode equation.

Hene we reover the well-known results

1

T

=

3N

2U

;

p

T

=

N

V

(7.9)

7.2 Canonical ensemble

We onsider a small subsystem attahed to a large one of temperature T . The number

of states of the large system when the small one has energy E is approximately equal to

exp(S

0

(E

0

�E)) = exp

�

S

0

(E

0

)�E

dS

0

(E

0

)

dE

0

�

= exp

�

S

0

(E

0

)�

E

T

�

(7.10)

40



K.A. Meissner

and it desribes a probability of the small system's energy E when the reservoir has

temperature T .

In the anonial ensemble we do not assume that the energy is onstant but that the

system is immersed in a bath of temperature T and we have a Boltzmann's exponential

weight so that the probability of a given state of energy E is given by

P = e

�(F�E)

; � =

1

T

(7.11)

and F is a normalizing fator. Sum of probabilities must be equal to 1 so

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��H(p;q)

(7.12)

where 1=N ! is again the Gibbs fator. We know that the entropy S is given by

S = �

X

P lnP = �

X

�(F �E)e

�(F�E)

= ��F + �U (7.13)

Hene

F = U � TS (7.14)

and it an be identi�ed with the free energy.

Therefore

p = �

�

�F

�V

�

T

S = �

�

�F

�T

�

V

(7.15)

As a �rst example we onsider again free non-relativisti partiles. Then

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��p

2

=(2m)

(7.16)

The density for one partile

Z

d

3

pd

3

q

h

3

e

��p

2

=(2m)

(7.17)

is alled Maxwell-Boltzmann distribution and was the �rst to be introdued in statistial

physis.

For N partiles we have

e

��F (V;T )

=

V

N




(3N�1)

N !h

3N

Z

p

3N�1

e

��p

2

=(2m)

dp (7.18)

The integral is straightforward and we get

e

��F (V;T )

=

V

N




(3N�1)

N !h

3N

(2m)

3N=2

�(3N=2)

�

3N=2

(7.19)

Hene

��F = NC

0

+N ln(V=N) �

3N

2

ln(�) (7.20)

and we reover the known formulae.
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8 Grand canonical ensemble

8.1 Classical grand canonical ensemble

In the lassial setting the we assume that the system is immersed in a bath of temper-

ature T and hemial potential � and we have a Boltzmann's exponential weight. We

assign a probability for N partiles having energy E

N

as

p

N

(E

N

) = e

�(�N�E

N

)

(8.1)

and the normalizing fator 
 de�ned as

X

1

N !

e

�(
+�N�E

N

)

= 1 (8.2)

We de�ne entropy as

S = �

X

p

i

ln p

i

= �

X

1

N !

�(
+�N�E

N

)e

�(
+�N�E

N

)

= ��
��� < N > +� < E >

(8.3)

and hene


 = U � TS + �N = �pV (8.4)

Therefore

e

��


=

1

X

N=0

1

N !

e

��N

Z

d�

N

e

��E

N

(8.5)

8.2 Quantum grand canonical ensemble

In the quantum setting we assume disrete energy levels and in the grand anonial

ensemble we assume that the system is immersed in a bath of temperature T and hem-

ial potential � and we have a Boltzmann's exponential weight for both so that the

probability of a given state of energy E

j

oupied by n

i

number of partiles is given by

P

i;j

= e

�(
+�n

i

�n

i

E

j

)

(8.6)
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where � = 1=T and 
 is a normalizing fator. Sum of probabilities must be equal to 1

so

e

��
(�;V;T )

=

Y

j

X

n

i

e

�(�n

i

�n

i

E

j

)

(8.7)

We know that the entropy S is given by

S = �

X

P

i;j

lnP

i;j

= �

X

�(
+�n

i

�n

i

E

j

)e

�(
+�n

i

�n

i

E

j

)

= ��
��� < N > +�U

(8.8)

Hene


 = U � �N � TS = �pV (8.9)

and the average number of partiles

< N >= �

�

�


��

�

T;V

= V

�

�p

��

�

T;V

(8.10)

Therefore

d
 = �SdT � pdV �Nd� (8.11)

For non-interating fermions (oupation numbers 0; 1)

e

��
(�;T )

=

Y

j

�

1 + e

�(��E

j

)

�

(8.12)

For non-interating bosons (oupation numbers 0; 1; 2; : : :)

e

��
(�;T )

=

Y

j

X

n

i

e

�(�n

i

�n

i

E

j

)

=

Y

j

�

1� e

�(��E

j

)

�

�1

(8.13)

giving Fermi-Dira and Bose-Einstein distributions respetively.

They give for fermions

�

�


��

=

X

j

< n

j

>=

X

j

1

e

�(E

j

��)

+ 1

(8.14)

while for bosons

�

�


��

=

X

j

< n

j

>=

X

j

1

e

�(E

j

��)

� 1

(8.15)

For bosons � 6 E

0

otherwise the expression wouldn't make sense.

Di�erentiating (8.6) one over � we get

�


��

X

e

�(
+�n

i

�n

i

E

j

)

+

X

n

i

e

�(
+�n

i

�n

i

E

j

)

= 0 (8.16)

and one again

�

2




��

2

+ �

�

�


��

�

2

+ 2�

�


��

< N > +� < N

2

>= 0 (8.17)

Hene

< N

2

> � < N >

2

= �T

�

2




��

2

(8.18)

so that utuations are of the order of 1=

p

N sine RHS is of order N .
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8.3 Planck distribution

We start from the expression for the average oupational number as a funtion of energy

�

�


��

=

X

j

< n

j

>=

X

j

1

e

�(E

j

��)

� 1

(8.19)

For photons we have � = 0 so we an write

dE

dk

=

2V 4�k

2

~k

(2�)

3

1

e

�~k
� 1

(8.20)

where V is the volume, E = ~! = ~k is the energy and 2 omes from the number of

polarizations. It is more often presented as a funtion of frequenies

dE

d!

=

V ~

�

2



3

!

3

e

�~!
� 1

(8.21)

Total energy ontained in a box is equal to

U =

T

4

V

(~)3�2

Z

1

0

x

3

dx

e

x

� 1

(8.22)

The integral is equal to

Z

1

0

x

3

dx

e

x

� 1

=

Z

1

0

dxx

3

�

e

�x

+ e

�2x

+ : : :

�

= 6�(4) =

�

4

15

(8.23)

so that �nally (introduing the Boltzmann's onstant k

B

)

U =

(k

B

T )

4

V �

2

15(~)3
(8.24)

and the energy density

� =

U

V

=

(k

B

T )

4

�

2

15(~)3
(8.25)

As we know the pressure is equal to

p =

1

3

� (8.26)

We an now alulate entropy of the photon gas

dS =

dU

T

+

pdV

T

) S =

4U

3T

(8.27)

and the number density of photons

N

V

=

(k

B

T )

3

(~)3�2

Z

1

0

x

2

dx

e

x

� 1

=

(k

B

T )

3

2�(3)

(~)3�2
(8.28)
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If we make small hole of surfae S in the ontainer we get the energy emitted

dE =

R

�=2

0

2� os(�) sin(�)d�

R

�

0

2� sin(�)d�

�Sdt =

�Sdt

4

(8.29)

we get the ux �

� =

(k

B

T )

4

�

2



60(~)3
= �T

4

(8.30)

where � is the Stefan-Boltzmann onstant.

8.4 Distributions at low temperatures

We start from the expressions for the number of nonrelativisti massive partiles

N

V

=

g8�m

3=2

p

2h

3

Z

1

0

p

�d�

e

(���)=T

� 1

=

g8�(mT )

3=2

p

2h

3

Z

1

0

p

zdz

e

z��=T

� 1

(8.31)

where g = 2s+1 is the number of degrees of freedom onneted with the spin (for massive

partiles). This expression gives the hemial potential � as a funtion of temperature

and density. The energy is given by

E =

g8�m

3=2

p

2h

3

Z

1

0

�

3=2

d�

e

(���)=T

� 1

(8.32)

and the pressure (from 
 = �pV )

p =

2E

3V

=

g8

p

2�m

3=2

T

5=2

3h

3

Z

1

0

z

3=2

dz

e

z��=T

� 1

(8.33)

We now ask when these expressions go to the lassial Boltzmann expressions (with-

out �1 in the denominator). We expand (8.34

N

V

=

g8�(mT )

3=2

p

2h

3

Z

1

0

p

zdz

e

z��=T

� 1

�

g8�(mT )

3=2

p

2h

3

Z

1

0

p

zdz

�

e

�z+�=T

� e

�2z+2�=T

+ : : :

�

(8.34)

Using

Z

1

0

z

�

e

�bz

=

�(� + 1)

b

�+1

(8.35)

we get the leading expression

N

V

=

g8�(mT )

3=2

p

2h

3

Z

1

0

p

zdze

�z+�=T

=

g8�

3=2

(mT )

3=2

p

2h

3

e

�=T

(8.36)

Therefore the orretion is small when e

�=T

� 1:

e

�=T

� 1 )

N

V

�

�

mT

h

2

�

3=2

(8.37)

This ondition shows when the temperature is high enough for a given density to use the

lassial expressions (V=N)

1=3

� h=

p

mT � h=p orresponds to the average distane

between partiles muh bigger than the de Broglie wavelength.
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9 Bose-Einstein condensates and
Chandrasekhar limit

9.1 Bose-Einstein condensates

We start from the quantum grand partition funtion for bosons

e

��
(�;T )

=

Y

j

X

n

i

e

�(�n

i

�n

i

E

j

)

=

Y

j

�

1� e

�(��E

j

)

�

�1

(9.1)

and the oupation numbers for bosons

�

�


��

=

X

j

< n

j

>=

X

j

1

e

�(E

j

��)

� 1

(9.2)

If we ount the energy levels from E

j

= 0 then the hemial potential satis�es

� 6 0 (9.3)

sine otherwise there would be a singularity in the distribution. But it may happen

when the temperature is too low that then in (8.34) with the sign for bosons the RHS

is smaller than the LHS even if we assume the upper bound � = 0. We now make an

assumption that there is a gap between the ground state and the �rst exited state.

