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These notes were written for the letures of Classial Mehanis at the Undergrad-

uate ourse at the Faulty of Physis at the University of Warsaw. They are based

mostly on the books of L.D. Landau, J. Lifszy it Mehanis and Wojieh Rubinow-

iz, Wojieh Kr�olikowski, Mehanika teoretyzna. Some of the examples and deriva-

tions are taken from the DAMTP (University of Cambridge) letures by David Tong

(http://www.damtp.am.a.uk/user/tong/dynamis.html)
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1 Newtonian mechanics

We all learned at shool that the essene of lassial mehanis is given by 3 laws of

Newton. As I will try to argue during this set of letures there are muh better ways

of formulating the lassial dynamis. Before we start to desribe these methods we

formulate the 3 laws

� First law (given by Galileo)

There exist referene frames (alled inertial) in whih a body, very distant

from all other bodies, moves along a straight line with onstant speed. One

often enounters ompletely absurd de�nitions using the notion of fore that is

de�ned in the seond law!

� Seond law

The notion of fore F is de�ned as

F :=

dp

dt

(1.1)

where momentum p := mv, m is 'amount of matter' and v is a veloity measured

with respet to the inertial frame.

1. This de�nition would be rather useless if not for the very fortunate fat that

for two most important interations, eletromagneti and gravitational, we an

(approximately) give the expression of the LHS in terms of distanes between

bodies.

2. the de�nition is valid also in relativisti physis but the de�nition of momentum

hanges.

3. It is muh better physially not to think in terms of fores but in terms of the

ow of momenta.

� 'ation is equal to reation' { the body ating on another body with the fore

F is itself subjet to the fore �F from the other body

this law is a trivial appliation of the onservation of momentum and we will not

use it in the following.
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1. Newtonian mehanis

1.1 Definitions

The �rst law says that far away from any other bodies a = 0 hene F 6= 0 is a measure

of interations i.e no interations ) fore = 0. The arrow is only to the right sine it

may happen that even in the presene of interations the ow of momenta is zero (for

example when sitting on a hair).

Let us introdue some useful de�nitions.

For a system of bodies

P =

X

a

p
a

(1.2)

is a total momentum.

Center of mass de�nition

R :=

P

m

a

r
a

P

m

a

(1.3)

Hene

M

_R =

X

m

a

v
a

= P (1.4)

so the movement of the enter of mass is uniquely given by the total momentum.

If the system is isolated i.e. P=onst then the enter of mass moves with a onstant

veloity so its own (CM) referene frame is inertial and R = 0 { no internal moves an

hange the position of the CM. It is usual to prove at this point that the RHS does not

depend on the internal interations (using F

ab

= �F

ba

but the statement follows from

the onservation of momentum and is general.

We introdue the notion of angular momentum

J
a

= r
a

� p
a

(1.5)

The total angular momentum is given by

J =

X

a

r
a

�m

a

v
a

=

X

a

(r
a

�R+R)�m

a

(v
a

�V +V)

=

X

a

(r
a

�R)�m

a

(v
a

�V) +R�P (1.6)

so it is given by the sum of CM angular momentum and the 'internal' angular momen-

tum.

Di�erentiating J we get

_J = r� _p = N (1.7)

where we introdued moment of fore

N := r� F (1.8)

For a system of bodies we have

_J =

X

a

r
a

� F
a

(1.9)
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K.A. Meissner

and the usual argument using the third Newton's law shows that J is onserved only

when we have entral fores i.e. r
a

� r
b

is parallel to the fore between a and b

_J =

X

a

r
a

�

0

�

X

b6=a

F
ab

1

A

=

X

a;b;a<b

(r
a

� F

ab

+ r
b

� F

ba

) =

X

a;b;a<b

(r
a

� r
b

)� F

ab

(1.10)

But the onservation of J an be proved in muh more general situations (by Noether's

theorem to be disussed later) so we will not disuss it here.

It is however important to emphasize here the di�erene between the onservation

of momentum and the onservation of angular momentum. The �rst gives as a orollary

the impossibility to move enter of mass position by means of internal fores only. The

seond does not have as a orollary that the angle with respet to some inertial frame

annot hange using only internal fores and deformations, as a at jumping and rotating

learly shows. We will disuss this issue later on.

1.2 Mechanical energy and potential

If the fores are independently given then

F
a

= m

a

dv
a

dt

(1.11)

and multiplying and summing we get

X

F
a

� v
a

=

d

dt

 

X

m

a

v

2

a

2

!

(1.12)

The sum on RHS is the total kineti energy T .

T :=

X

m

a

v

2

a

2

(1.13)

Therefore integrating over time

T

f

� T

i

=

Z

X

F
a

� v
a

dt =

Z

X

F
a

� dr
a

(1.14)

The most important lass of fores are so alled potential fores { when there exists

a funtion V (t; r
;

: : :) suh that

F
a

= �r

a

V (t; r
1

; : : :) (1.15)

If on top V (t; r
1

; : : :) = V (r
1

; : : :) i.e. it does not depend expliitly on time the fores

are alled onservative.

Then

T

f

� T

i

=

Z

X

a

F
a

� dr
a

= �

Z

X

a

r

a

V (r
1

; : : :) � dr
a

= �(V

f

� V

i

) (1.16)
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1. Newtonian mehanis

i.e.

E = T + V = onst (1.17)

so the total mehanial energy for onservative potentials is onserved (hene the name).

The total kineti energy of a system is the sum of the CM kineti energy and the

internal kineti energy

T =

X

a

m

a

v

2

a

2

=

X

a

m

a

(v
a

�V+V)

2

2

=

X

a

m

a

(v
a

�V)

2

2

+

MV

2

2

(1.18)

1.3 Non-potential forces

There are some fores that do not have any potential assoiated with them. The most

ommon is a frition fore. It is a lear example that the seond law is useless if we don't

know the fore as a funtion of positions and veloities. The frition fore has several

approximate desriptions

� it is proportional to the normal fore pressing the body to the surfae with the so

alled oeÆient of frition. It is impossible to alulate it from �rst priniples,

depends on many fators, roughness, humidity, history et. It also depends on

whether the body is at rest or moves (stati and kineti COF). Polishing the

surfaes an make COF to grow and not to derease and so on. Even the very

notion of COF is an approximate desription of the atual frition fore beause

for larger pressures the frition fore does not respond linearly!

� it is proportional to some power of veloity { usually used for frition in air or

water. Here the situation is better sine at least we have Navier-Stokes equations

with the boundary ondition that the relative veloity on the surfae vanishes {

the ondition that does not depend sensitively on the roughness of the surfae

(although not totally independent, espeially at larger speeds).

In any ase the fores that are not of potential type are very phenomenologial and muh

less interesting for physis with visosity in uids as the only exeption. Therefore in

what follows we will assume that the fores are of potential type and disuss uids

separately.

1.4 One dimensional motion

In one dimension with a potential independent of time we an solve the problem to the

very end by quadratures.

We start with the onserved energy

E = T + U(x) =

m _x

2

2

+ U(x) (1.19)
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Assuming that we are desribing part of the trajetory with positive veloity we have

dx

dt

=

s

2

m

(E � U(x)) (1.20)

hene

t� t

0

=

r

m

2

Z

dx

p

E � U(x)

(1.21)

The motion is possible only for those x for whih U(x) 6 E. If there are two x i.e. x

1

(E)

and x

2

(E) for whih

U(x

i

) = E (1.22)

and in between U(x) < E then partile stops there and (generially) starts to move bak

(it osillates between x

1

and x

2

). The period is equal to

T (E) =

p

2m

x

2

(E)

Z

x

1

(E)

dx

p

E � U(x)

(1.23)

As an example let us onsider a pendulum with

E =

ml

2

_

�

2

2

�mgl os � (1.24)

Then writing E = �mgl os �

0

where �

0

is the maximal angle we get

T = 4

s

l

2g

�

0

Z

0

d�

p

os � � os �

0

(1.25)

Using well known formulae we get

T = 4

s

l

4g

�

0

Z

0

d�

q

sin

2

�

0

=2� sin

2

�=2

(1.26)

Introduing sin(�=2) = sin(�

0

=2) sin � we get

T = 4

s

l

g

�=2

Z

0

d�

q

1� sin

2

(�

0

=2) sin

2

�

= 4

s

l

g

�=2

Z

0

d�

q

os

2

� + os

2

(�

0

=2) sin

2

�

(1.27)

For small �

0

we get

T = 4

s

l

g

�=2

Z

0

d�(1 +

1

8

�

2

0

sin

2

� + : : :) = 2�

s

l

g

(1 +

1

16

�

2

0

+ : : :) (1.28)

The full result is given by ellipti integrals.
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1. Newtonian mehanis

There is a lever way of alulating this integral. We onsider the integral

I(a; b) =

�=2

Z

0

d�

q

a

2

os

2

� + b

2

sin

2

�

(1.29)

As we will show below we an hange a and b into the arithmetial mean (a+ b)=2 and

geometrial one

p

ab, respetively, without hanging the value of the integral

I(a; b) = I

�

a+ b

2

;

p

ab

�

(1.30)

As it turns out the two means get loser to eah other extremely quikly and onverge

to a ommon value a

1

. Then we get

I(a; b) =

�=2

Z

0

d�

q

a

2

1

os

2

� + b

2

1

sin

2

�

=

�

2a

1

(1.31)

Proof:

I(a; b) =

�=2

Z

0

d�

q

a

2

os

2

� + b

2

sin

2

�

(1.32)

We hange the variable

x = b tan� (1.33)

Then

I(a; b) =

1

Z

0

dx

p

(a

2

+ x

2

)(b

2

+ x

2

)

(1.34)

We now introdue

x =

1

2

�

t�

ab

t

�

; dx =

1

2

�

1 +

ab

t

2

�

dt (1.35)

and alulate

p

x

2

+ ab =

1

2

�

t+

ab

t

�

s

x

2

+

(a+ b)

2

4

=

1

2t

q

(t

2

+ a

2

)(t

2

+ b

2

) (1.36)

Then

1

2

1

Z

0

dx

p

(x

2

+ ab)(x

2

+ (a+ b)

2

=4)

=

1

2

1

Z

0

dt

p

(t

2

+ a

2

)(t

2

+ b

2

)

(1.37)
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2 Lagrangian formalism

2.1 Hamilton’s principle

It was notied in the XIXth entury that the lassial trajetories an be formulated as

variational problems i.e. they are extrema of some funtional alled ation that is itself

an integral over time of some funtion of positions and veloities alled the lagrangian.

This observation led to the most fruitful formalisms in lassial physis and points

diretly to the quantum physis as we will disuss.

We de�ne a lagrangian as a funtion of positions x

A

and veloities _x

A

where A runs

over some �nite set (for N partiles it would be A 2 1::3N).

We de�ne the lagrangian as

L(t; x

A

; _x

A

) = T ( _x

A

)� V (t; x

A

) (2.1)

i.e. as a di�erene between kineti energy and potential energy.

We then assume that all trajetories that will be ompared start at time t

i

at the

same point x

A

i

and end at time t

f

at the same point x

A

f

We de�ne the ation S as a funtional

S =

t

f

Z

t

i

L(t; x

A

; _x

A

) dt (2.2)

so it depends upon the path between t

i

and t

f

.

Priniple of Least Ation says that the atual trajetory is suh that it is the ex-

tremum of S.

We onsider the atual path x

A

(t). If it is an extremum of S it means that any

deviation from the trajetory does not hange S up to terms linear in the deviation. We

add the deviation

x

A

(t)! x

A

(t) + Æx

A

(t) (2.3)

and we alulate the hange of the ation for the perturbed trajetory (keeping the

initial and �nal times and the end points of the trajetory unhanged)

ÆS = Æ

t

f

Z

t

i

L(t; x

A

; _x

A

) dt =

t

f

Z

t

i

�

�L

�x

A

Æx

A

+

�L

� _x

A

Æ _x

A

�

dt (2.4)
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2. Lagrangian formalism

We integrate by parts and we get up to linear terms in Æx

A

ÆS =

t

f

Z

t

i

�

�L

�x

A

�

d

dt

�

�L

� _x

A

��

Æx

A

dt+

�

�L

� _x

A

Æx

A

�

t

f

t

i

(2.5)

Aording to our assumption the endpoints of the trajetory are kept �xed so the last

term vanishes. Sine Æx

A

(t) is arbitrary we onlude that for eah A

d

dt

�

�L

� _x

A

�

�

�L

�x

A

= 0 (2.6)

These equations are alled Euler-Lagrange equations.