Then the rest of the partiles must be in the ground state and we have

N =

g8�V (mT )

3=2

p

2h

3

Z

1

0

p

zdz

e

z

� 1

+ N

0

(9.4)

or

N

0

N

=

"

1�

�

T

T

0

�

3=2

#

(9.5)

N

0

> 0 below a temperature given by

N

V

=

g8�(mT



)

3=2

p

2h

3

Z

1

0

p

zdz

e

z

� 1

=

g4(�mT



)

3=2

p

2h

3

�(3=2) (9.6)
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and hene

k

B

T



=

h

2

�m

 

N

p

2

4V g�(3=2)

!

2=3

�

3:31~
2

g

2=3

m

�

N

V

�

2=3

(9.7)

If we apply it to the ase for the often used hyperolled diluted rubidium-87 atoms

(m � 1:45 � 10

�25

kg, N=V � 2:5 � 10

18

1/m

3

) what gives the temperature T



� 30 nK

(it was observed at 170 nK).

For the liquid helium � � 0:12 g/l i.e. 30 mol/m

3

and m � 6:67 � 10

�27

kg. Hene

T

0

� 0:04 K (9.8)

what is muh lower than the � transition to the superuid state (2.18 K) beause of

interations of helium.

9.2 White dwarfs – Chandrasekhar limit

We now disuss a star with degenerate eletrons that does not have any nulear fusion

in the ore (a white dwarf i.e. our Sun in the future). This alulation was done by

Chandrasekhar in 1930 on his �rst voyage from Madras to England { he reeived the

Nobel Prize for it in 1983.

If the mass of the dwarf is large the eletrons are relativisti if it is smaller they are

non-relativisti. We assume that the Fermi-Dira distribution is sharp i.e

f(E) = 1 for E < �

F

; f(E) = 0 for E > �

F

(9.9)

where

�

F

=

q

p

2

F



2

+ m

2

e



4

(9.10)

The number of eletrons is given by

N =

2V

h

3

Z

p

F

0

dp4�p

2

=

8V �p

3

F

3h

3

(9.11)

what an be translated into the mass density (assuming that it is a purely arbon and

oxygen star i.e M = 2Nm

p

))

� =

M

V

=

16�m

p

p

3

F

3h

3

) p

F

= h

 

3M

16�V m

p

!

1=3

(9.12)

If V ! 0 then p

F

!1 so it orresponds to the ultrarelativisti regime.

The expression for energy

E =

2V

h

3

Z

p

F

0

dp4�p

2

q

p

2



2

+ m

2

e



4

(9.13)

We now alulate the pressure

P = �

�E

�V

= �

2

h

3

Z

p

F

0

dp4�p

2

q

p

2



2

+ m

2

e



4

+

2p

F

3h

3

4�p

2

F

q

p

2

F



2

+ m

2

e



4

(9.14)
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where we used V

dp

F

dV

= �

p

F

3

. Sine

dE = pdV ) d(E + pV ) = V dp (9.15)

and using the previous 2 equations we get

V dp = d

 

V 8�p

3

F

3h

3

q

p

2

F



2

+ m

2

e



4

!

= d

 

M

2m

p

q

p

2

F



2

+m

2

e



4

!

(9.16)

Hene

dP =

�m

e



2

2m

p

d

s

1 +

p

2

F

m

2

e



2

(9.17)

We write the hydrostati equilibrium ondition inside a white dwarf

4�r

2

dp = �

G

N

4�r

2

dr�M(r)

r

2

(9.18)

Hene

1

r

2

d

dr

 

r

2

�

dp

dr

!

= �4�G

N

� (9.19)

Using the results for the degenerate eletron gas and introduing a dimensionless quan-

tity

x =

p

F

m

e



(9.20)

and using (9.17) we get the equation

1

r

2

d

dr

 

r

2

d

p

1 + x

2

dr

!

= �AG

N

x

3

(9.21)

A =

32�

2

m

2

p

m

2

e

�

2

e



3h

3

(9.22)

and �

e

is the number of nuleons per eletron (for arbon and oxygen white dwarfs

�

e

= 2). The density is given as before by

� =

8��

e

m

p

m

3

e



3

3h

3

x

3

(9.23)

The density at r = 0 is given by x

0

.

We introdue

s :=

r

p

AG

N

; y(s) := x

2

(s) (9.24)

so that

1

s

2

d

ds

 

s

2

d

p

1 + y(s)

ds

!

= �y(s)

3

2

(9.25)

and

Z

s

m

0

dss

2

x

3

= �

1

2

s

2

m

y

0

(s = s

m

) (9.26)
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where s

m

is suh that y(s

m

) = 0. The limit for y(0) = y

0

!1 gives s

m

! 0. It turns

out in the numerial solution of the di�erential equation (9.25) (with the boundary

onditions y(0) = y

0

; y

0

(0) = 0) that this limit is �nite

lim

y

0

!1

�

1

2

s

2

m

y

0

(s = s

m

) = B

1

� 2:0182::: (9.27)

Hene the maximal mass of the white dwarf is equal to

M

C

m

p

= 4�B

1

8��

e

m

3

e



3

3h

3

�

1

AG

N

�

3

2

=

B

1

p

3�

2�

2

e

�

�3=2

(9.28)

where

� =

G

N

m

2

p

~
(9.29)

Plugging in the numbers we get

� � 5:903 � 10

�39

(9.30)

It is one of the biggest mysteries in physis why this number desribing the strength of

gravity is so small but it explains why stars, planets et. an be so large and do not

ollapse under gravity unless they have more than �

�3=2

� 10

57

proton masses. For

omparison, for the eletromagneti interations the analogous number would be

� =

e

2

4��

0

~
�

1

137

(9.31)

Hene we get

M

C

m

p

=

6:83

�

2

e

� 10

57

)M

C

=

5:74

�

2

e

M

�

� 1:44M

�

(9.32)

for �

e

= 2.

For neutron stars the eletrons should be replaed by neutrons but the limit (9.32)

does not depend on the eletron mass so the limit is very similar. The estimates of the

neutron star masses give the interval 1:1M

�

6 M

n

6 2:16M

�

.

When a white dwarf in a binary system absorbs a mass from a ompanion and rosses

the Chandrasekhar limit then the nulear proesses inside start to grow and the star

explodes, for arbon stars leaving no remnants while for heavier elements star there may

be a neutron star left { it is so alled supernova I explosion, where I refers to the lak of

hydrogen lines in the spetrum (supernova II explosions ome from young very massive

ative stars, with masses muh higher than the Chandrasekhar limit, that leave behind

either neutron stars or for extremely massive stars blak holes).
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9.3 Small white dwarfs

For smaller white dwarfs than the Chandrasekhar limit we an derive the limit in an

approximate simpli�ed way and assume that the eletrons are approximately nonrela-

tivisti

�

F

=

p

2

F

2m

e

(9.33)

We will hek this assumption at the end. Then

E

0

�

2V

2m

e

h

3

Z

p

F

0

dp4�p

4

=

4V �

5m

e

h

3

p

5

F

(9.34)

On the other hand the number of eletrons is given by

N =

2V

h

3

Z

p

F

0

dp4�p

2

=

8V �p

3

F

3h

3

(9.35)

what an be translated into the mass density (assuming that it is a purely arbon and

oxygen star i.e M = 2Nm

p

))

M

V

=

16�m

p

p

3

F

3h

3

) p

F

= h

 

3M

16�V m

p

!

1=3

(9.36)

For the onstant density the gravitational energy of a star is equal to

E

g

= �

3G

N

M

2

5R

(9.37)

The energy has to be minimized

E

0

+ E

g

=

4�h

2

5m

e

V

2=3

 

3M

16�m

p

!

5=3

�

3G

N

M

2

5R

= min ) R =

(9�)

2=3

8

~
2

m

e

G

N

m

5=3

p

M

1=3

(9.38)

sine for A=R

2

�B=R the minimum is attained for R

m

= 2A=B.

It an be written as

R

R

�

� 0:01

�

M

�

M

�

1=3

(9.39)

The typial radii of white dwarfs M �M

�

are of order 7000 km, for smaller masses we

have larger radii. We an now use these formulae for the white dwarf of the Sun's mass

to alulate p

F

p

F

m

e



=

h

m

e



 

3M

�

16�10

�6

V

�

m

p

!

1=3

=

100~

m

e

R

�

 

9�M

�

8m

p

!

1=3

� 0:9 (9.40)

so the eletrons are still approximately non-relativisti, for smaller masses the approx-

imation gets better but for larger masses, up to the Chandrasekhar limit (9.32), we

should use the exat relativisti formula for the energy.
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10 Imperfect gases

10.1 Partition function with interactions

We start with the partition funtion in the anonial ensemble inluding interations

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��

P

p

2

i

=(2m)��U(q

i

)

(10.1)

The interation over momenta is straightforward and gives the perfet gas result F

p

(V; T )

so we have

e

��F (V;T )

= e

��F

p

(V;T )

Z

d

3

q

1

: : : d

3

q

N

V

N

e

��U(q

i

)

(10.2)

We rewrite it in a slightly di�erent way

e

��F (V;T )

= e

��F

p

(V;T )

"

1 +

Z

d

3

q

1

: : : d

3

q

N

V

N

�

e

��U(q

i

)

� 1

�

#

(10.3)

so that

F (V; T ) = F

p

(V; T )� T ln

"

1 +

Z

d

3

q

1

: : : d

3

q

N

V

N

�

e

��U(q

i

)

� 1

�

#

(10.4)

Before we present a general approah to this problem we point out some approxima-

tions.

10.2 Approximations of the interacting partition function

We start with the approximation that there are only 2-body interations, they are very

short range and the gas is very diluted. Then the vast part of the region of integration

does not ontribute to the integral. Negleting the 3-body interations and expanding

ln(1 + x) � x we have

F (V; T ) = F

p

(V; T )�

TN

2

2V

2

Z

d

3

q

1

d

3

q

2

�

e

��U

12

)

� 1

�

(10.5)
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10. Imperfet gases

Sine U

12

depends only on the relative positions we an integrate over the enter of mass

positions to get

F (V; T ) = F

p

(V; T ) +

TN

2

B(T )

V

(10.6)

where

B(T ) =

1

2

Z

d

3

q

1

�

1� e

��U

1

)

�

(10.7)

If U

1

= U

12

(q

2

= 0) has �nite range this integral depends only on the temperature and

the range.

Sine

p = �

�

�F

�V

�

T

S = �

�

�F

�T

�

V

we have

p =

NT

V

�

1 +

NB(T )

V

�

(10.8)

so the orretion is small for large molar volumes.

We now make a di�erent approximation. We divide the region of integration into a

'hard ore' of radius R where U

12

!1 and the outside where U

12

< 0 and j�U

12

j � 1.

Therefore the integral (10.7) is equal to

B(T ) = b� �a (10.9)

where b = 4V

R

and

F (V; T ) = F

p

(V; T ) +

TN

2

b

V

�

N

2

a

V

: (10.10)

Adding the ondition that the volume annot be dereased below ertain value we inlude

the �rst orretion

p �

NT

V �Nb

�

aN

2

V

2

(10.11)

and we reover the Van der Waals equation of state.

10.3 Cluster expansion

We now alulate the grand anonial ensemble for the imperfet gas. We write

e

��


=

1

X

N=0

1

N !

e

��N

Z

d�

N

e

��E

N

(10.12)
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We have

E

0

= 0 (10.13)

E

1

=

p

2

2m

(10.14)

E

2

=

p

2

1

2m

+

p

2

2

2m

+ U

12

(10.15)

E

3

=

p

2

1

2m

+

p

2

2

2m

+

p

2

3

2m

+ U

123

(10.16)

and so on. Integrals over the momenta an be performed in eah ase. Hene


 = �T ln

 

1 + �V +

�

2

2

Z Z

e

��U

12

dV

1

dV

2

+ : : : :::

!

(10.17)

where

� =

�

2�mT

h

2

�

3=2

e

��

(10.18)

We rewrite it as


 = �T�V � T ln

 

e

��V

 

1 + �V +

�

2

V

2

Z

e

��U

12

dV

2

+ : : : :::

!!

(10.19)

where we integrated one over the overall position of pairs. We an expand it in �:


 = �T�V � T ln

 

�

1� �V +

1

2

�

2

V

2

+ : : :

�

 

1 + �V +

�

2

V

2

Z

e

��U

12

dV

2

+ : : :

!!

(10.20)

Sine 
 = �pV and using ln(1 + x) = x� x

2

=2 + x

3

=3 : : : we get the expansion

p = T

1

X

n=1

J

n

n!

�

n

(10.21)

where we �xed the position of partile 1 and

J

1

= 1 (10.22)

J

2

=

Z

�

e

��U

12

� 1)

�

dV

2

(10.23)

J

3

=

Z Z

0

�

e

��U

123

� 1�

X

i<j

�

e

��U

ij

� 1

�

1

A

dV

2

dV

3

(10.24)

For example J

3

is di�erent from 0 only if all three partiles are lose to eah other. We

notie that if the potential U is of �nite range (or suÆiently fast dereasing with the

distane) then all J

n

's are independent of the volume V (they are intensive quantities).
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10. Imperfet gases

The average number of partiles

N = �

�

�


��

�

T;V

= V

�

�p

��

�

T;V

(10.25)

is equal to

N = V

1

X

n=1

J

n

(n� 1)!

�

n

(10.26)

Solving it with respet to � to a given order k and plugging into (10.21) we get the

expression for p as a funtion of T and N=V to the same order k in N=V { the main

problem is to atually alulate J

n

's...

Writing up to third order

N

V

= � + J

2

�

2

+

J

3

2

�

3

+ : : : (10.27)

we invert this relation

� =

N

V

� J

2

�

N

V

�

2

+

�

2J

2

2

�

J

3

2

��

N

V

�

3

+ : : : (10.28)

Plugging it into the expression

p

T

= � +

J

2

2

�

2

+

J

3

6

�

3

+ : : : (10.29)

we get

pV

NT

= 1�

J

2

2

�

N

V

�

+

�

J

2

2

�

J

3

3

��

N

V

�

2

+ : : : (10.30)

If we write

pV

NT

= 1 + B

2

(T )

�

N

V

�

+ B

3

(T )

�

N

V

�

2

+ : : : (10.31)

then B

2

(T ); B

3

(T ); : : : are alled virial oeÆients.

10.4 Hard disks

The �rst (unrealisti) example: we assume that the J

n

= (�1)

n+1

(n� 1)!�

1�n

0

and then

p = T�

0

ln

�

1 +

�

�

0

�

(10.32)

Then (� = N=V )

� =

�

1 +

�

�

0

) � =

�

1�

�

�

0

(10.33)

Hene

p = �T�

0

ln

�

1�

�

�

0

�

(10.34)
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and the pressure in this example goes to in�nity at �nite density �

0

.

The seond example is given by a very important model, namely the so alled hard

spheres model { we will disuss it in two dimensions i.e. hard disks. We have disks of

radius R that do not interat exept that they are impenetrable so that their enters

annot have smaller distane than 2R. The value of J

2

is relatively easy to alulate {

any position of the seond disk that overlaps with the �rst disk has U

12

= 1 (and all

the other have U

12

= 0) so that

J

2

= �

Z

2R

0

2�rdr = �4�R

2

(10.35)

Therefore

N = V (� � 4�R

2

�

2

+ : : :) ) � =

N

V

+

4�R

2

N

2

V

2

+ : : : (10.36)

and from (10.30)

pV

NT

= 1 +

2�R

2

N

V

+ : : : = 1 + 2� + : : : (10.37)

where � = �R

2

N=V is the paking fration. Sine the maximal rystalline paking is

equal to

�

0

=

p

3�

6

(10.38)

we expet the pressure grow to in�nity when � ! �

0

(when all J

n

's should be taken into

aount) so one an propose

pV

NT

=

�

1�

�

�

0

�

�1

�

1�

2�

0

� 1

�

0

�

�

�1

=

�

1� 2� +

2�

0

� 1

�

2

0

�

2

�

�1

(10.39)

to reprodue (10.37) to the order � (when only J

2

is taken into aount). The exat

equation of state (to all orders in �) for hard disks is unknown.
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11 Debye theory of solids

11.1 Equipartition of energy

We start from the statement that every degree of freedom ontributes lassially kT=2

to the energy and disuss the limitations of this statement from quantum mehanis. If

the ontribution to the hamiltonian from any degree of freedom q is equal to

H =

�

2

q

2

(11.1)

then the average energy onneted with this degree of freedom is equal to

h�i =

�

2

R

dqq

2

e

���q

2

=2

R

dqe

���q

2

=2

=

1

2�

=

kT

2

(11.2)

This onlusion is valid even if � depends on other oordinates. Therefore the spei�

heat equals k=2 per degree of freedom

However, as was shown by Einstein in 1907, this onlusion does not hold in quantum

mehanis as an be shown on an example of a harmoni osillator. Classially the

spei� heat should be equal to k sine we have two degrees of freedom. The hamiltonian

is given by

H =

1

2

(p

2

+ !