We see that adding a full time derivative to L does not hange the equations of

motion so we treat suh lagrangians as equivalent:

L � L+

df

dt

(2.7)

In the simplest ase of one-dimensional partile

L =

m _x

2

2

� V (t; x) (2.8)

the EL equations give

m�x = �

dV

dx

(2.9)

i.e. indeed the Newton equation.

For a free partile (V = onst) we an see that suh a lagrangian is invariant (up to

total derivatives) under Galilean Transformations v! v +V with V = onst:

L! L+mv �V +

mV

2

2

= L+

d

dt

 

mr �V +

mV

2

2

t

!

(2.10)

However, the formulation in terms of Euler-Lagrange equations has several important

advantages over the Newton formulation.

First of all it is a variational formulation what points diretly to the quantum me-

hanial origin of these equations as we will disuss later.

Seond, the equations look the same in all oordinate systems while the Newton

equations are written down only in inertial frames (otherwise one has to add �titious

fores).

Let us prove the seond feature

We hange the oordinates x

A

into y

A

(with number of y equal to the number of xs)

assuming this hange to everywhere invertible. We have

_x

A

=

�x

A

�y

B

_y

B

+

�x

A

�t

(2.11)
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Then

�L

�y

B

=

�L

�x

A

�x

A

�y

B

+

�L

� _x

A

 

�

2

x

A

�y

B

�y

C

_y

C

+

�

2

x

A

�y

B

�t

!

(2.12)

and

�L

� _y

B

=

�L

� _x

A

� _x

A

� _y

B

(2.13)

Now we use the fat that

� _x

A

� _y

B

=

�x

A

�y

B

what an be seen from (2.11). Therefore the EL

equations read in the new oordinates

d

dt

�

�L

� _y

B

�

�

�L

�y

B

=

�

d

dt

�

�L

� _x

A

�

�

�L

�x

A

�

�x

A

�y

B

(2.14)

so they are equivalent to the original ones (assuming invertibility of the hange).

2.2 Mechanical similarity and virial theorem

Assume that the potential (independent of time) has a property that

U(�r
1

; �r
2

; : : :) = �

k

U(r
1

; r
2

; : : :) (2.15)

We substitute simultaneous hange of time

r
i

! �r
i

; t! �t (2.16)

and require that the kineti energy has the same fator in front as the potential i.e.

�

2

�

2

= �

k

) � = �

1�k=2

(2.17)

Then the whole lagrangian is just multiplied by �

k

i.e. all the EOM will be the same

(with resaled time and positions).

As an example let us quote the Coulomb potential U = �=r Then

k = �1) � = �

3

2

(2.18)

Hene we reover Kepler's third law

�

T

0

T

�

2

=

�

R

0

R

�

3

(2.19)

Now we turn to another appliation { so alled virial theorem.

Consider a bounded system of partiles. The kineti energy is a quadrati form

of veloities so (even for non-diagonal ase from the Euler theorem on homogeneous

funtions))

X

a

�T

�v
a

= 2T (2.20)
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2. Lagrangian formalism

Introduing momenta

p
a

:=

�T

�v
a

(2.21)

we an write

2T =

X

a

p
a

� v
a

=

d

dt

 

X

a

p
a

� r
a

!

�

X

a

r
a

� _p
a

(2.22)

Let us take the average over time of this equality. The average of a full derivative tends

to zero with growing time sine

�

f := lim

�!1

1

�

Z

�

0

f(t)dt (2.23)

On the RHS we replae _p
a

by derivatives of the potential and we get

2T =

X

a

r
a

�U

�r
a

(2.24)

Using again our assumption on U we get the virial theorem

2T = kU (2.25)

So that in terms of the total energy

T =

k

k + 2

E; U =

2

k + 2

E (2.26)

The most famous example is the Coulomb potential where k = �1 and (with E negative)

T = �E; U = 2E (2.27)

Extrating energy from the system (for example by radiation) gives more negative E

so T grows { that's one of the reasons why the Sun gets hotter over time (the main

one being a very sensitive dependene of the nulear reations in the Sun's ore on the

parameters of the ore).
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3 Examples

3.1 2-dim case in polar coordinates

We have

L =

1

2

m( _r

2

+ r

2

_

�

2

)� U(r; �) (3.1)

EL eqs. read

m�r = mr

_

�

2

�

�U

�r

d

dt

(mr

2

_

�) = �

�U

��

(3.2)

The �rst equation inludes the entrifugal fore and the seond is (in 3-dim notation)

�J

�t

= N (3.3)

sine

�rU = �

�U

�r

e
r

�

1

r

�U

��

e
�

(3.4)

and

r� (�rU) = �

�U

��

e
r

� e
�

(3.5)

with

J = mr

2

_

�e
r

� e
�

(3.6)

3.2 Reduced mass

If we have two bodies without any external interations we an write

L =

m

1

_r2
1

2

+

m

2

_r2
2

2

� U(jr
1

� r
2

j) (3.7)

We know that without external interation the CM moves with onstant veloity. There-

fore we hoose CM system

m

1

r
1

+m

2

r
2

= 0 (3.8)

and then we introdue

r := r
1

� r
2

(3.9)
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3. Examples

Solving these two equations we have

r
1

=

m

2

m

1

+m

2

r; r
2

= �

m

1

m

1

+m

2

r; (3.10)

Plugging these expressions bak into the lagrangian we get

L =

� _r2

2

� U(r) (3.11)

where the redued mass �

� =

m

1

m

2

m

1

+m

2

(3.12)

So the problem of two bodies boils down to the problem of one body with redued mass.

3.3 Rotating reference frame

We have a free partile in 2 dimensions

L =

m

2

( _x

2

+ _y

2

) (3.13)

Introduing

x = x

0

os!t+ y

0

sin!t; y = �x

0

sin!t+ y

0

os!t; (3.14)

we have

L =

m

2

�

( _x

0

� !y

0

)

2

+ ( _y

0

+ !x

0

)

2

�

(3.15)

The EOM read

�x

0

� 2! _y

0

� !

2

x

0

= 0

�y

0

+ 2! _x

0

� !

2

y

0

= 0 (3.16)

where we reognize the entrifugal fore ! � (! � r) and the Coriolis fore 2! � _r.

3.4 Kepler orbits

We disuss a test body moving in the most important potential in 3 dimensions

U(r) = �

GM

r

(3.17)

Let us reall the beautiful solution of the problem of orbits given by Laplae. We notie

that the angular momentum J is onserved so the orbit has to lie in a plane perpendiular

to J. Introduing polar oordinates in this plane we have

r = re
r

) v = _re
r

+ r _e
r

(3.18)
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hene

J = mr� v = mr

2e
r

� _e
r

(3.19)

We now alulate the time derivative of v� J

d

dt

(v � J) = _v � J = �

GM

r

2

e
r

� (mr

2e
r

� _e
r

) (3.20)

We see that r

2

anels out and using

e
r

� (e
r

� _e
r

) = � _e
r

(3.21)

we get

d

dt

(v � J�GMme
r

) = 0 (3.22)

so that

v � J�GMme
r

= GMms (3.23)

where s is a onstant vetor.

Using this vetor we an write

J

2

= J � (mr� v) = mr � (v � J) = GMm

2r � (e
r

+ s) = GMm

2

r(1 + � os�) (3.24)

where � is an angle between r and s and � is the length of s alled the eentriity.

Therefore the orbit is given by

r =

J

2

GMm

2

(1 + � os�)

=

p

1 + � os�

; p =

J

2

GMm

2

(3.25)

whih is an ellipse with the semiaxis (obtained from

p

x

2

+ y

2

+ �x = p) (x(1� �

2

) +

p�)

2

+ y

2

(1� �

2

) = p

2

)

a =

p

1� �

2

; b = a

p

1� �

2

(3.26)

The middle point is a� from the fous.

Using

dS

dt

=

1

2

r� v =

J

2m

(3.27)

we get

�ab =

JT

2m

) J

2

T

2

= GMm

2

a(1� �

2

)T

2

= 4m

2

�

2

a

2

a

2

(1� �

2

) (3.28)

hene

a

3

=

GM

4�

2

T

2

(3.29)
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3. Examples

3.5 Central potential

We onsider a general potential depending only on the distane U(r) then

J = r� p (3.30)

is onserved. We an hoose the spherial oordinate system suh that z is direted

towards J and then the whole trajetory has to lie in the � = �=2 plane. We therefore

neglet from now on the � variable. We an write

L =

m

2

( _r

2

+ r

2

_

�

2

)� U(r) (3.31)

The EOM for � reads

mr

2

_

� = onst (3.32)

i.e. the onservation of J in these speial oordinates. We shouldn't solve this equation

for

_

� and plug it bak to L! But we an use the seond onserved quantity i.e. energy -

there we an do it.

E =

m

2

( _r

2

+ r

2

_

�

2

) + U(r) =

m

2

_r

2

+

J

2

2mr

2

+ U(r) (3.33)

Therefore

_r = �

s

2

m

(E � U(r))�

J

2

m

2

r

2

(3.34)

with the sign depending on the atual moment of motion. Therefore

t =

Z

dr

q

2

m

(E � U(r))�

J

2

m

2

r

2

+ onst (3.35)

or

� =

Z

Jdr

r

2

q

2m(E � U(r))�

J

2

r

2

+ onst (3.36)

3.6 Relativistic rocket

A roket of (variable) mass m throws bakwards �m with veloity w (�m 6= �dm in

the relativisti ase sine it osts energy to throw what hanges the mass of the roket).

The veloity of the roket is v. We have to �nd the dependene of the roket mass on v.

We start with onservation of momentum and energy

d

0

�

mv

q

1�

v

2



2

1

A

=

u�m

q

1�

u

2



2

d

0

�

m

2

q

1�

v

2



2

1

A

= �

�m

2

q

1�

u

2



2

(3.37)
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where

u =

w � v

1�

vw



2

(3.38)

For nonrelativisti roket we would get �m = �dm as we would expet.

Therefore

d

0

�

mv

q

1�

v

2



2

1

A

= �ud

0

�

m

q

1�

v

2



2

1

A

(3.39)

Expanding and multiplying by

q

1�

v

2



2

we get

vdm+mdv +

mv

2

dv

(1�

v

2



2

)

2

=

v �w

1�

vw



2

 

dm+

mvdv

(1�

v

2



2

)

2

!

(3.40)

Reorganizing the terms we get a surprisingly simple equation

dm

m

= �

dv

w(1�

v

2



2

)

(3.41)

with a solution

M

m

=

 

1 +

v



1�

v



!



2w

(3.42)

For v=! 0 we get the well known result

M

m

= e

v

w

(3.43)

while for w =  we get

v = 

M

2

�m

2

M

2

+m

2

(3.44)

and for m! 0 we get v !  as ould be expeted.

3.7 Three body problem

As is well known the three body problem is unsolved analytially - many great physiists

tried to �nd a new integral of motion (besides energy and angular momentum) but with

no suess. Poinar�e analyzing the system had the �rst idea of a haos in deterministi

systems. There are speial solutions (like the 8-form solution of Christopher Moore in

1993) but generally we have to resort to numerial solutions.There are simple fats that

an be drawn and we would like to point one of them.