2

q

2

) (11.3)

We know that the energies of this system are given by

�

n

= ~!

�

n +

1

2

�

(11.4)

so that we an alulate average energy:

h�i = ~!

P

1

n=0

(n + 1=2)e

��~!(n+1=2)

P

1

n=0

e

��~!(n+1=2)
=

�

��

ln sinh(�~!=2) =

~!

2

oth(�~!=2) (11.5)

Calulating the spei� heat we get

 = �k�

2

�h�i

��

= k

(�~!=2)

2

sinh

2

(�~!=2)

(11.6)

We see that for large T (small �) we indeed have  ! k but for small T (large �)

 ! 0. This formula explains the 'freezing' of degrees of freedom: if the �rst exited
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11. Debye theory of solids

state energy is muh bigger than kT then this degree of freedom does not ontribute to

the spei� heat. For example for diatomi moleules O

2

and N

2

at room temperature

we have only 5 degrees of freedom ontributing, 3 translational and 2 rotational, but

the osillational degrees of freedom do not ontribute sine ~!
os

for these moleules is

muh bigger than kT � 0:03 eV for the room temperature and hene the spei� heat

of air is approximately equal to 5k=2 per moleule.

11.2 Debye theory of specific heat of solids

Applying the rule of the equipartition of energy to solids we would expet that the

spei� heat should be equal to 3Nk where N is the number of atoms { it orresponds

to 3N translational and 3N osillational degrees of freedom and is alled the Dulong-

Petit law. Applying the reasoning from quantum mehanis we would still expet the

same result even at room temperature sine osillations in solids have frequenies of the

order of !

os

=N so muh lower than kT for room temperature. However, as we will

disuss, the energy levels in solids have muh more ompliated struture than for the

simple harmoni osillator so the formulae are more ompliated as well.

We will disuss the distributions for phonons to derive the formula for the spei�

heat of solids related to osillation but not inluding the eletroni heat apaity (dom-

inant at very low temperatures only).

11.2.1 classical computation

If we have a 1D string of atoms with harmoni potential and equilibrium distane a we

have

m�x

n

= K(x

n+1

� x

n

) + K(x

n�1

� x

n

) (11.7)

To solve this equation we substitute

x

n

= na + e

i!t

sin(kna); �

�

a

� k �

�

a

(11.8)

to get

!

2

=

4K

m

sin

2

(ka=2) (11.9)

We write

! = !

m

sin(ka=2); !

m

=

s

4K

m

(11.10)

The group veloity

v

g

=

�!

�k

=

!

m

a

2

os(ka=2) =

Ka

2

m

os(ka=2) = v

g0

os(ka=2) (11.11)

Density of states in 3D (k =

2

a

arsin(!=!

m

); there are 2 transverse and 1 longitudinal

polarizations)

g(!)d! =

3V 4�k

2

dk

(2�)

3

=

V !

2

d!

2�

2

v

3

g0

�

1 + !

2

=(3!

2

m

) + : : :

p

1� !

2

=!

2

m

(11.12)
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Einstein has used the formula for density for one spei� frequeny g(!) = 3NÆ(!�

!

E

) { it explained the Dulong-Petit law that the heat apaity tends to 3R for large

temperatures but was not very good in explaining low temperature behavior of heat

apaity.

Debye assumed that all frequenies are present and wrote the formula (without any

orretions � !

2

=!

2

m

) to use measured v

g0

) and de�ned !

D

by

3N =

Z

!

D

0

g(!)d! =

Z

!

D

0

3V !

2

d!

2�

2

v

3

g0

=

V !

3

D

2�

2

v

3

g0

(11.13)

hene

!

D

= v

g0

�

6��

2

�

1

3

; � = N=V (11.14)

and

g(!)d! =

9N!

2

d!

!

3

D

(11.15)

If transverse and longitudinal speeds are di�erent one may use the averaging

3

�v

3

=

2

v

3

t

+

1

v

3

l

(11.16)

Phonons are bosons so that the energy stored in phonons in temperature T is given

by

E =

Z

!

D

0

d!g(!)ℏ!
1

e

ℏ!

kT

� 1

(11.17)

The heat apaity



p

=

�E

�T

=

Z

!

D

0

d!

9Nℏ
2

!

4

!

3

D

kT

2

e

ℏ!

kT

�

e

ℏ!

kT

� 1

�

2

(11.18)

It an be rewritten as



p

= 9Nk

�

T

�

D

�

3

Z

�

D

=T

0

dx

x

4

e

x

(e

x

� 1)

2

(11.19)

where

�

D

=

ℏ!
D

k

(11.20)

For T � �

D

we have



p

! 9Nk

�

T

�

D

�

3

�

4�

4

15

(11.21)

while for T � �

D

we reover the Dulong-Petit law 

p

! 3R.

This formula is in muh better agreement with experimentally measured values than

Einstein's but is not exat either. To have better desription one has to take into aount

the presene of (quantum) harateristi frequenies of a given rystal or dependene

of �

D

on temperature. The Debye temperatures of some of the elements (they derease

with the temperature to math the experimental values!): aluminum 433 K, beryllium

1481 K, opper 347 K, lead 105 K, gold 227 K, diamond 2200 K (in room temperature

1840 K).
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11. Debye theory of solids

11.2.2 quantum counterpart of the computation in 1D

The lassial hamiltonian for a harmoni osillator reads:

H =

p

2

2m

+

m!

2

x

2

2

(11.22)

In quantum mehanis x and p are operators where Poisson brakets are replaed by

ommutators (Dira 1925 equations of motion, Heisenberg 1925 main idea, Born and

Jordan 1925 matrix formulation, Born, Heisenberg and Jordan 1926 textbook)

fx; pg

PB

= 1 ) [x̂; p̂℄ = iℏ (11.23)

When ating on funtions we an write

x̂f(x) := xf(x); p̂ := �iℏ
�f

�x

(11.24)

and the equation for the eigenstate of the hamiltonian

^

Hf = Ef (11.25)

is the Shr�odinger equation (1926).

Hamiltonian is an operator as well:

^

H =

p̂

2

2m

+

m!

2

x̂

2

2

(11.26)

It is onvenient to introdue reation and annihilation operators

a :=

m!x̂ + ip̂

p

2m!ℏ
; a

y

:=

m!x̂� ip̂

p

2m!ℏ
; (11.27)

satisfying

[a; a

y

℄ = 1 (11.28)

and then

^

H = ℏ!

�

a

y

a +

1

2

�

(11.29)

Points in a phase spae are replaed by states on whih the operators at. The ruial

role is played by the vauum state j0i{ in this ase we de�ne it as a state

aj0i = 0 (11.30)

We an reate other states by ating with a

y

jni =

1

p

n!

(a

y

)

n

j0i; a

y

jni =

p

n + 1jn + 1i; ajni =

p

njn� 1i (11.31)

where the prefator is needed for hnjni = 1.
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We an now alulate 'quantum partition funtion' (E

n

= ℏ!(n +

1

2

))

Z =

1

X

n=0

e

��E

n

=

e

��ℏ!=2

1� e

��ℏ!
(11.32)

and (using

P

n=0

nexp(�ny) = exp(�y)(1 � exp(�y))

�2

)

hEi =

1

Z

1

X

n=0

ℏ!(n +

1

2

)e

��E

n

=

ℏ!

2

e

�ℏ!
+ 1

e

�ℏ!
� 1

(11.33)

For � ! 0 we have hEi ! 1=� (sine we have 2 degrees of freedom) and for � ! 1

we have hEi ! ℏ!=2 (sine it is the ground state energy). Neither Debye nor Einstein

inluded

1

2

in their alulations but it drops out anyway when we alulate the spei�

heat what they were interested in.

It is interesting to note that

1

2

does not drop out if we alulate average displaement.

We have

x̂ =

s

ℏ

2m!

(a

y

+ a); p̂ =

s

ℏm!

2

i(a

y

� a) (11.34)

so that

hnjx̂

2

jni =

ℏ

m!

(n +

1

2

); hnjp̂

2

jni = ℏm!(n +

1

2

); (11.35)

and we reover the Heisenberg unertainty relation (whih an be proven in full gener-

ality)

q

hx̂

2

ihp̂

2

i �

ℏ

2

(11.36)

and it is saturated for the vauum state.

In higher dimensions D the alulation would be a little di�erent:

E

n

= ℏ!

�

n +

D

2

�

; degeneray :

(n + D � 1)!

n!(D � 1)!

(11.37)

For example in 2 dimensions

Z =

1

X

n=0

(n + 1)e

��E

n

=

e

�ℏ!

(e

�ℏ!
� 1)

2

(11.38)

and the average energy

hEi =

1

Z

1

X

n=0

(n + 1)ℏ!(n + 1)e

��E

n

= ℏ!
e

�ℏ!
+ 1

e

�ℏ!
� 1

(11.39)

For � ! 0 we have hEi ! 2=� (sine we have 4 degrees of freedom) and for � !1 we

have hEi ! ℏ! (sine it is the ground state energy).
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11.3 Electronic specific heat in metals

For eletrons we have the ontribution to the energy density given by the Fermi-Dira

distribution

u =

U

V

=

Z

1

0

d�g(�)�

1

e

���

F

(T )

T

+ 1

(11.40)

where �

F

(T ) is the Fermi level given by the density

n =

N

V

=

Z

1

0

d�g(�)

1

e

���

F

(T )

T

+ 1

(11.41)

(we will denote �

F

(T ) by �(T ) later on). If we use the non-relativisti formula (assuming

that the temperature is low enough) � = ~
2

k

2

=(2m) we have the energy density

u(T ) =

16�m

3=2

p

2h

3

Z

1

0

d�

�

3=2

e

(���(T ))=T

+ 1

(11.42)

and the density

n =

16�m

3=2

p

2h

3

Z

1

0

d�

�

1=2

e

(���(T ))=T

+ 1

(11.43)

For T = 0 we have (�

0

= �

F

(0))

n =

16�m

3=2

p

2h

3

Z

�

0

0

d��

1=2

=

32�m

3=2

3

p

2h

3

�(0)

3

2

(11.44)

and

u(0) =

3

5

n�(0) (11.45)

If we have non-zero temperature but very small (T � �

0

) we use the method of Som-

merfeld. We introdue a new variable x = (�� �(T ))=T and we write

n =

16�m

3=2

p

2h

3

Z

1

�

�(T )

T

dxT

(xT + �(T ))

1=2

e

x

+ 1

=

16�m

3=2

p

2h

3

Z

�(T )

T

0

dxT (�xT + �(T ))

1=2

�

1�

1

e

x

+ 1

�

+

16�m

3=2

p

2h

3

Z

1

0

dxT (xT + �(T ))

1=2

1

e

x

+ 1

=

16�m

3=2

p

2h

3

�

2

3

�(T )

3

2

+ T

2

�(T )

�

1

2

Z

1

0

dx

x

e

x

+ 1

+ O(T

4

=�(T )

5=2

�

(11.46)

up to exponentially small terms. Sine the integral is equal to �(2)(1 � 2=4) = �

2

=12

and the result has to be equal to (11.44) therefore we get

2

3

�(0)

3

2

=

2

3

�(T )

3

2

+ T

2

�(T )

�

1

2

�

2

12

(11.47)
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and we get

�(T ) = �(0)

 

1�

�

2

T

2

12�(0)

2

+ O(T

4

=�(0)

4

)

!

(11.48)

Repeating the same steps for the energy (11.42) we get

u =

16�m

3=2

p

2h

3

Z

1

�

�(T )

T

dxT

(xT + �(T ))

3=2

e

x

+ 1

=

16�m

3=2

p

2h

3

Z

�(T )

T

0

dxT (�xT + �(T ))

3=2

�

1�

1

e

x

+ 1

�

+

16�m

3=2

p

2h

3

Z

1

0

dxT (xT + �(T ))

3=2

1

e

x

+ 1

=

16�m

3=2

p

2h

3

�

2

5

�(T )

5

2

+ 3T

2

�(T )

1

2

Z

1

0

dx

x

e

x

+ 1

+ O(T

4

=�(T )

5=2

�

(11.49)

Therefore using (11.47) we get up to T

2

terms

u � u(0)

 

1�

5�

2

T

2

24�(0)

2

! 

1 +

5�

2

T

2

8�(0)

2

!

� u(0)

 

1 +

5�

2

T

2

12�(0)

2

!

(11.50)

where u(0) =

3

5

n�(0). Therefore the heat apaity at very low temperatures

C

p

=

�u

�T

= n

�

2

T

2�(0)

(11.51)

Atually this formula has to be orreted by the number of eletrons in the ondution

band per atom v. Therefore the �nal formula is

C

p

=

�u

�T

= nv

�

2

T

2�(0)

(11.52)

so it is linear in temperature and muh smaller at room temperature than naively ex-

peted (C

p

� nv) by the fator �

2

T=(2�(0)) � 10

�2

. It is however important in om-

parison with the phonon heat apaity at low temperatures and the total heat apaity

of solids at small temperatures is given by



p

= �T + �T

3

(11.53)

We an obtain experimental � and � by making a �gure of measured 

p

=T at low

temperatures as a funtion of T

2

whih is approximately a straight line with interept

� and slope �.
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12 Thermodynamics of the Universe

12.1 Temperature in the Universe

We introdued the notion of temperature when a given (small) bounded system is in

thermodynamial equilibrium and is in thermal ontat with a large reservoir o temper-

ature T . It seems that the Universe does not satisfy any of these onditions { it is large

and open, is not in ontat with anything and by expansion is not in thermodynamial

equilibrium. However, as we will argue, the notions of temperature, entropy and so on

an be used and they have an approximate but a well-de�ned meaning.

In the desription of the Universe we assume that on large sales (larger than 100

Mp) the Universe is approximately homogeneous. It is a very nontrivial fat and the

origins are not lear. If we adopt this assumption and add the observational fat that

the spatial urvature of the Universe is unmeasurably small then one an hoose the

same time (osmi time) for the spatial setions and the only important parameters of

the solution of the Einstein equations are the sale fator a(t), density �(t) and pressure

p(t) with some physially justi�ed relation between � and p (equation of state). The

Einstein equations

R

��

�

1

2

g

��

R + �g

��

=

8�G



4

T

��

(12.1)

for a homogeneous and isotropi Universe with

T

�

�

= diag(��; p; p; p) (12.2)

have the solution

ds

2

= �dt

2

+ a(t)

2

�

dr

2

+ r

2

d


2

�

(12.3)

where a(t) is a sale fator.

It is often more onvenient to introdue a onformal time �

dt = a(�)d�; a(�) = a(t) (12.4)

and then the metri

ds

2

= a(�)

2

�

�d�

2

+ dr

2

+ r

2

d


2

�

(12.5)
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is onformally onneted to the at Minkowski metri.

The Friedman equations stemming from the (00) and (ii) Einstein equations for the

energy momentum tensor of a general mixture of radiation, matter and the osmologial

onstant � = 3H

2

�

read

8�G

N

� = 3H

2

�

+

3A

2

a

4

+

12B

2

a

3

=

3a

02

a

4

8�G

N

p = �3H

2

�

+

A

2

a

4

= �

2a

00

a

3

+

a

02

a

4

(12.6)

where a

0

=

da(�)

d�

and the seond equation follows from the �rst.

There exist exat solutions to these equations:

� pure radiation: a(�) = A�, t � A�

2

=2, a(t) � t

1=2

� pure matter: a(�) = B

2

�

2

, t � B

2

�

3

=3, a(t) � t

2=3

� a mixture of radiation and matter: a(�) = A� + B

2

�

2

A ruial role is played by the Lemâ�tre-Hubble parameter H

H :=

_a

a

=

a

0

a

2

(12.7)

desribing the expansion of the Universe.

To introdue the notion of temperature we have to assume that in the early Universe

there was a thermal equilibrium. The Universe was �lled with 'radiation' i.e. the

partiles were either massless or their masses were small wrt the energies. We know the

energy density of radiation

� =

�

2

30

g

?

(T )T

4

(12.8)

where g

?

(T ) is an e�etive number of degrees of freedom at temperature T

g

?

=

X

bosons

g

i

+

7

8

X

fermions

g

i

(12.9)

For a ritial Universe �lled with radiation without a osmologial onstant we have

� =

A

2

a

4

(12.10)

hene the temperature for onstant g is inversely proportional to the sale fator

T �

1

a

(12.11)

In the usual systems if we wait long enough there will always be a thermal equilibrium

at the end. But the Universe expands and the question arises if the proesses leading to

thermal equilibrium are fast enough or not. One ould write the Boltzmann equation to
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answer this question in a quantitative way but there exists an approximate but in most

ases suÆiently exat rule.

It is an observational fat that the matter-antimatter imbalane is extremely small.

In the very early Universe there was equal number of matter and antimatter. At some

point the dynamis of the Universe needed three onditions to lead to the imbalane, so

alled Saharov onditions: lak of thermal equilibrium, breaking of the baryon number

and the CP violation. The �rst one follows from the expansion of the Universe, the

seond from the fat that the Standard Model of elementary interations has only B-L

symmetry and the third one points to the neessity of enlarging the SM (in the SM there

is CP breaking but it is too small to explain the observed matter-antimatter asymmetry).

The observed asymmetry is about 1 billion photons per baryon (that means that in the

early Universe there were 1 billion +1 eletrons for 1 billion positrons).