We write the lagrangian as

L = T � U (3.45)

where

T =

m

1

v

2

1

2

+

m

2

v

2

2

2

+

m

3

v

2

3

2

(3.46)
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and

U(r
1

; r
2

; r
3

) = �

Gm

1

m

2

jr
1

� r
2

j

�

Gm

1

m

3

jr
1

� r
3

j

�

Gm

2

m

3

jr
2

� r
3

j

(3.47)

The total energy is onserved

E = T + V (3.48)

Let us introdue (in the CM frame) the objet

I =

1

2

X

i

m

i

r

2

i

(3.49)

Di�erentiating twie wrt t we get

d

2

I

dt

2

=

X

i

m

i

v

2

i

+

X

i

r
i

� _v
i

(3.50)

Using EOM we an rewrite this as

d

2

I

dt

2

= 2T +

X

ij

r
i

�

Gm

i

m

j

r

3

ij

(r
j

� r
i

) (3.51)

where the sum is over i 6= j. Expanding we get

d

2

I

dt

2

= T +E = 2E � U (3.52)

If E < 0 then

�U = T �E � �E (3.53)

Then

inf(r

12

; r

13

; r

23

) � �

G

E

(m

1

m

2

+m

1

m

3

+m

2

m

3

) (3.54)

If E > 0 then

�

I and hene I for large times an only grow.

I � I

1

+ I

0

1

(t� t

1

) +E(t� t

1

)

2

(3.55)

It has to go to in�nity at large times so the trajetory has to be open.

3.8 Noether’s theorem

Let us start with the de�nition of the onstant of motion G(q

a

; _q

a

; t):

dG

dt

=

X

i

�

�G

�q

a

_q

a

+

�G

� _q

a

�q

a

�

+

�G

�t

= 0 (3.56)

when the EOM an be used.

We have two straightforward examples.
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Energy H

H :=

X

a

_q

a

�L

� _q

a

� L (3.57)

if L does not depend expliitly on t sine then

dH

dt

=

X

i

�

d

dt

�L

� _q

a

�

�L

�q

a

�

_q

a

= 0 (3.58)

beause of EOM.

If L does not depend on some q

b

(but may depend on _q

b

) for some b then

p

b

:=

�L

� _q

b

(3.59)

is the onstant of motion. The proof is straightforward.

The Noether's theorem is a generalization of these onepts.

If we have a one-parameter map

q

a

(t)! Q

a

(s; t); Q

a

(0; t) = q

a

(t) (3.60)

suh that

�

�s

L(Q

a

(s; t);

_

Q

a

(s; t); t) = 0 (3.61)

we say that this map is a (ontinuous) symmetry of the theory (if time also hanges

under the map the argument has to be slightly generalized).

We have then

0 =

�

�s

L(Q

a

(s; t);

_

Q

a

(s; t); t)

�

�

�

�

s=0

=

 

�L

�q

a

�Q

a

�s

+

�L

� _q

a

�

_

Q

a

�s

!

s=0

=

=

d

dt

�

�L

� _q

a

�Q

a

�s

�

s=0

(3.62)

so that

�

�L

� _q

a

�Q

a

�s

�

s=0

(3.63)

is onserved along the trajetory.

Examples

� if the spatial translations are a symmetry

r
a

! r
a

+ sn (3.64)

then the onserved quantity is

X

a

�L

� _r
a

� n =

X

a

p
a

� n = P � n (3.65)

i.e the total momentum in the diretion n. If n is arbitrary then the total momen-

tum is onserved.
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� if the spatial rotations around the axis n are a symmetry

r
a

! r
a

+ sn� r (3.66)

then the onserved quantity is

X

a

�L

� _r
a

� (n� r
a

) =

X

a

p
a

� (n� r
a

) = n � (r
a

� p
a

) = n � J (3.67)

i.e the total angular momentum in the diretion n. If n is arbitrary then the total

angular momentum is onserved.
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4 Lagrangian formalism with constraints

4.1 Types of constraints

In the previous leture we have de�ned lagrangians and disussed their properties. It

is very often the ase that the variables are subjet to onstraints and suh a situation

requires speial treatment.

There are several types of onstraints

� holonomi

– equalities (or two-sided onstraints)

f

�

(t; x

A

) = 0; � = 1; : : : ; 3N � n (4.1)

or inequalities (one-side onstraints)

f

�

(t; x

A

) > 0; � = 1; : : : ; 3N � n (4.2)

.

– depending on time

f

�

(t; x

A

) = 0; � = 1; : : : ; 3N � n (4.3)

alled reonomi or

f

�

(x

A

) = 0; � = 1; : : : ; 3N � n (4.4)

alled sleronomi onstraints

� non holonomi - all other like onstraints that depend on veloities and annot be

integrated to ones depending only on positions

We will deal mostly with holonomi, two-sided, sleronomi onstraints.

In the presene of onstraints we de�ne the lagrangian as

L



= L(x

A

; _x

A

; t) +

X

�

�

�

f

�

(x

A

; t) (4.5)

where �

�

are auxiliary additional oordinates alled Lagrange multipliers.
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4. Lagrangian formalism with onstraints

The EL equations wrt � give indeed the onstraint equations

�L



��

= f

�

(x

A

; t) = 0 (4.6)

On the other hand the EL equations wrt to x

A

have additional terms:

d

dt

�

�L

� _x

A

�

�

�L

�x

A

= �

�

�f

�

�x

A

(4.7)

The RHS plays the role of additional fores oming from the presene of onstraints.

If the potential U and f

�

's are independent of time then the energy is onserved

dE

dt

=

d

dt

 

X

A

_x

A

�L

� _x

A

� L

!

=

X

A

_q

A

X

�

�

�

�f

�

�q

A

= �

X

�

�

�

�f

�

�t

(4.8)

where we used

df

�

dt

= 0.

4.1.1 2-dim pendulum of length d

L



=

1

2

m( _z

2

+ _x

2

) +mgz + �(z

2

+ x

2

� d

2

) (4.9)

One equation is of ourse the onstraint equation

z

2

+ x

2

� d

2

= 0 (4.10)

The two other read

m�z �mg = 2�z; m�x = 2�x (4.11)

Substituting

x = d sin �; z = d os � (4.12)

we identially satisfy the onstraint equation and for the other two we get (after multi-

plying by sin or os and adding/subtrating)

�md

�

� �mg sin � = 0

�md

_

�

2

�mg os � = 2�d (4.13)

The �rst one is the usual equation along the onstraints hypersurfae, the seond one

gives the reation fore perpendiular to onstraints hypersurfae.

4.2 Reduced lagrangians

It is very useful that if we are not interested in the reation fores and want to solve

the equations only along the onstraints we an do so in an 'easy' way (this is the usual

physial approah while the reation fores usually have to be alulated in tehnial

appliations). Instead of x

A

let us introdue new oordinates

x

A

! q

a

; f

�

(4.14)
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If the onstraints are all independent (at least in the viinity of some point in the

on�guration spae) one an introdue n independent variables q

1

; : : : ; q

n

and express

all x

A

in terms of q

i

by solving these onstraint equations.

x

A

= x

A

(q

1

; : : : ; q

n

) (4.15)

and plug these solutions to the equations of motion.

As we have proven the EL eqs. are independent of the hoie of oordinates so we

an immediately write

d

dt

�

�L

� _q

a

�

�

�L

�q

a

= �

�

�f

�

�q

a

(4.16)

But in these oordinates f

�

are oordinates by onstrution independent of q

a

so the RHS

vanishes. Therefore the lagrangian in terms of q

a

an be onsidered as self-ontained and

the solutions will be automatially along the onstraints hypersurfaes (but we annot

alulate from it the reation from onstraints).

4.3 Lagrange points

Imagine two large bodies m

1

and m

2

irulating on a irular orbit around eah other.

We desribe the system in the rotating CM frame i.e.

!

2

=

G(m

1

+m

2

)

d

3

(4.17)

where d is the distane between the bodies. The bodies are

r

1

=

d�

m

1

; r

2

=

d�

m

2

(4.18)

from the CM. The equation for !

2

omes from the equality

m

1

!

2

r

1

=

Gm

2

m

1

d

2

(4.19)

Now we add a third very small body m

3

, m

3

� m

1

;m

2

and ask about the points in

spae where there is e�etively no fore from the two large bodies. We immediately

see that the small body has to lie in the plane orthogonal to the rotation (otherwise it

would be attrated by both large bodies). Introduing the rotating frame with x axis

joining large bodies and y orthogonal to it (but in the plane of rotation) we write the

lagrangian for the small body

L =

m

3

2

�

( _x� !y)

2

+ ( _y + !x)

2

�

+

Gm

1

m

3

r

13

+

Gm

2

m

3

r

23

(4.20)

where

r

13

=

q

(x+ d�=m

1

)

2

+ y

2

; r

23

=

q

(x� d�=m

2

)

2

+ y

2

(4.21)
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4. Lagrangian formalism with onstraints

We write the EOM

m

3

(�x� ! _y) = m

3

!( _y + !x)�

Gm

1

m

3

(x+ d�=m

1

)

r

3

13

�

Gm

2

m

3

(x� d�=m

2

)

r

3

23

m

3

(�y + ! _x) = �m

3

!( _x� !y) �

Gm

1

m

3

y

r

3

13

�

Gm

2

m

3

y

r

3

23

(4.22)

We are looking for points (x; y) for whih and _x = _y = 0 and �x = �y = 0 therefore

0 = !

2

x�

Gm

1

(x+ d�=m

1

)

r

3

13

�

Gm

2

(x� d�=m

2

)

r

3

23

0 = !

2

y �

Gm

1

y

r

3

13

�

Gm

2

y

r

3

23

(4.23)

� If y = 0 the seond equation is trivially satis�ed and we are left with

!

2

x =

Gm

1

(x+ d�=m

1

)

jx+ d�=m

1

j

3

+

Gm

2

(x� d�=m

2

)

jx� d�=m

2

j

3

(4.24)

There are 3 solutions to this equation in the intervals x < �d�=m

1

, �d�=m

1

<

x < d�=m

2

and x > d�=m

2

(in eah one solution). They are alled L

2

, L

1

and L

3

and one an show that they are unstable i.e. deviation from these points makes the

aeleration pointing away from these points. They are used for satellites orbiting

the Sun together with the Earth sine being unstable they don't gather osmi

dust.

For example if x > x

3

(i.e. on the right of L

3

) we have from the �rst equation

�x > 0 sine

!

2

x ";

Gm

1

(x+ d�=m

1

)

r

3

13

#;

Gm

2

(x� d�=m

2

)

r

3

23

# (4.25)

so m

3

is repelled from L

3

.

� if y 6= 0 the seond equation gives

!

2

=

Gm

1

r

3

13

+

Gm

2

r

3

23

(4.26)

Multiplying it by x and adding to the �rst equation we get

r

13

= r

23

= d (4.27)

where the last equation omes from the equation for !

2

. So we have two points

forming equilateral triangle in the rotation plane. They are alled L

4

, and L

5

and one an show that they are stable i.e. deviation from these points makes the

aeleration pointing bak to these points. There are Kordylewski louds (1961)

around L5 not yet fully on�rmed.
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4.4 Orbits in the Schwarzschild metric

we start with the lagrangian in the Shwarzshild metri (for � = �=2)

S = �m

2

Z

dt

v

u

u

t

1�

r

g

r

�

_r

2



2

(1�

r

g

r

)

�

r

2

_

�

2



2

(4.28)

where

r

g

=

2GM



2

(4.29)

We alulate the momenta

p

r

=

m _r

(1� r

r

=r)

r

1�

r

g

r

�

_r

2



2

(1�

r

g

r

)

�

r

2

_

�

2



2

p

�

=

mr

2

_

�

r

1�

r

g

r

�

_r

2



2

(1�

r

g

r

)

�

r

2

_

�

2



2

= J (4.30)

Then the energy

E =

X

i

_q

i

p

i

� L =

m

2

(1� r

g

=r)

r

1�

r

g

r

�

_r

2



2

(1�

r

g

r

)

�

r

2

_

�

2



2

(4.31)

Calulating

_

� from J

_

� =

(1� r

g

=r)J

2

Er

2

(4.32)

we get

E

2

�

 

r

02

1� r

g

=r

+ r

2

!