When the temperature is bigger than 2M for a given partile of mass M and the

annihilation ross setion is suÆiently large then when the temperature is bigger than

2M we have partile-antipartile pairs in equilibrium and when the temperature drops

below 2M only partiles remain and all the rest is onverted into photons. This piture is

slightly hanged beause of muh larger number of photons per eletron (or per baryon).

The eletron positron pairs remain in the equilibrium for muh longer sine the tail of

the Plank distribution is ative for muh lower temperatures than 2M .

We have several important moments in the thermal history of the Universe.

� 10

�42

s { gravity starts to be weak and lassial

� baryo- or leptogenesis { reation of matter-antimatter asymmetry

� 10

�5

s { 300 MeV { forming protons and neutrons out of quark-gluon plasma

� 1 s - 3 min { 1 MeV - 80 keV { nuleosynthesis

� 1 s { 1 MeV { neutrino deoupling

� 1 s - 3 min { 1 MeV - 80 keV { eletron-positron annihilation

� 50000 years { radiation era ! matter era

� 380000 years { 1 eV { forming of atoms, Universe transparent

� 13:8 bln years { now
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13 Thermodynamics of magnetic systems

13.1 Thermodynamics of the magnetic field

It is interesting to note that in the ase of a magneti �eld desribed by the vetor

potential A the Gibbs-Boltzmann fator gives

exp

 

�

(p� qA)

2

2mkT

!

= exp

 

�

m _r2

2kT

!

(13.1)

and it is the same distribution in veloities with or without the magneti �eld! This is

the paradox that in lassial physis bodies should not reat to a magneti �eld while

obviously suh a reation exists - this is solved in quantum mehanis where there are

quantized levels (Landau levels) and quantized spin degrees of freedom and the lassial

Gibbs-Boltzmann fator does not desribe the real reation of the bodies to the magneti

�eld.

In magneti systems we an divide any urrent into free urrents j
0

and bound

urrents

j(x) =

X

a

j
0

(x)Æ(x� x
a

) +

X

b

"

ijk

M

j

�

k

Æ(x� x
b

) + : : : (13.2)

where r � j
0

= 0 and the seond term is written in suh a way to satisfy this ondition

automatially and : : : stand for higher derivatives of the delta funtion. Negleting all

higher derivatives and introduing ontinuous urrent densities we write

j(x) = j
0

(x) +r�M(x) (13.3)

If the hanges are slow then we have the equation

r�B = �

0

j (13.4)

and rearranging we get

r� (B� �

0

M) = �

0

j
0

(13.5)

where on the RHS we have only free urrents. We introdue

H :=

1

�

0

B�M (13.6)
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we have

r�H = j
0

(13.7)

The �eld H is very useful in atual appliations sine most often we ontrol the external

urrents (in eletrostatis we usually ontrol potentials and therefore the analogous �eld

D is not so useful) but we have to remember that at the mirosopi level we should

use only the �eld B.

We an now write down Maxwell equations in the presene of media

r �D = �

0

r�E = �

�B

�t

r �B = 0

r�H = j
0

+

�D

�t

(13.8)

where D = �

0

E + P and it is in this form that Maxwell wrote originally his equations.

Only later it beame lear that the �elds D and H are seondary and at the mirosopi

level everything an (and should) be desribed by the �eld E and B only.

13.1.1 First Law for magnetic systems

It is not a priori obvious what expression we should use in FLT: �

0

HdM or �

0

MdH
and with whih sign. We now derive the appropriate formula.

If we have a large permanent magnet oriented along the x axis and onsider a small

body moving along the same axis approahing from in�nity with magnetization M(x)

then the attrative fore on the body is equal to

M(x)

dH

dx

(13.9)

We want this proess to be quasi-stati so we apply the ompensating external fore so

the work done on the body is negative

W = �

Z

a

�1

M
dH

dx

dx = �

Z

H(a)

0

MdH (13.10)

But this result is a sum of magnetization work and the displaement so we subtrat the

displaement work keeping the �nal magnetization M(a) so that the work required for

the magnetization alone is equal to

W

M

= �

Z

�1

a

M(a)

dH

dx

dx�

Z

H(a)

0

MdH =

Z

M(a)

0

HdM (13.11)

so that

dW

M

= HdM (13.12)
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13.1.2 Paramagnetism

We start from a system of magneti dipoles µ in the magneti �eld B so that the energy

is equal to

U = �µ �B (13.13)

Then

Z

N

=

�

Z

2� sin �d�e

���B os �

�

N

= (4�)

N

�

sinh ��B

��B

�

N

= e

��F

(13.14)

Hene

U =

�(�F )

��

= �

� lnZ

N

��

= �N�B

�

oth ��B �

1

��B

�

(13.15)

For large T we get

U =

N�H��B

3

(13.16)

and the magnetization M

M =

�U

�B

=

N�

2

H�

3

=

N�

2

H

3kT

(13.17)

Therefore the magneti suseptibility is inversely proportional to the temperature

� =

M

NH

=

�

2

3kT

(13.18)

what is known as the Curie law (Pierre Curie established it in 1895, the year of the

marriage with Maria Sk lodowska, disovery of X-rays by Wilhelm R�ontgen, and the

beginning of the work on radioativity by Maria that Pierre joined soon after).

In the quantum ase

� = g�

B

j (13.19)

where j is the total angular momentum, g is a gyromagneti ratio (equal to 2 for pure

eletron spin j = 1=2 and 1 for pure orbital moment j = l), �

B

is a Bohr magneton

�

B

=

e~

2m

e



(13.20)

(in nulear physis one uses the nulear magneton where m

e

! m

p

). Then the magne-

tization is equal to

M

j

= N�

P

m=j

m=�j

m

j

exp(m��H=j)

P

m=j

m=�j

exp(m��H=j)

(13.21)

The sum in the denominator an be easily alulated and we get

M

j

= N� ((1 + 1=(2j)) oth(1 + 1=(2j))��H � 1=(2j) oth(1=(2j))��H) (13.22)

For j =

1

2

we get a very simple result

M

1=2

= N� tanh ��H (13.23)

what an be diretly seen from (13.21). For large temperatures we again reover the

Curie law but with 3 times bigger magneti suseptibility than in the lassial ase

(whih orresponds to j !1).
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13.2 Ferromagnetism

Ferromagnetism is a phenomenon in some of the transition metals or its alloys where

there is a strong intrinsi magneti �eld remaining even after the external �eld is re-

moved. Its mirosopi derivation from �rst priniples is still unknown but there are

several half-phenomenologial desriptions. The origin of this highly surprising, but

known from millenia, behavior is the loalized partial oupation of the d and f shells

in these atoms that produe a very high orbital spin (s and p shell eletrons are mostly

deloalized and ontribute to the ondutivity of these elements). An e�etive hamilto-

nian that takes into aount also the Pauli exlusion priniple is the Heisenberg model

proposed in 1928:

H = �J

X

ij

S
i

� S
j

�B �

X

i

S
i

(13.24)

where the spins are usually treated quantum-mehanially (if the oeÆients J are dif-

ferent in di�erent diretions we get the so alled XXY or XY Z models). For B = 0

and vanishing temperature the ground state is either ferromagneti J > 0 or antiferro-

magneti J < 0 (however for T > 0 the system is neither ferro- nor antiferromagneti in

1 and 2 dimensions, these properties start from 3 dimensions). There are many general-

izations of the Heisenberg model (Hubbard model, t� J model and many others) that

are used also for other purposes and they are extensively studied both from the physial

and from the mathematial perspetives. There exists also a simpli�ation of the model

is the so alled Ising model that was proposed earlier (1920) where only the z omponent

of spins is used and it is ferromagneti for J > 0 below some ritial temperature { it

will be disussed below.

Pierre Weiss proposed to use a hange in the derivation of the Curie law to desribe

the ferromagneti ase (we take here the simplest ase j = 1=2 as an example) in the

framework of the so alled mean-�eld theory. The proposal onsists of treating H in

(13.23) as only part of the �eld and add the magnetization itself (with some oeÆient)

m =

M

V

=

N

V

� tanh (��(H + �m)) (13.25)

Spontaneous magnetization is when there is non-zero m for vanishing external �eld H:

m =

M

V

=

N

V

� tanh(���m) (13.26)

For T ! 0 m ! N�=V so all magnets are oriented in the same diretion. When we

inrease the temperature the magnetization m dereases and at some ritial temperature

T



the equation doesn't have any nontrivial solutions and the only solution is m = 0.

Sine tanh x � x for small x so that

T



=

N�

2

�

V

(13.27)
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For T ! T



from below we expand in T



�T to the next order (tanh x = x� x

3

=3 + : : :)

m =

N�

2

�m

V (T



� (T



� T ))

�

N�

4

�

3

m

3

3V (T



� (T



� T ))

3

+ : : : = m

�

1 +

T



� T

T



�

�

�

2

�

2

m

3

T

2



(13.28)

so that

m �

�

1�

T

T



�

1

2

(13.29)

On the other hand, if T ! T



from above we expand in H and T � T



:

��m

T



=

�(H + �m)

T

) m �

HT



�(T � T



)

(13.30)

It replaes the Curie law and is known as the Curie-Weiss law for ferromagnets.