(1� r

g

=r)J

2



2

r

4

= m

2



4

(1� r

g

=r) (4.33)

Writing

E =

~

E +m

2

(4.34)

we get

�

~

E +

GMm

r

�

2m

J

2

+

~

E

2

J

2



2

+

2GM

r

3



2

=

r

02

+ r

2

r

4

(4.35)

Introduing w = 1=r and di�erentiating we get

GMm

2

J

2

+

3GMw

2



2

= w

00

+w (4.36)

This equation is exat and leads to the rotation of the perihelion of planets (for Merury

42' per hundred years).
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4. Lagrangian formalism with onstraints

Without the seond term on the LHS we would get the Kepler orbits r = p=(1 +

� os�). With the seond term (very small) we substitute

w = A+B os(��) (4.37)

From the lassial solution we have

w =

(1 + � os(��))

p

; p =

J

2

GMm

2

= a(1 � �

2

) (4.38)

where the large and small axis

a =

p

1� �

2

; b = a

p

1� �

2

(4.39)

Plugging this solution into (4.35) we get the oeÆient in front of os(��)

1� �

2

=

6GM

p

2

=

3r

S

a(1� �

2

)

; r

S

=

2GM



2

(4.40)

Hene

� � 1�

3r

S

2a(1 � �

2

)

(4.41)

so that

Æ =

3�r

S

a(1� �

2

)

(4.42)

For the Merury T = 88 days (100 years � 415 rotations), a = 57:9 mln km, � = 0:206

so it gives Æ � 43:5

00

/100 years.

Using the same formula (4.35) we an derive the equation for the trajetory of light

(m = 0).

~

E

2

J

2



2

+

2GM

r

3



2

=

r

02

+ r

2

r

4

(4.43)

where

~

E = h� and J are measured far away from the Sun. We therefore have an exat

equation

w

00

+w =

3r

s

w

2

2

(4.44)

Constant r is possible when

r

ph

=

3

2

r

s

(4.45)

but this trajetory is unstable: w = 2=(3r

s

) + � sinh�+O(�

2

).

To derive the bending of light formula we start from r

s

= 0 i.e.

w =

os�

r

0

(4.46)

Using this on the RHS we get to the �rst order in r

s

w

00

+w =

3r

s

os

2

(�)

2r

2

0

(4.47)
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with a solution

w =

os�

r

0

+ r

s

=2

+

r

s

2r

2

0

(1 + sin

2

�) (4.48)

so that w = 0 for

� = �(

�

2

+ Æ); Æ =

r

s

r

0

(4.49)

so that the bending is 2r

s

=r

0

. The exat solution is given in terms of the Weierstrass

funtion that will be disussed later.

We an derive the di�erene in time (with respet to the far-away observer) for the

Earth and for the GPS satellites. We have

dt

0

= dt

v

u

u

t

1�

r

g

r

�

_r

2



2

(1 �

r

g

r

)

�

r

2

_

�

2



2

(4.50)

where r

g

= 8:75 mm. Assuming that we are on the Equator the time runs slower by

r = 6:4 � 10

6

m; T = 86400 s) �t = 60 �s=day (4.51)

For the GPS satellites (making full irle in 12 hours) the time runs slower by

r = 26:6 � 10

6

m; T = 43200 s) �t = 22 �s=day (4.52)

so the time runs slower on Earth than in satellites by 38 �s/day where 45 �s/day omes

from general relativity (satellites are further away from the enter of the Earth than the

surfae) and -7 �s/day from speial relativity (satellites are faster than the surfae of

the Earth)
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5 Oscillations

5.1 Many-body problem

Lagrangian an be written in general as

L =

1

2

M

ab

_q

a

_q

b

� U(q) (5.1)

where M is real, positive, symmetri, onstant matrix. We an assume that M is di-

agonal. Let us assume that there exists an extremum of U i.e. at some point q

0

all

derivatives of U vanish. So we an write in the viinity of q

0

q

a

(t) = q

0a

+ �(t) (5.2)

and expand the EOM up to O(�) (in matrix notation)

M �� = �V � ) �� = �M

�1

V � (5.3)

where

V

ab

=

�

2

U

�q

a

�q

b

�

�

�

�

�

q=q

0

(5.4)

We now look for eigenvalues of this equation. Let us �rst prove that they are real. We

assume that for some �

k

we have

��

k

= ��

2

k

�

k

(5.5)

where �

2

k

and �

k

an be a priori real or omplex. We rewrite it as

�M

�1

V �

k

= ��

2

k

�

k

(5.6)

so that after we multiply by ��

T

k

we get

��

T

k

V �

k

= �

2

k

��

T

k

M�

k

(5.7)

Sine V and M are real symmetri matries �

2

k

has to be real as well. Therefore all

eigenvetors an also be hosen real.

Now we distinguish two situations

� all �

2

k

positive - the system is stable

�(t) =

X

k

A

k

�

k

os(�

k

(t� t

k

)) (5.8)

� one or more �

2

k

is negative - the system is unstable in the diretion of the eigen-

vetor �

k

.

�(t) = A

k

�

k

(exp(�

k

(t� t

k

)) + exp(��

k

(t� t

k

))) + : : : (5.9)
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5. Osillations

5.2 Forced oscillations

We disuss here the problem of osillations (with frition) under the external periodi

fore

�x+ 2 _x+ !

2

0

x = A os!t (5.10)

As always the general solution is given by a sum of a speial solution of the inhomoge-

neous eq. and a general solution of the homogeneous eq. It is more onvenient to write

in the omplex form

�x+ 2 _x+ !

2

0

x = Ae

i!t

(5.11)

Substituting

x

s

(t) = Be

i!t

(5.12)

we �nd the speial solution:

B =

A

�!

2

+ !

2

0

+ 2i!

(5.13)

The real part of the solution solves the original problem i.e.

x

s

(t) =

A

p

(�!

2

+ !

0

)

2

+ 4

2

!

2

os(!t+ Æ) (5.14)

where

tan Æ =

2!

�!

2

+ !

2

0

(5.15)

5.3 Parametric resonance

Let us disuss the problem of solutions of a one-dimensional osillator with variable

parameters (for example mass or the moment of inertia for the pendulum). We an

write

d

dt

(m(t) _x) + k(t)x = 0 (5.16)

If we introdue di�erent time variable d� = dt=m(t) we have

d

2

x

d�

2

+mkx = 0 so that we

don't lose generality if we onsider

�x+ !

2

(t)x = 0 (5.17)

We assume that !(t) is periodi with some period T i.e.

!(t+ T ) = !(t) (5.18)

If we have two independent solutions of (5.17) then the property (5.18) requires that

eah x

i

(t + T ) has to be a linear ombination of these two solutions. We an always

diagonalize this relation and hoose these ombinations in suh a way that

x

1

(t+ T ) = �

1

x

1

(t); x

2

(t+ T ) = �

2

x

2

(t) (5.19)
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where now in general �

i

and x

i

an be omplex as a result of diagonalization (if they are

omplex then neessarily �

?

2

= �

1

sine !

2

(t) is assumed to be real). We assume that �

i

are not simultaneously equal to 1. The proedure depends on the fat that any square

matrix B an be diagonalized by PBP

�1

with P possibly omplex, the only exeption

being when some eigenvalues have multipliity > 1 { then it is possible that the resulting

matrix is of Jordan form. Here we assume that two eigenvalues are distint (otherwise

they would have to be both equal to 1, see below)

There is a relation between �

1

and �

2

oming from the Wronskian of x

1

and x

2

:

d

dt

( _x

1

x

2

� _x

2

x

1

) = 0) _x

1

x

2

� _x

2

x

1

= onst (5.20)

But the LHS for t! t+ T gets multiplied by �

1

�

2

so we get

�

1

�

2

= 1 (5.21)

Therefore

�

i

omplex ) j�

i

j = 1; �

2

= �

?

1

�

i

real ) �

2

=

1

�

1

(5.22)

If �

i

are omplex their norm is one so the solutions just rotate after t! t+T . However,

if they are real then one of them (say, �

1

) is bigger than 1. It means that after nT it

gets the fator �

n

1

i.e. it grows exponentially with time - then suh a phenomenon bears

the name 'parametri resonane'.

Let us disuss this phenomenon in a very well known example known from hildhood

- the see-saw. We very well remember that to make the amplitude bigger one has to

make the leg movements with twie bigger frequeny than the proper frequeny of the

see-saw. Let us substitute

!

2

(t) = !

2

0

(1 + h os(2!

0

+ ")t) (5.23)

where h is small and "� !

0

. We substitute two independent solutions in the form

x = a(t) os(!

0

+ "=2)t + b(t) sin(!

0

+ "=2)t (5.24)

where a(t and b(t) hange slowly in time, muh slower than !

0

. Substituting this form

and negleting �a,

�

b and os(3!

0

t); sin(3!

0

t) we get

�(2 _a + b"+

h!

0

2

b)!

0

sin(!

0

+ "=2)t+ (2

_

b� a"+

h!

0

2

a)!

0

os(!

0

+ "=2)t = 0 (5.25)

The funtions in front of both have to be simultaneously equal to 0. We assume that

(a(t); b(t)) � e

st

(A;B) (5.26)
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5. Osillations

and look for solution with s > 0 (and there also should be aompanying solution with

s < 0). We get

s

2

=

1

4

"

�

h!

0

2

�

2

� "

2

#

(5.27)

And indeed for

�

h!

0

2

< " <

h!

0

2

(5.28)

we have real solutions and in that interval there exists the phenomenon of parametri

resonane.

If we inlude frition we an write

�x+ 2 _x+ !

2

(t)x = 0 (5.29)

We introdue

y(t) = e

�t

x(t) (5.30)

and we get

�y + (!

2

(t)� 

2

)y = 0 (5.31)

We an repeat the steps done before while replaing !

0

! !



=

q

!

2

0

� 

2

and then we

get

(s� �)

2

=

1

4

"

�

h!



2

�

2

� "

2

#

(5.32)

therefore we have parametri resonane if

�

s

�

h!



2

�

2

� 4�

2

< " <

s

�

h!



2

�

2

� 4�

2

(5.33)

There is also a possibility of the parametri resonane if ! = 2!

0

=n but both the

exponent s and the allowed width shrink as h

n

i.e. are then muh smaller. We disuss

below the ase n = 2:

!

2

(t) = !

2

0

(1 + h os(!

0

+ ")t) (5.34)

and we substitute (note the shift in x(t)!)

x = a(t) os(!

0

+ ")t+ b(t) sin(!

0

+ ")t+ (t) (5.35)

Assuming a; b;  � exp(st) and negleting sin(os)(2!

0

+ 2�) we get

 = �

ha

2

; �2sa!

0

� 2b!

0

� = 0; �2a!

0

�+ 2sb!

0

�

h

2

!

2

0

2

a = 0 (5.36)

what gives

4s

2

+ 4�

2

+ h

2

!

0

� = 0 (5.37)

Hene

s 2 R if �

h

2

!

0

4

6 � 6 0 (5.38)

so that indeed s; � � h

2

.

The same parametri resonane is responsible for Faraday waves.
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6 Rigid bodies

6.1 Inertia tensor

The kineti term for a body rotating with the angular veloity !

T =

1

2

X

a

m

a

_r2
a

=

1

2

X

a

m

a

(! � r
a

)

2

=

1

2

!

i

I

ij

!

j

(6.1)

where the inertia tensor is given by

I

ij

=

X

a

m

a

(r

2

a

Æ

ij

� r

i

a

r

j

a

) (6.2)

or for a ontinuous distribution

I

ij

=

Z

d

3

r�(r)(r2Æij � rirj) (6.3)

A symmetri real matrix an alway be diagonalized i.e. there exists an orthogonal

oordinate system in whih I is real and diagonal, moreover all eigenvalues are in this

ase non-negative (one an onsider b

i

I

ij

b

j

what is obviously > 0 for arbitrary vetor r

to see this).

The sum of the eigenvalues is given by

Æ

ij

I

ij

= 2

Z

d

3

r�(r)r2 (6.4)

For example we an get the eigenvalues for the ball of radius R

3I

1

= 2

Z

d

3

r�r

2

=

8�

5

�R

5

) I

1

=

2

5

MR

2

(6.5)

For a dis and the axis perpendiular to the disk we have

I

3

= �

Z

rdrd�r

2

=

�R

4

�

2

=

MR

2

2

(6.6)

while for the axis in the plane of the dis

I

1

= I

2

=

MR

2

4

(6.7)

sine the sum has to be equal to 2

R

2�rdr�r

2

=MR

2

.

37



6. Rigid bodies

If we measure I

0

wrt enter of mass then wrt to any other axis there is a simple

formula

I

ij

= I

ij

0

+M(

2

Æ

ij

� 

i



j

) (6.8)

where c is a vetor onneting CM with the new axis.

The angular momentum is given by

J =

X

a

m

a

r
a

� _r
a

=

X

a

m

a

r
a

� (! � r
a

) =

X

a

m

a

(r

2

a

! � (! � r
a

)r
a

) (6.9)

hene

J

i

= I

ij

!

j

(6.10)

Hene J does not have to oinide with ! and it leads sometimes to a very 'strange'

motion.

6.2 Euler equations

Using a rotating oordinate frame and introduing the prinipal axes of the inertia tensor

e
i

in this frame with the eigenvalues I

i

we an write

J =

X

i

I

i

!

i

e
i

(6.11)

Di�erentiating it wrt time we get

X

i

I

i

_!

i

e
i

+

X

i

I

i

!

i

(! � e
i

) = N (6.12)

where N is the moment of fore.

We get in omponents

I

j

_!

j

+

X

k

I

i

!

i

!

k

�

ijk

= N

j

(6.13)

i.e.

I

1

_!

1

+ (I

3

� I

2

)!

3

!

2

= N

1

I

2

_!

2

+ (I

1

� I

3

)!

1

!

3

= N

2

I

3

_!

3

+ (I

2

� I

1

)!

2

!

1

= N

3

(6.14)

They are alled Euler equations.

6.2.1 Free body

Let us analyze these equations for a free body (N = 0).

If we multiply eah of them by the respetive !

i

we get the onserved energy

I

1

!

2

1

2

+

I

2

!

2

2

2

+

I

3

!

2

3

2

= E = onst (6.15)
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If we multiply eah of them by the respetive I

i

!

i

we get the square of the onserved

angular momentum

I

2

1

!

2

1

+ I

2

2

!

2

2

+ I

2

3

!

2

3

= J

2

= onst (6.16)

so we have 2 onserved quantities and only one Euler equation is independent. Analysis

of suh systems led to the theory of ellipti funtions in the XIXth entury. Let us note

that

2E = J � ! (6.17)

Sine both E and J are onstant it means that the projetion of ! on the diretion of J

is onstant.

We now onsider 3 ases

� When I

1

= I

2

= I

3

i.e. spherial body we have all !

i

= onst and ! is in the

diretion of J.

� when I

1

= I

2

then !

3

= onst and we arrive at the equation for !

1;2

_!

1

� !!

2

= 0; _!

2

+ !!

1

= 0; (6.18)

where

! =

�

1�

I

3

I

1

�

!

3

(6.19)

Therefore

!

1

= !

0

sin!t; !

2

= !

0

os!t (6.20)

so that in the body frame ! preesses around e
3

with angular frequeny ! in

di�erent diretions depending on whether I

1

< I

3

or I

1

> I

3

� when all of them are di�erent I

1

< I

2

< I

3

we will disuss only the ase when only

one of the initial !

i

is large and two other very small.

If !

1

= 
 is large and two other small (Æ

2

and Æ

3

) then negleting quadrati terms

we get

Æ

2

= A

2

sin �t; Æ

3

= A

3

os �t (6.21)

where

� =

s

(I

2

� I

1

)(I

3

� I

1

)

I

2

I

3


 (6.22)

so it is stable.

The same situation is when !

3

= 
 is large and two other small (Æ

1

and Æ

2

)

Æ

1

= A

1

os �t; Æ

2

= A

2

sin �t (6.23)

where

� =

s

(I

3

� I

2

)(I

3

� I

1

)

I

1

I

2


 (6.24)
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and

A

2

=

s

I

1

(I

3

� I

1

)

I

2

(I

3

� I

2

)

A

1

(6.25)

so it is also stable.

We onsider now the third ase when !

2

= 
 is large and two other small (Æ

1

and

Æ

3

). Then

Æ

1

= A

1

osh �t; Æ

3

= A

3

sinh �t (6.26)

where

� =

s

(I

3

� I

2

)(I

2

� I

1

)

I

1

I

3


 (6.27)

and

A

3

= �

s

I

1

(I

2

� I

1

)

I

3

(I

3

� I

2

)

A

1

(6.28)

so it unstable. Numerial analysis shows that later the nonlinear terms take over

and �nally the motion is it is periodi (with the period given approximately by

T � 1=� the preise value given by an ellipti integral) and 'jumps' from 
 to �


while two other are large at the jump.
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7 Rigid bodies part II

7.1 Euler angles

We introdue now the desription in the spae frame X;Y; Z (and not in the body frame

as before). The Euler angles are de�ned as subsequent rotation around z axis by � then

around new x

0

axis by � and then again around the new axis z

00

by  (see the piture).

To unwind the rotation we use the matrix (note the signs of angles, reverse to the

usual ones) wrt the Z axis, then X axis and again Z azis:

R( ; �; �) =

0

B

�

os sin 0

� sin os 0

0 0 1

1

C

A

�

0

B

�

1 0 0

0 os � sin �

0 � sin � os �

1

C

A

�

0

B

�

os� sin� 0

� sin� os� 0

0 0 1

1

C

A

Multiplying we get

R( ; �; �) =

0

B

�

os os�� sin os � sin� os sin�+ sin os � os� sin � sin 

� sin os�� os os � sin� � sin sin�+ os os � os� sin � os 

sin � sin� � sin � os� os �

1

C

A

We an use this matrix to unwind the body frame unit vetors e
1

, e
2

and e
3

to the spae

unit vetors (e
x

; e
y

; e
z

). Therefore

R( ; �; �)(e
1

; e
2

; e
3

) = I ) (e
1

; e
2

; e
3

) = R( ; �; �)

�1

= R( ; �; �)

T

(7.1)

so we have

e
1

=

0

B

�

os os�� sin os � sin�

os sin�+ sin os � os�

sin � sin 

1

C

A

(7.2)

e
2

=

0

B

�

� sin os�� os os � sin�

� sin sin�+ os os � os�

sin � os 

1

C

A

(7.3)

e
3

=

0

B

�

sin � sin�

� sin � os�

os �

1

C

A

(7.4)
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Fig. Euler angles

In the body frame we have

! = !

1

e
1

+ !

2

e
2

+ !

3

e
3

(7.5)

To get the expression for !

i

we use the fat that

_e
i

= ! � e
i

(7.6)

so that for example

_e
3

= ! � e
3

= �!

1

e
2

+ !

2

e
1

(7.7)

therefore

e
2

� _e
3

= �!

1

; e
1

� _e
3

= !

2

(7.8)

Calulating the above expressions we arrive at

! = (

_

� sin � sin +

_

� os )e
1

+ (

_

� sin � os �

_

� sin )e
2

+ (

_

 +

_

� os �)e
3

(7.9)

We an also express J in the spae frame (for simpliity only in the ase I

1

= I

2

)

using the previous expressions for e
1

; e
2

; e
3

. We get

J =

0

B

�

I

3

_

 sin � sin�+ I

1

_

� os�+ (I

3

� I

1

)

_

� os � sin � sin�

�I

3

_

 sin � os�+ I

1

_

� sin�+ (I

1

� I

3

)

_

� sin � os � os�

I

3

(

_

�+

_

 os �) + (I

1

� I

3

)

_

� sin

2

�

1

C

A

(7.10)

7.2 Wobbling plate

If we apply the formulae to the wobbling plate with I

1

= I

2

=MR

2

=4 and I

3

=MR

2

=2

we know that the frequeny (in the body frame) !

3

is onstant and that !

1

and !

2

rotate with frequeny


 =

�

1�

I

3

I

1

�

!

3

(7.11)
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with

!

1

= !

0

sin
t; !

2

= !

0

os 
t (7.12)

We have

!

2

1

+ !

2

2

= !

2

0

(7.13)

but on the other hand it is equal to

!

2

1

+ !

2

2

=

_

�

2

sin

2

� +

_

�

2

(7.14)

If we hoose J to lie in the Z axis then

_

� = 0, � = �

0

(we an see it from the expression

for J

x

os�+ J

y

sin� = I

1

_

� = 0). Then !

0

=

_

� sin �

0

,

_

� is onstant. From

!

1

=

_

� sin �

0

sin = !

0

sin
t (7.15)

hene


 =

_

 (7.16)

so

_

 is also onstant. Hene

!

3

=

_

 +

_

� os �

0

= 
+

_

� os � = !

3

�

I

3

I

1

!

3

+

_

� os �

0

(7.17)

so that

_

� =

I

3

!

3

I

1

os �

0

=

2!

3

os �

0

(7.18)

For small �

0

the plate wobbles with twie the frequeny of rotation.

For the Earth

I

3

� I

1

I

3

�

1

300

(7.19)

so we would expet the period of wobbling 300 days. It is atually around 430 days with

the ! preessing around the North pole with radius about 10 m (but rather irregularly).

7.3 Heavy top

We now onsider a symmetri top spinning in the gravitational �eld on its tip. The

rotation is ounted form the tip so both I

1

and I

2

are bigger by Ml

2

from the usual

inertia oeÆients alulated at CM. Let us write the lagrangian using !

i

but treating

Euler angles as the fundamental variables

L =

1

2

I

1

(!

2

1

+ !

2

2

) +

1

2

I

3

!

2

3

+Mgl(1 � os �) (7.20)

We use the expressions for !

i

to get

L =

1

2

I

1

(

_

�

2

sin

2

� +

_

�

2

) +

1

2

I

3

(

_

 +

_

� os �)

2

+Mgl(1 � os �) (7.21)
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We see that there are 2 onserved momenta

J

3

=

�L

�

_

 

= I

3

(

_

 +

_

� os �) = I

3

!

3

= onst (7.22)

and

J

z

=

�L

�

_

�

= I

1

sin

2

�

_

�+ I

3

!

3

os � = onst (7.23)

We an solve for

_

�

_

� =

J

z

� J

3

os �

I

1

sin

2

�

(7.24)

We also have the onserved energy

E =

1

2

I

1

(

_

�

2

sin

2

� +

_

�

2

) +

1

2

I

3

!

2

3

�Mgl(1� os �) (7.25)

Let us rewrite this expression using the onstants

~

E =

1

2

I

1

_

�

2

+

(J

z

� J

3

os �)

2

2I

1

sin

2

�

�Mgl(1 � os �) =

1

2

I

1

_

�

2

+ U

eff

(�) (7.26)

where

~

E = E �

1

2

I

3

!

2

3

.

If J

3

6= J

z

then U

eff

(�)!1 for both � ! 0 and � ! �. Therefore there must be a

minimum in between and � osillates between some �

1

and �

2

(so alled nutation). The

behavior of

_

� (preession) depends on whether the sign of J

z

�J

3

os � hanges between

�

1

and �

2

or not.

The question of stability in the vertial position � = 0 (then J

z

= J

3

) an be answered

by expansion in �. First we have


 =

_

� =

J

3

2I

1

(7.27)

and then

U

eff

(�) �

J

2

3

8I

1

�

2

�

Mgl

2

�

2

(7.28)

so that the motion is stable if

!

2

3

>

4I

1

Mgl

I

2

3

(7.29)

7.4 Balancing car wheels

We assume that we want to keep the axis �xed and ask how large momentum of fore

has to be exerted to arrive at this. We orient the axis of rotation along the z axis. Then

the angular momentum reads

J =

X

a

r
a

� (m

a

v
a

) =

X

a

r
a

� (m

a

! � r
a

) =

X

a

m

a

(!(r

2

a

)� r
a

(! � r
a

)) (7.30)
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what in omponents reads

(J

x

; J

y

; J

z

) = (�

X

a

m

a

z

a

x

a

;�

X

a

m

a

z

a

y

a

;

X

a

m

a

(x

2

a

+ y

2

a

)) (7.31)

Assuming that

x

a

= R os(!t+ �

a

); y

a

= R sin(!t+ �

a

) (7.32)

we get the moment of fore needed to keep the axis unmoved

(N

x

; N

y

; N

z

) = (

X

a

m

a

z

a

R! sin(!t+ �

a

);�

X

a

m

a

z

a

R! os(!t+ �

a

); 0) (7.33)

Measuring N

x

; N

y

at time t = 0 we get

N

x

=

X

a

m

a

z

a

R! sin(�

a

); N

y

= �

X

a

m

a

z

a

R! os(�

a

) (7.34)

To balane the wheel i.e. anel the moment of fore we have to add some mass M at

the point (z; �) (� is de�ned wrt (N

x

; N

y

)) suh that

�MzR! os(�) +N

y

= 0; �MzR! sin(�)�N

x

= 0 (7.35)

so that tan� = �N

x

=N

y

and M =

q

N

2

x

+N

2

y

=(zR!).
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8 Hamiltonian formalism

8.1 Legendre transform and the Hamilton’s equations

For the lagrangian we have the EL equations

d

dt

�

�L

� _q

a

�

�

�L

�q

a

= 0 (8.1)

Now we want to treat symmetrially q

a

and _q

a

. We introdue momenta

p

a

:=

�L

� _q

a

(8.2)

It would not be orret to solve these equations and plug them bak into the lagrangian.