13.3 Ising model in 1D

The Ising model was proposed by Lenz in 1920 and solved in one dimension, therefore

without the phase transition, by E. Ising in 1925 in his dotoral dissertation. The main

result is due to L. Onsager in 1944 where the exat partition funtion for the model

in 2D in the absene of the magneti �eld B was alulated. In 1952 C.N. Yang has

proven an exat formula (earlier announed by L. Onsager and B. Kaufman in 1949)

for the �rst derivative of the partition funtion of the Ising Model in 2D with respet

to B at B = 0 (magnetization). There are thousands of papers on the subjet trying

to inlude the non-vanishing magneti �eld and huge body of results, both numerial

and analytial, exists for the Ising on �nite latties. The Ising model in 2D has some

features of the genuine ferromagneti materials so its analysis an give us some insight

muh deeper than the mean-�eld theory (that turned out to be inorret in several

respet in omparison to the Ising model).

We onsider N (N > 1) spins on a line with periodi boundary onditions. We

introdue a hamiltonian

H = �J

X

i

�

i

�

i+1

�B

X

i

�

i

: (13.31)

where the �rst sum runs over losest neighbours only (�

N+1

= �

1

). We assume that

J > 0 and �

i

= �1. The partition funtion reads

Z =

X

e

��H

(13.32)

where the sum runs over all on�gurations.

We introdue the so alled transfer matrix.

M :=

 

e

�(J+B)

e

��J

e

��J

e

�(J�B)

!

(13.33)
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where the upper line orresponds to (+;+) and (+;�) neighbouring spins and the lower

line to (�;+) and (�;�). Then

Z = TrM

N

= �

N

1

+ �

N

2

(13.34)

where �

1

; �

2

are eigenvalues of M . They an easily alulated from the equations

�

1

+ �

2

= TrM = 2e

�J

osh(�B); �

1

� �

2

= detM = 2 sinh(2�J); (13.35)

so that

�

1

= e

�J

osh(�B) +

q

e

2�J

sinh

2

(�B) + e

�2�J

;

�

2

= e

�J

osh(�B)�

q

e

2�J

sinh

2

(�B) + e

�2�J

(13.36)

In the limit N !1 the bigger of the eigenvalues is the only relevant one in Z so that

in the thermodynamial limit

lnZ = ��F = N ln �

1

(13.37)

13.4 Ising model in 2D

On a 2D square lattie with N 'spins' � = �1 we introdue a hamiltonian

H = �

J

2

X

i;j;i 6=j

�

i

�

j

�B

X

i

�

i

: (13.38)

where the �rst sum runs over losest neighbours only. We will assume that J > 0 (the

ferromagneti Ising model) and the system is on a square �

p

N �

p

N with periodi

boundary onditions. We will introdue the notation

x := e

��J

; z := e

�B

(13.39)

where � = 1=T and we assume that z > 1 what orresponds to the hoie of the diretion

of B.

We de�ne the normalized free energy

e

��NF

N

(x;z)

= Z

N

(x; z) =

X

e

��(E�E

0

)

(13.40)

where the sum runs over all on�gurations and E

0

is the lowest energy orresponding to

the on�guration with all spins pointing in the diretion of B for whih e

��E

0

= x

�N

2

z

N

.

The goal is to alulate the free energy per spin F

N

in the thermodynami limit N !1.

The advantage of alulating F

N

(x; z) over Z

N

(x; z) is that one has to inlude only

'onneted diagrams'.

A simple ase of J = 0 gives immediately the result

��F

N

(1; z) = ln

�

1 +

1

z

2

�

(13.41)
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The low temperature expansion (whih starts from a speial on�guration with all spins

direted in the diretion of B) onsists of speially ordered ontributions from on�gu-

rations with more and more inverted spins. For N suÆiently large so that the periodi

boundary onditions do no not play a role up to a given order we have

e

��NF

N

(x;z)

= 1 +

N

z

2

x

8

+

N

2z

4

�

(N � 5)x

16

+ 4x

12

�

+ : : :

=

 

1 +

x

8

z

2

+

x

12

(1� x

4

)2

z

4

+

x

16

(1� x

4

)(�8x

4

+ 6)

z

6

+ : : :

!

N

(13.42)

where we ordered terms by inreasing powers of z

�2

and the polynomial in parentheses

is �nite with the last term equal to z

�2N

.

The task is to alulate the thermodynami limit of the expression in parentheses

exp(f

1

(x; z)) = lim

N!1

exp(��F

N

(x; z)) = exp

0

�

X

m;k

C

m;k

x

4m

z

�2k

1

A

(13.43)

For example

exp(f

1

(1; z)) = 1 +

1

z

2

(13.44)

The famous result of Onsager gives the full result for the ase z = 1 (B = 0):

exp(f

1

Ons

(x)) = lim

z!1

exp(f

1

(x; z)) = (1 + x

4

)exp

 

�

1

X

n=1

�

(2n)!

(n!)

2

�

2

1

4n

�

y

4(1 + y)

2

�

n

!

(13.45)

where

y =

4

�

1

x

2

� x

2

�

2

(13.46)

In the original artile the result was expressed in terms of ellipti funtions. The begin-

ning of the expansion:

exp(f

1

Ons

(x)) = 1 + x

8

+ 2x

12

+ 5x

16

+ 14x

20

+ 44x

24

+ 152x

28

+ 566x

32

+ : : : (13.47)

The result of Yang for the magnetization at B = 0

z

�f

1

(x; z)

�z

�

�

�

�

z=1

= (1� y

2

)

1

8

� 1 (13.48)

although extremely simple was obtained by a very ompliated method and it serves as

yet another hek on the results. The result for suseptibility z�

z

(z�

z

(f

1

(x; z)))j

z=1

is

not known analytially but only as a beginning of an expansion in x

4

.

The phase transition for B = 0 ours for a temperature when the expression in

parentheses in (13.45) diverges:

y = 1 ) x

4



+ x

�4



= 6 ) x

4



= 3� 2

p

2 (13.49)

The formula for the partition funtion when B 6= 0 is not analytially known.
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14 Applications

14.1 Osmotic pressure

The formula

p = RT (14.1)

It is approximate and there are orretions, both in the prefator and in the proportion-

ality to higher powers of .

We an derive it as follows. We reall that the entropy of mixing is equal to

�S = �k

B

(N

1

ln(N=N1) + N

2

ln(N=N2)) = �k

B

N(x

1

ln x

1

+ x

2

ln x

2

) (14.2)

what follows from �S = k

B

ln(N !=(N

1

!N

2

!). Therefore the hemial potential depends

on the dissolved substane as (from T�S=�x

1

= ��)

�

s

(x) = �

s

(0) + RT ln(x) (14.3)

(in real ases it is orreted by the ativity oeÆient , �(x) = �(0)+RT ln(x), whih

for diluted solutions is usually very lose to 1).

If we have a membrane separating pure solvent from a solvent with a dissolved

substane but transparent for a solvent then the hemial potential of the solvent should

be the same on both sides:

�

w

(x; p + �) = �

w

(p) (14.4)

where � is the additional (osmoti) pressure on the solution side to ensure that equality.

Rewriting the LHS we get

�

w

(x

w

; p+ �) = �

w

(p+ �) +RT ln(x) = �

w

(p) +

Z

p+�

p

V

m

(p

0

)dp

0

+RT ln(x

w

) (14.5)

where V

m

is the molar volume of the solvent. If the liquid is inompressible we have

then

RT ln(x

w

) = �V

m

� (14.6)

and sine x

s

= 1� x

w

is small we get

� =

RT

V

m

x

s

= RT (14.7)
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and this equation is alled van't Ho� equation.

If we apply it to the tree that has to transport water from the roots to the tip we

an ask whether it is possible in view of this equation. The onentration of mineral

substanes in the leaves an be (due to evaporation) muh bigger than in the roots. If

we assume for example  � 1 mol/l then we get � � 2 � 10

6

N/m

2

{ omparing with �gh

we get h � 200m (the tallest tree on Earth has 117 m)

14.2 Pressure and temperature in the Sun

A good approximation for the mass pro�le of the Sun is

M(r) = M

S

�

tanh

�r

R

�

3

(14.8)

Hene

�(r) =

3M

S

� tanh

2

(�r=R)

4�r

2

R osh

2

(�r=R)

(14.9)

We have

� =

�

�

0

��

�

1

3

(14.10)

where �

0

is the density in the enter and �� the average density. Sine

�

0

= 150 g=m

3

; �� = 1:41 g=m

3

) � = 4:74 (14.11)

The pressure balane

dp

dr

= �

GM(r)�(r)

r

2

(14.12)

so that

p(r) =

GM

2

S

4�R

Z

R

r

dr

3 tanh

5

(�r=R)

r

4

osh

2

(�r=R)

(14.13)

It an be rewritten as

p(r) =

3GM

2

S

�

3

4�R

4

Z

�

�r=R

dx

tanh

5

(x)

x

4

osh

2

(x)

=

GM

S

�(0)

R

Z

�

�r=R

dx

tanh

5

(x)

x

4

osh

2

(x)

(14.14)

Hene

p(0) �

GM

S

�(0)

R

Z

1

0

dx

tanh

5

(x)

x

4

osh

2

(x)

(14.15)

The integral is numerially � 0:222.