What we have to do is to make the Legendre transform.

8.2 Legendre transform

If we have a funtion f(x) we introdue an additional variable s and we reate a funtion

~

f(s; x) = sx� f(x) (8.3)

Then

d

~

f(s; x) = xds+ sdx�

df

dx

dx (8.4)

The di�erential depends on two variables unless we impose

s =

df

dx

(8.5)

and then we an treat

~

f as a funtion of only s

d

~

f(s) = x(s)ds (8.6)

where x(s) is a solution of (8.5) and we have

d

~

f

ds

= x(s) (8.7)

The inverse transform is

f(x) = xs�

~

f (8.8)
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The transform

As an example take

f(x) = e

x=a

(8.9)

then

s =

1

a

e

x=a

) x = a ln(as) (8.10)

Therefore

~

f(s) = as ln(as)� as (8.11)

and indeed

~

f

0

= x(s). We see that the domain of f(x) i.e the whole real line R is di�erent

from the domain of

~

f(s) whih is R
+

.

8.3 Hamilton’s equations

We now apply the Legendre transform to the lagrangian replaing all _q

a

's by momenta.

We write the transformed funtion

H(q

a

; p

a

; t) =

X

a

p

a

_q

a

� L(q

a

; _q

a

; t) (8.12)

where all _q

a

are expressed as funtions of p

a

and q

a

. Then

dH = _q

a

dp

a

+ p

a

d _q

a

�

�

�L

�q

a

dq

a

+

�L

� _q

a

d _q

a

+

�L

�t

�

(8.13)

Using the de�nition of p

a

and the EL equations we get

dH = _q

a

dp

a

� _p

a

dq

a

�

�L

�t

dt (8.14)

and therefore we get the Hamilton's equations

_q

a

=

�H

�p

a

; _p

a

= �

�H

�q

a

; �

�L

�t

=

�H

�t

(8.15)

8.4 Examples

8.4.1 A particle in a potential

L =

m _r2

2

� V (r) (8.16)

Then

p = m _r (8.17)

and

H =

p2

2m

+ V (r) (8.18)

Then

_r =
p

m

; _p = �rV (8.19)
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8.4.2 Particle in rotating frame

We reall the lagrangian

L =

m

2

(( _x� !y)

2

+ ( _y + !x)

2

) (8.20)

Therefore

p

x

= m( _x� !y)

p

y

= m( _y + !x)

then

H = _xp

x

+ _yp

y

� L =

m

2

( _x

2

+ _y

2

)�

m!

2

(x

2

+ y

2

)

2

=

p

2

x

+ p

2

y

2m

+ p

x

!y � p

y

!x (8.21)

The HE read

_p

x

= !p

y

_p

y

= �!p

x

therefore

_p

x

= m�x�m! _y = p

y

! = m! _y +m!

2

x

_p

y

= m�y +m! _x = �p

x

! = �m! _x+m!

2

y

i.e. the expressions for the Coriolis and entrifugal fores.

8.4.3 Particle in an electromagnetic field

We start with the lagrangian

L =

m _r2

2

� q(�� _r �A) (8.22)

Then

p = m _r+ qA ) _r =
p� qA

m

(8.23)

and

H = p � _r� L =

(p� qA)

2

2m

+ q� (8.24)

Calulating the momentum HE we get (in omponents)

_p

i

= m _r

i

+ q

_

A

i

=

q(p

j

� qA

j

)�

i

A

j

m

� q�

i

� (8.25)

Hene

m _r

i

= q _r

j

(�

i

A

j

� �

j

A

i

) + q _r

j

�

j

A

i

� q�

i

�� q _r

j

�

j

A

i

� q

_

A

i

(8.26)

what using B

i

= �

ijk

�

j

A

k

and E

i

= ��

i

��

_

A

i

is just the Lorentz fore.
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8.4.4 Relativistic particle in de Sitter space

We start from the lagrangian ( = 1)

L = �m

p

1� e

2H

�

t

v

2

(8.27)

Then the momenta

p

i

=

me

2H

�

t

v

i

p

1� e

2H

�

t

v

2

= onst (8.28)

Therefore

H =

X

i

p

i

v

i

� L =

m

p

1� e

2H

�

t

v

2

=

q

m

2

+ p

2

e

�2H

�

t

(8.29)

The Hamilton equations

_q

i

=

�H

�p

i

=

p

i

e

�2H

�

t

p

m

2

+ p

2

e

�2H

�

t

(8.30)

It an be integrated to give

q

i

= q

i

0

+

p

i

p

2

H

�

�

q

m

2

+ p

2

�

q

m

2

+ p

2

e

�2H

�

t

�

(8.31)

Therefore the range is �nite even after in�nite time. The range of photons (m = 0) is

equal to H

�1

�

.

8.4.5 Relativistic particle in the Radiation Dominated Universe

We start from the lagrangian ( = 1)

L = �m

s

1�

t

t

0

v

2

(8.32)

Then the momenta

p

i

=

m

t

t

0

v

i

q

1�

t

t

0

v

2

= onst (8.33)

Therefore

H =

X

i

p

i

v

i

� L =

m

q

1�

t

t

0

v

2

=

s

m

2

+ p

2

t

0

t

(8.34)

The Hamilton equations

_q

i

=

�H

�p

i

=

p

i

t

0

t

q

m

2

+ p

2

t

0

t

(8.35)

The trajetory of photons (m = 0) is given by ds

2

= 0 { the solution is given by

x(t) = 2

p

tt

0

(8.36)

so the range of photons is in�nite.
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8.5 Conservation laws in the Hamiltonian formalism

We start with the onservation of energy. If H does not depend expliitly on time

dH

dt

=

�H

�q

a

_q

a

+

�H

�p

a

_p

a

+

�H

�t

=

�H

�t

(8.37)

If some oordinate is yli (i.e. H does not depend on this oordinate) then the

orresponding momentum is onserved

_p

a

:=

�H

�q

a

= 0 (8.38)

8.6 Principle of Least Action

For the lagrangian we had the priniple that the ation

S =

Z

t

2

t

1

dtL(q

a

; _q

a

; t) (8.39)

is extremal when the variations Æq

a

vanish at the ends. We now have a similar priniple

S =

Z

t

2

t

1

dt(p

a

_q

a

�H(q

a

; _q

a

; t)) (8.40)

where _q

a

's are funtions of q

a

and p

a

. We have

ÆS =

Z

t

2

t

1

�

Æp

a

_q

a

+ p

a

Æ _q

a

�

�

�H

�p

a

Æp

a

�

�H

�q

a

Æq

a

��

(8.41)

Integrating by parts we get

Z

t

2

t

1

��

_q

a

�

�H

�p

a

Æp

a

�

+

�

� _p

a

�

�H

�q

a

Æq

a

��

+ p

a

Æq

a

j

t

2

t

1

(8.42)

If the variations Æq

a

vanish at the ends we get the Hamilton's equations.

If we impose not only Æq

a

vanishing at the ends but also Æp

a

we an add to H a full

derivative dF (p; q)=dt.

8.7 Adiabatic invariants

It is sometimes possible to �nd a set of invariants of the motion i.e. entities satisfying

fI

i

; Hg = 0 (8.43)

If we introdue them as our oordinates it means that the onjugate variables �

i

are

yli (the oordinates are then ation-angle variables). If the number of suh invariants

is equal to the number of variables we say that the system is integrable. One dimensional
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systems with onserved energy are therefore always integrable , in more dimensions it

is very rare.

Independently of the eqs of motion we an have objets that vary very little when

we hange the hamiltonian. We introdue some parameter �(t) that varies slowly (we

will de�ne what means slowly) and we ask what does not hange to the �rst order in

derivatives of �(t).

If we have a bounded motion with period T that hanges slowly under the hange

of �(t) we an de�ne the hange as slow if

T

d�

dt

� � (8.44)

over a period T . Sine the parameters hange with time the energy is not onserved

(but very little). We an write the hamiltonian as H(q; p;�). Then

dE

dt

=

�H

��

d�

dt

(8.45)

Averaging over one period we an take the

_

� outside of the averaging and we get

dE

dt

=

d�

dt

�H

��

(8.46)

so that we an write

dE

dt

=

d�

dt

1

T

Z

T

0

�H

��

dt (8.47)

Using Hamilton's eqs we get

dt =

dq

�H

�p

(8.48)

so that

dE

dt

=

d�

dt

H

�H

��

�H

�p

dq

H

dq

�H

�p

(8.49)

Now we know from the triple produt formula that

�H

��

�H

�p

= �

�p

��

(8.50)

We therefore get

I

 

�p

�E

dE

dt

+

�p

��

d�

dt

!

dq = 0 (8.51)

Introduing

I =

1

2�

I

X

a

p

a

dq

a

(8.52)
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we �nally get

dI

dt

= 0 (8.53)

We also notie that

�I

�E

=

T

2�

(8.54)

We an also write

I =

1

2�

Z

dp ^ dq (8.55)

For example for the osillator

H =

p

2

2m

+

m!

2

q

2

2

(8.56)

so that for a �xed energy E we have an ellipse with semiaxis

p

2mE and

p

2E=m!

2

so

that the area �ab divided by 2� is equal to

I =

E

!

(8.57)

Einstein notied it during Solvay onferene 1911 that later led to the Bohr-Sommerfeld

quantization rule. It is related to adiabati invariants and the same onerns the equation

E = nℏ! (8.58)

We now apply this to a very slowly varying length of a pendulum. We have

E(t) = I!(t) (8.59)

where I is an adiabati invariant. On the other hand

�

E =

ml

2

2

�

_

�

2

+

mgl

2

�

�

2

(8.60)

where we have taken slowly varying l out of the averaging sign. Averaging gives

�

_

�

2

=

!

2

�

2

0

2

;

�

�

2

=

�

2

0

2

(8.61)

so we have

�

E =

mg

2

l�

2

0

(8.62)

Dividing by ! =

p

g=l we get an adiabati invariant i.e. onstant

l

3=2

�

2

0

= onst) l

3=4

�

0

= onst (8.63)

Therefore when we slowly make the pendulum longer the angle �

0

dereases and the

linear amplitude l�

0

inreases.
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9 Hamiltonian formalism II

9.1 Liouville theorem

Imagine the ow of (q

a

; p

a

) i.e. a tube of lose trajetories (in the phase spae). Its

volume is

V = dq

1

: : : dq

n

dp

1

: : : dp

n

(9.1)

We ask what will be this in�nitesimal volume after time dt. Then

q

a

! ~q

a

= q

a

+

�H

�p

a

dt; p

a

! ~p

a

= p

a

�

�H

�q

a

dt; (9.2)

The jaobian from V to

~

V reads

J =

 

�~q

a

�q

b

�~q

a

�p

b

�~p

a

�q

b

�~p

a

�p

b

!

(9.3)

We now use the formula

exp(Tr lnM) = detM (9.4)

for an arbitrary matrix M with positive eigenvalues. It an be proven using the fat

that any matrix an be brought to the diagonal (or Jordan) form by some (omplex)

matrix A. Indeed, writing

M = 1+ Æ (9.5)

we have (M

0

is in the diagonal or Jordan form)

M

0

= AMA

�1

) Tr lnM = Tr

�

Æ +

1

2

Æ

2

+ : : :

�

= Tr

�

Æ

0

+

1

2

Æ

02

+ : : :

�

=

X

ln �

i

(9.6)

and we see that both sides of the equation (9.4) are equal to the produt of the eigen-

values. In our ase

M = 1+ Æ ) detM = 1 + TrÆ +O(Æ

2

) (9.7)

but

TrÆ =

X

a

 

�

2

H

�q

a

�p

a

�

�

2

H

�p

a

�q

a

!

dt = 0 (9.8)

so that

V =

~

V (9.9)

It says that 'squeezing' the trajetories in q requires 'expanding' them in p { it resembles

quantum unertainty relation but it is very di�erent being purely lassial.
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9.2 Poincaré recurrence theorem

We now prove one of the most striking theorems in lassial mehanis.

We assume that the phase spae is of �nite phase volume (for example of �nite energy

and in �nite spatial volume). We onsider �nite time steps 0; T; 2T; : : :. The theorem

says that for any point P

0

and for any neighborhood D

0

of P

0

in the phase spae there

exists suh n that

D

n

\D

0

6= ; (9.10)

where D

n

is D

0

transformed by H after time nT .

The proof onsists in showing that sine for all n regions D

n

have the same volume

then there must exist suh n

0

and n

00

(di�erent from eah other) for whih

D

n

0

\D

n

00

6= ; (9.11)

sine otherwise the volume of the phase spae would be in�nite. Taking for example

n

0

< n

00

then ating with H bakwards n times (ation of the hamiltonian is reversible)

we get

D

0

\D

n

00

�n

0

6= ; (9.12)

what �nishes the proof.

9.3 Liouville’s equation

For a system of N bodies we an introdue a density (probability) on the phase spae

�(q; p) suh that

Z

�(q; p)dq

1

: : : dq

n

dp

1

: : : dp

n

= N (9.13)

Sine the volume of the phase spae is onstant we get

d�

dt

=

��

�t

+

X

a

�

��

�q

a

_q

a

+

��

�p

a

_p

a

�

= 0 (9.14)

what gives the Liouville equation

��

�t

= �

X

a

�

��

�q

a

�H

�p

a

�

��

�p

a

�H

�q

a

�

= �f�;Hg

PB

(9.15)

We have introdued here the notion of a Poisson Braket de�ned as

ff; gg

PB

:=

X

a

�f

�q

a

�g

�p

a

�

�f

�p

a

�g

�q

a

(9.16)

We will disuss its role in great detail later.

An important role is played by time independent (equilibrium or stationary) densities

for whih

��

�t

= 0. An example of suh stationary distributions is given by

� = �(H(q; p)) (9.17)
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where H does not depend on time. Then indeed

��

�t

=

��

�H

�

�

�H

�q

a

�H

�p

a

+

�H

�p

a

�H

�q

a

�

= 0 (9.18)

The most famous example of suh a distribution is the Boltzmann fator in the

anonial ensemble

�(H(q; p)) = exp

�

�

H(q; p)

kT

�

(9.19)

whih in lassial statistial physis for free partiles is proven to desribe the equilibrium

distribution for a small sytem in ontat with a large reservoir of temperature T (if H.

If H(q; p) desribes free partiles, H =

P

p

2

=(2m), the distribution is alled Maxwell-

Boltzmann distribution.

It is interesting to note that in the ase of a magneti �eld desribed by the vetor

potential A the Boltzmann fator gives

exp

 

�

(p� qA)

2

2mkT

!

= exp

 

�

m _r2

2kT

!

(9.20)

and it is the same distribution in veloities with or without the magneti �eld! This is

the paradox that in lassial physis bodies should not reat to a magneti �eld while

obviously suh a reation exists - this is solved in quantum mehanis where there are

quantized levels (Landau levels) and quantized spin degrees of freedom and the lassial

Boltzmann fator does not desribe the real reation of the bodies to the magneti �eld.

9.4 Classical statistical physics

In lassial statistial physis we are interested in the lassial partition funtion for N

partiles. One distinguishes di�erent ensembles: miroanonial, anonial and maro-

anonial.

9.4.1 Microcanonical ensemble

The miroanonial ensemble is desribed by the number of partiles N , volume of the

phase spae (assuming that it is �nite) and �nite energy U (within a small interval �U).

The number of 'states' in lassial physis is formally in�nite so to make it well de�ned

we need to appeal to quantum physis where there is a heuristi rule that a new state

is possible when �q�p di�ers by h (the Plank onstant). Using this heuristi rule we

alulate the number of states in an interval �U around

Z

N

(V; U;�U) = �U

Z

d

3N

pd

3N

q

N !h

3N

Æ(U � T

N

� V

N

) (9.21)

1=N ! is the Gibbs fator, yet another fator that an be justi�ed only in quantum physis

(indistinguishability of idential partiles). Z

N

(V; U) is then the number of states around

U in the interval �U .
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Aording to the famous Boltzmann formula logarithm of the number of states, i.e.

logarithm of Z

N

, is equal to the entropy (modulo a onstant)

S = k logW (9.22)

This formula is on Boltzmann's grave in Vienna { it required an inredible ingenuity

of Boltzmann to write it down in 1875, 25 years before the Plank's assumption of

quantization of photon emissions and absorptions.

It an be justi�ed by the formula (also given by Boltzmann in 1866)

S = �

X

P lnP (9.23)

and using equal (maximal) probability P = 1=Z

N

for all states (

P

P = 1).

In the following we put the Boltzmann's onstant k equal to 1 (it an always be

reinstated if need arises). Knowing S(U; V;N) we an reover all thermodynamial

funtions in this ensemble by (we keep N �xed)

dS =

1

T

dU +

p

T

dV (9.24)

i.e.

1

T

=

�

�S

�U

�

V

;

p

T

=

�

�S

�V

�

U

(9.25)

They are de�nitions of 1=T and p=T . If we have two subsystems with

dS

1

= �

1

dU

1

; dS

2

= �

2

dU

2

; (9.26)

then in equilibrium the total system should have maximal entropy under a hange of U

1

and U

2

:

d(S

1

+ S

2

) = 0 when dU

1

= �dU

2

(9.27)

what gives �

1

= �

2

and we identify it with the inverse temperature.

As an example let us disuss free non-relativisti partiles. Then

Z

N

(V; U;�U) =

�UV

N




(3N�1)

N !h

3N

Z

dp p

3N�1

Æ

 

U �

p

2

2m

!

(9.28)

where 


(3N�1)

is the volume of 3N � 1-dimensional unit sphere




(3N�1)

= 2

�

3N=2

�(3N=2)

(9.29)

and Æ(f(x)) =

P

Æ(x� x

i

)=jf

0

(x

i

)j where x

i

are zeroes of f(x). Hene

Z

N

(V; U;�U) =

V

N




(3N�1)

N !h

3N

(2mU)

3N=2

(9.30)
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and (using ln(N !) = N ln(N) �N +

1

2

ln(2�N) +O(1=N))

S = NC +N ln(V=N) +

3N

2

ln(U=N) + onst (9.31)

We see that without the N ! fator in the denominator S would not be proportional to

N but there would be logarithmi orretions to S=N growing like lnN . The result is

the so alled Sakur-Tetrode equation.

Hene

1

T

=

3N

2U

;

p

T

=

N

V

(9.32)

9.4.2 Canonical ensemble

In the anonial ensemble we do not assume that the energy is onstant but that the

system is in ontat with a very large system of temperature T . The large system has a

number of states exp(S(E

0

)) and if we extrat energy E to the small system the number

of states is equal to

e

S(E

0

�E)

� e

S(E

0

)�

�S

�E

0

E+:::

� e

S(E

0

)�E=T

(9.33)

where we applied the de�nition of the temperature to the large system. Therefore we

see that a probability of a given state of energy E of the small system is given by

P = e

�(F�E)

(9.34)

the famous Gibbs-Boltzmann fator, where � = 1=T and F is a normalizing fator. Sum

of probabilities must be equal to 1 so

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��H(p;q)

(9.35)

where 1=N ! is again the Gibbs fator. We know that the entropy S is given by

S = �

X

P lnP = �

X

�(F �E)e

�(F�E)

= ��F + �U (9.36)

Hene

F = U � TS (9.37)

and it an be identi�ed with the free energy.

Therefore

p = �

�

�F

�V

�

T

S = �

�

�F

�T

�

V

(9.38)
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As a �rst example we onsider again free non-relativisti partiles. Then

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��p

2

=(2m)

(9.39)

We have

e

��F (V;T )

=

V

N




(3N�1)

N !h

3N

Z

p

3N�1

e

��p

2

=(2m)

dp (9.40)

The integral is straightforward and we get

e

��F (V;T )

=

V

N




(3N�1)

N !h

3N

(2m)

3N=2

�(3N=2)

�

3N=2

(9.41)

Hene

��F = NC

0

+N ln(V=N) �

3N

2

ln(�) (9.42)

and we reover the known formulae.

As a seond example we disuss a gas of photons. If the are losed in a box then the

fore on a wall is given by

F =

2h�v

z

=

2

2L=v

z

=

h�

L

v

z



2

=

1

3

U

L

(9.43)

Hene

pV =

1

3

U ) p =

1

3

� (9.44)

Assuming that nothing depends on the number of photons we substitute

S = �T

m

V; p = �T

N

; ) U = 3�T

n

V (9.45)

Using

dU = TdS � pdV (9.46)

we get

3�nT

n�1

V dT + 3�T

n

dV = �mT

m

V dT + �T

m+1

dV � �T

n

dV (9.47)

Comparing the expressions we get

� = 4�; m = 3; n = 4 (9.48)

so that

U = 3�T

4

V; p = �T

4

; S = 4�T

3

V (9.49)

It turns out (from the Plank blak body distribution) that

� =

�

2

k

4

45

3ℏ3
) U =

�

2

k

4

15

3ℏ3
T

4

V; S =

4�

2

k

3

45

3ℏ3
T

3

V (9.50)

the number of photons is given by

N =

2�(3)k

2

�

2



3ℏ3
T

3

V =

45�(3)

2�

4

S (9.51)
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9.4.3 Grand canonical ensemble

In the lassial setting the we assume that the system is immersed in a bath of tem-

perature T but an also exhange partiles with the reservoir. We denote the energy

assoiated to the exhange of one partile by � and all it the hemial potential �. We

assign a probability for N partiles having energy E

N

as

p

N

(E

N

) = e

�(�N�E

N

)

(9.52)

and the normalizing fator 
 de�ned as

X

1

N !

e

�(
+�N�E

N

)

= 1 (9.53)

We de�ne entropy as

S = �

X

p

i

ln p

i

= �

X

1

N !

�(
+�N�E

N

)e

�(
+�N�E

N

)

= ��
��� < N > +� < E >

(9.54)

and hene


 = U � TS + �N = �pV (9.55)

(we know from thermodynamis that U�TS+pV +�N = 0) Therefore the fundamental

objet in the grand anonial ensemble is

e

��


=

1

X

N=0

1

N !

e

�N

Z

d�

N

e

��E

N

(9.56)

Using the grand anonial ensemble in quantum statistial physis one an derive the

distribution of the number of partiles at a given energy level E

j

:

n

j

=

1

e

E

j

��

� 1

(9.57)

where � is for bosons (Bose-Einstein distribution) and + for fermions (Fermi-Dira

distribution).

The disussion of all three ensembles (miroanonial, anonial and grand anonial)

belongs to the ourse on Statistial Physis and is outside of the sope of letures on

Classial Mehanis where it serves only as an illustration of the Liouville equation.

9.5 Debye theory of specific heat of solids

We will apply the derived distributions for phonons to derive the formula for the spei�

heat of solids (not inluding the eletroni heat apaity).
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9.5.1 classical computation

If we have a 1D string of atoms with harmoni potential and equilibrium distane a we

have

m�x

n

= K(x

n+1

� x

n

) +K(x

n�1

� x

n

) (9.58)

To solve this equation we substitute

x

n

= na+ e

i!t

sin(kna); �

�

a

� k �

�

a

(9.59)

to get

!

2

=

4K

m

sin

2

(ka=2) (9.60)

We write

! = !

m

sin(ka=2); !

m

=

s

4K

m

(9.61)

The group veloity

v

g

=

�!