To alulate the temperature in the ore of the Sun we use the formula

p � nk

B

T (14.16)

In the ore there is now (by mass) 0.35 H and 0.65 He and therefore (negleting eletrons)

n = 0:35

�

m

p

+ 0:65

�

4m

p

= 0:5

�

m

p

(14.17)
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Therefore

T (0) �

GM

S

m

p

0:5Rk

B

Z

1

0

dx

tanh

5

(x)

x

4

osh

2

(x)

� 1:1 � 10

7

K (14.18)

The atual temperature is 1:56 � 10

7

K so the estimate is very good taking into aount

the approximations made.

81



14. Appliations

82



15 Appendix

15.1 Differential forms

We reall the language of di�erential forms.

A general n-form an be written as

A

n

=

1

n!

X

i

1

:::i

n

A

i

1

:::i

n

n

dx

i

1

^ : : : dx

i

n

(15.1)

The di�erential of this form gives an (n + 1)-form

dA

n

=

1

n!

X

i

0

;i

1

:::i

n

�

i

0

A

i

1

:::i

n

n

dx

i

0

^ dx

i

1

^ : : : dx

i

n

(15.2)

The fundamental identity following from the symmetry of seond derivatives reads

dd = 0 (15.3)

If the manifold is metri then there exists also an operation ? ('Hodge star') that

produes (D � n)-form where D is the dimension of the manifold.

?A

n

=

1

n!(D � n)!

X

i

1

:::i

n

"

i1i2:::i

D

A

i

1

:::i

n

n

dx

n+1

^ : : : dx

D

(15.4)

We have

? ? A

n

= (�1)

D(D�n)

A

n

(15.5)

There exists an inner produt of two n-forms

< A

n

jB

n

>:=

Z

A

n

? B

n

(15.6)

sine the form under the integral is a D-form that an be integrated over the manifold.

A ruial role is played by a laplaian � de�ned as

� = dÆ + Æd (15.7)
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where

Æ := (�1)

D(n+1)+1

? d? (15.8)

ating on A

n

produes (n� 1)- form. The phase fator in front is hosen in suh a way

(for Eulidean signature) that

< A

n

jdB

n�1

>=< ÆA

n

jB

n�1

> (15.9)

For example

ÆA

1

= ��

�

A

�

(15.10)

An arbitrary form A

n

on a any manifold an be written as a sum of three forms

(Hodge-deRham deomposition)

A

n

= dA

n�1

+ ÆA

n+1

+ H

n

(15.11)

for some globally de�ned A

n�1

, A

n+1

and the so alled harmoni form H

n

satisfying

dH

n

= ÆH

n

= 0 (15.12)

so it satis�es also the Laplae equation

�H

n

= 0 (15.13)

The number of linearly independent harmoni n-forms (Betti number b

n

) is a very

important haraterization of a manifold (the harmoni forms belong to the so alled

nth ohomology lass dual to the n-th homology lass). If the n-th ohomology lass

for a given manifold is empty then

dA

n

= 0 ) A

n

= dA

n�1

(15.14)

for some globally de�ned A

n�1

. For example the manifolds with b

1

= 0 are alled

simply-onneted and then dA

1

= 0 ) A

1

= d�.

In the form language the gradient is an ation on 0-form produing a one-form

(vetor):

f ! df =

�f

�x

i

dx

i

; (15.15)

divergene is an ation on a one-form produing a 0-form (salar)

V

1

! ?d(?V

1

) = V

0

; (15.16)

rotation is an ation on a one-form produing (n � 2)-form (in 3 dimensions a pseu-

dovetor)

V

1

! ?dV

1

= V

n�2

(15.17)

For arbitrary vetor �eld A and 3-manifold M

3

with a 2-dimensional boundary �M

3

we have the Gauss equation

Z

M

3

r �AdV =

Z

�M

3

A � dS (15.18)

while for a 2-manifold M

2

with 1-dimensional boundary �M

2

we have the Stokes equa-

tion

Z

M

2

(r�A) � d� =

I

�M

2

A � ds (15.19)
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15.2 Gaussian integrals

We will very often need the integrals of the form

Z

1

�1

dx e

�ax

2

+bx

=

r

�

a

e

�

b

2

4a

(15.20)

For symmetri matries A and vetors b we have

Z

1

�1

[dx℄ e

��x

T

Ax+b

T

x

=

s

1

det(A)

e

�

b

T

A

�1

b

4�

(15.21)

We reall also the de�nition of the Euler �-funtion

�(x) :=

Z

1

0

dt t

x�1

e

�t

(15.22)

15.3 Areas and volumes

The area of a sphere S

n

of radius r

V

S

n

= 2

�

n+1

2

�

�

n+1

2

�

r

n

(15.23)

For example V

S

2

= 4�r

2

. The volume of a ball K

n

of radius r

V

K

n

=

�

n

2

�

�

n

2

+ 1

�

r

n

(15.24)

For example V

K

3

=

4

3

�r

3

.

15.4 Legendre transform

If we have a funtion f(x) we introdue an additional variable s and we reate a funtion

~

f(s; x) = sx� f(x) (15.25)

Then

d

~

f(s; x) = xds + sdx�

df

dx

dx (15.26)

The di�erential depends on two variables unless we impose

s =

df

dx

(15.27)

and then we an treat

~

f as a funtion of only s

d

~

f(s) = x(s)ds (15.28)
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where x(s) is a solution of (15.27) and we have

d

~

f

ds

= x(s) (15.29)

The inverse transform is

f(x) = xs�

~

f (15.30)

The transform

As an example take

f(x) = e

x=a

(15.31)

then

s =

1

a

e

x=a

) x = a ln(as) (15.32)

Therefore

~

f(s) = as ln(as)� as (15.33)

and indeed

~

f

0

= x(s). We see that the domain of f(x) i.e the whole real line R is di�erent

from the domain of

~

f(s) whih is R
+

.

15.5 Maxwell relations

Assume that we have 3-dim manifold with a hypersurfae de�ned by f(x; y; z) = 0

and we would like to derive some identities between the partial derivatives wrt to dif-

ferent pairs of variables (sine only 2 are independent) { they are extensively used in

thermodynamis.

We start with

dx =

�

�x

�y

�

z

dy +

�

�x

�z

�

y

dz

dy =

�

�y

�x

�

z

dx +

�

�y

�z

�

x

dz (15.34)

Plugging dy from the seond equation into the �rst we get

�

�x

�y

�

z

=

1

�

�y

�x

�

z

(15.35)

and the triple produt formula

�

�x

�y

�

z

�

�y

�z

�

x

�

�z

�x

�

y

= �1 (15.36)

Similarly we an write

dx =

�

�x

�y

�

z

dy +

�

�x

�z

�

y

dz

dx =

�

�x

�y

�

w

dy +

�

�x

�w

�

y

dw (15.37)
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Writing

dw =

�

�w

�y

�

z

dy +

�

�w

�z

�

y

dz (15.38)

and plugging into the previous equation we get

�

�x

�y

�

z

=

�

�x

�y

�

w

+

�

�x

�w

�

y

�

�w

�y

�

z

(15.39)

and

�

�x

�z

�

y

=

�

�x

�w

�

y

�

�w

�z

�

y

(15.40)

We now introdue the so alled Maxwell relations.

We start (abstratly) with the relation

dU = T dS � pdV (15.41)

Di�erentiating with d we get

dT ^ dS = dp ^ dV (15.42)

If all these quantities depend on two variables x and y then

�

�T

�x

dx +

�T

�y

dy

�

^

�

�S

�x

dx +

�S

�y

dy

�

=

�

�p

�x

dx +

�p

�y

dy

�

^

�

�V

�x

dx +

�V

�y

dy

�

(15.43)

Gathering the oeÆients we get

�

�T

�x

�

y

�

�S

�y

�

x

�

�

�p

�x

�

y

�

�V

�y

�

x

=

�

�T

�y

�

x

�

�S

�x

�

y

�

�

�p

�y

�

x

�

�V

�x

�

y

(15.44)

Choosing x and y as pairs out of (T; S; p; V ) we get 6 Maxwell relations. For example

for the pair (T; V ) we get

�

�S

�V

�

T

�

�

�p

�T

�

V

= 0 (15.45)

while for the pair (T; p) we get

�

�S

�p

�

T

= �

�

�V

�T

�

p

(15.46)

Another example for the pair p; V :

�

�T

�p

�

V

�

�S

�V

�

p

� 1 =

�

�T

�V

�

p

�

�S

�p

�

V

(15.47)
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