�k

=

!

m

a

2

os(ka=2) =

Ka

2

m

os(ka=2) = v

g0

os(ka=2) (9.62)

Density of states in 3D (k =

2

a

arsin(!=!=m); there are 2 transverse and 1 longitudinal

polarizations)

g(!)d! =

3V 4�k

2

dk

(2�)

3

=

V !

2

d!

2�

2

v

3

g0

�

1 + !

2

=(3!

2

m

) + : : :

p

1� !

2

=!

2

m

(9.63)

Einstein has used the formula for density for one spei� frequeny g(!) = 3NÆ(!�

!

E

) { it explained the Dulong-Petit law that the heat apaity tends to 3R for large

temperatures but was not very good in explaining low temperature behavior of heat

apaity.

Debye assumed that all frequenies are present and wrote the formula (without any

orretions � !

2

=!

2

m

) to use measured v

g0

) and de�ned !

D

by

3N =

Z

!

D

0

g(!)d! =

Z

!

D

0

3V !

2

d!

2�

2

v

3

g0

=

V !

3

D

2�

2

v

3

g0

(9.64)

hene

!

D

= v

g0

�

6��

2

�

1

3

; � = N=V (9.65)

and

g(!)d! =

9N!

2

d!

!

3

D

(9.66)

If transverse and longitudinal speeds are di�erent one may use the averaging

3

�v

3

=

2

v

3

t

+

1

v

3

l

(9.67)
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Phonons are bosons so that the energy stored in phonons in temperature T is given

by

E =

Z

!

D

0

d!g(!)ℏ!
1

e

ℏ!

kT

� 1

(9.68)

The heat apaity



p

=

�E

�T

=

Z

!

D

0

d!

9Nℏ
2

!

4

!

3

D

kT

2

e

ℏ!

kT

�

e

ℏ!

kT

� 1

�

2

(9.69)

It an be rewritten as



p

= 9Nk

�

T

�

D

�

3

Z

�

D

=T

0

dx

x

4

e

x

(e

x

� 1)

2

(9.70)

where

�

D

=

ℏ!
D

k

(9.71)

For T � �

D

we have



p

! 9Nk

�

T

�

D

�

3

�

4�

4

15

(9.72)

while for T � �

D

we reover the Dulong-Petit law 

p

! 3R.

This formula is in muh better agreement with experimentally measured values than

Einstein's but is not exat either. To have better desription one has to take into aount

the presene of (quantum) harateristi frequenies of a given rystal or dependene

of �

D

on temperature. The Debye temperatures of some of the elements (they derease

with the temperature to math the experimental values!): aluminum 433 K, beryllium

1481 K, opper 347 K, lead 105 K, gold 227 K, diamond 2200 K (in room temperature

1840 K).
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10 Canonical transformations

We disuss here a very important formulation of lassial mehanis that led Paul Dira

to formulate quantum mehanis in a very analogous way.

10.1 Poisson brackets

For any two funtions on the phase spae f(q; p) and g(q; p) we de�ne a Poisson braket

as

ff; gg

P

:=

X

a

�f

�q

a

�g

�p

a

�

�g

�q

a

�f

�p

a

(10.1)

Poisson brakets have features that are analogous to ommutators in the operator

language of QM.

� antisymmetry

ff; gg = �fg; fg (10.2)

� linearity

f�f + �f

0

; gg = �ff; gg + �ff

0

; gg (10.3)

� Jaobi identity

fff; gg; hg + ffh; fg; gg + ffg; hg; fg = 0 (10.4)

It is important to note that in analogy to QM we have

fq

a

; q

b

g = 0; fp

a

; p

b

g = 0; fq

a

; p

b

g = Æ

ab

; (10.5)

Its introdution is motivated by the appearane in the Hamilton's equations

_q

a

= fq

a

; Hg

P

; _p

a

= fp

a

; Hg

P

(10.6)

Therefore also for any funtion f(t; q; p) we have

df

dt

=

�f

�t

+ ff;Hg

P

(10.7)

where we used the Hamilton's eqs.

If we have a funtion I(q; p) that ommutes with H

fI;Hg = 0 ) I = onst (10.8)
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10. Canonial transformations

i.e. it is a onstant of motion. One example is a momentum p



onjugate to a yli

oordinate q



sine then

fp



; Hg = 0 ) p



= onst (10.9)

as expeted.

The PB of two onstants of motion is again a onstant of motion.

ffI

1

; I

2

g; Hg = �ffH; I

1

g; I

2

g � ffI

2

; Hg; I

1

g = 0 (10.10)

10.2 Canonical transformations

We notied earlier that in the lagrangian formulation one an arbitrarily hange oor-

dinates q ! q

0

and the EL eqs were invariant wrt this hange. We now disuss what

possible transformations an be applied to the pair (q

a

; p

a

) that lead again to the Hamil-

ton equations (the previous q ! q

0

onstitute a small subset of these).

The anonial transformations are de�ned as a pair

q

a

! Q

a

(t; q; p); p

a

! P

a

(t; q; p) (10.11)

that has anonial Poisson brakets i.e.

fQ

a

; Q

b

g = 0; fP

a

; P

b

g = 0; fQ

a

; P

b

g = Æ

ab

; (10.12)

If they are satis�ed then the Hamilton's equations have the usual form (with possibly

some new Hamilton's funtion).

To prove it let us introdue the sympleti struture that is present in the Hamilton's

formulation. We introdue a vetor

xT = (q

1

; : : : ; q

n

; p

1

; : : : ; p

n

) (10.13)

that has 2n omponents. We also introdue a 2n� 2n matrix J

J =

 

0 1

�1 0

!

(10.14)

It is ruial that J

2

= �1. Then we an rewrite the Poisson brakets as

ff; gg =

�f

�x

i

J

ij

�g

�x

j

(10.15)

and the Hamilton's eqs as

_x

i

= J

ij

�H

�x

j

(10.16)

Let us now transform x! y(x) where we temporarily assume that the transforma-

tion does not depend expliitly on time. Then the eqs of motion for y read

_y

i

=

�y

i

�x

j

J

jk

�H

�y

l

�y

l

�x

k

= (GJG

T

)

ij

�H

�y

j

(10.17)
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Therefore we reover the Hamilton's equations in the new oordinates if

GJG

T

= J (10.18)

where H is the same but expressed in new oordinates.

Matries satisfying suh a ondition belong to the sympleti group Sp(n) - it is

easy to show that they form a group of dimension n(2n+1) { for example we show that

the inverse element belongs to the group by the following argument (analogous to the

uniqueness of the inverse matrix)

G

�1T

JG

�1

= J ) JG

�1T

JG

�1

= �1) JG

�1T

= �(JG

�1

)

�1

)

) JG

�1

JG

�1T

= �1) G

�1

JG

�1T

= J (10.19)

One should speify over whih �eld one de�nes the group and whether we allow for

only omponent onneted to the identity. In 2 dimensions any matrix of determinant 1

belongs to Sp(1;R) so Sp(1;R) � SL(2;R), in 4 dimensions the algebra sp(2) � so(5).

For a 2� 2 matrix

 

a b

 d

! 

0 1

�1 0

! 

a 

b d

!

=

 

0 1

�1 0

!

(10.20)

gives ad�b = 1 i.e. indeed the determinant should be equal to 1. We an impose further

that both eigenvalues should be positive i.e. allow only for transformations onneted

to the identity.

The Poisson brakets for the new oordinates

ff; gg =

�f

�x

i

J

ij

�g

�x

j

=

�f

�y

i

(GJG

T

)

ij

�g

�y

j

(10.21)

so the requirement of onserving the PBs gives the same ondition.

10.3 Examples of canonical transformations

� exhanging positions and momenta

P

a

= �q

a

; Q

a

= p

a

) G =

 

0 1

�1 0

!

(10.22)

it is obviously anonial

� 'point transformations'

Q

a

= Q

a

(q) (10.23)

Then

G =

 

�Q

a

�q

b

0

�P

a

�q

b

�P

a

�p

b

!

(10.24)
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10. Canonial transformations

The matrix

G =

 

A 0

B C

!

(10.25)

belongs to the sympleti group if

C

T

= A

�1

; BA

�1

= (BA

�1

)

T

(10.26)

� linear transformation

q

a

! �

ab

q

b

; p

a

! �

�1

ba

p

a

(10.27)

with � onstant.

10.4 Harmonic oscillators on a line

We write the hamiltonian for n atoms (we assume that n is odd) bound by harmoni

fores on a irle

H =

X

p

2

i

2m

+

m!

2

0

2

X

i

(x

i+1

� x

i

� d)

2

(10.28)

We now introdue the anonial transformation (x; p)! (q; P )

x

k

= kd+

1

p

n

X

a

e

2�iak=n

q

a

(10.29)

p

k

=

1

p

n

X

a

e

�2�iak=n

P

a

(10.30)

with the inverse transformation

q

a

=

1

p

n

X

a

e

�2�iak=n

(x

k

� kd) (10.31)

P

a

=

1

p

n

X

a

e

2�iak=n

p

k

(10.32)

SIne x

k

are real we have

q

y

0

= q

0

; P

y

0

= P

0

; q

y

a

= q

n�a

; P

y

a

= P

n�a

(10.33)

We hek

fq

a

; P

b

g =

1

n

X

j;l

e

�2�iaj=n

e

2�ibl=n

fx

j

; p

l

g = Æ(a� b) (10.34)

Then

H =

1

2m

X

a

P

a

P

y

a

+

m!

2

2n

X

j

X

a

(1� e

2�ia=n

)e

2�iaj=n

q

a

X

b

(1� e

�2�ib=n

)e

�2�ibj=n

q

y

b

(10.35)
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Therefore we have a diagonalized hamiltonian

H =

1

2m

X

a

P

a

P

y

a

+

m!

2

0

2

X

a

4 sin

2

(�a=n)q

a

q

y

a

(10.36)

that an be written in terms of independent variables as

H =

1

2m

P

2

0

+

(n�1)=2

X

a=1

�

1

m

P

a

P

y

a

+m!

2

0

4 sin

2

(�a=n)q

a

q

y

a

�

(10.37)

where P

0

orresponds to global translations and an be disarded. Dividing into real

and imaginary parts

~q

a

=

1

p

2

�

q

a

+ q

y

a

�

; ~p

a

=

1

p

2

�

P

a

+ P

y

a

�

(10.38)

~r

a

=

i

p

2

�

q

a

� q

y

a

�

; ~s

a

=

i

p

2

�

P

a

� P

y

a

�

(10.39)

we get the redued hamiltonian

H =

(n�1)=2

X

a=1

 

1

2m

(~p

a

~p

a

+ ~s

a

~s

a

) +

m!

2

0

2

4 sin

2

(�a=n)(~q

a

~q

a

+ ~r

a

~r

a

!

(10.40)

10.5 Some identities for partial derivatives

Assume that we have 3-dim manifold with a hypersurfae de�ned by f(x; y; z) = 0

and we would like to derive some identities between the partial derivatives wrt to dif-

ferent pairs of variables (sine only 2 are independent) { they are extensively used in

thermodynamis.

We start with

dx =

�

�x

�y

�

z

dy +

�

�x

�z

�

y

dz

dy =

�

�y

�x

�

z

dx+

�

�y

�z

�

x

dz (10.41)

Plugging dy from the seond equation into the �rst we get

�

�x

�y

�

z

=

1

�

�y

�x

�

z

(10.42)

and the triple produt formula

�

�x

�y

�

z

�

�y

�z

�

x

�

�z

�x

�

y

= �1 (10.43)
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Similarly we an write

dx =

�

�x

�y

�

z

dy +

�

�x

�z

�

y

dz

dx =

�

�x

�y

�

w

dy +

�

�x

�w

�

y

dw (10.44)

Writing

dw =

�

�w

�y

�

z

dy +

�

�w

�z

�

y

dz (10.45)

and plugging into the previous equation we get

�

�x

�y

�

z

=

�

�x

�y

�

w

+

�

�x

�w

�

y

�

�w

�y

�

z

(10.46)

and

�

�x

�z

�

y

=

�

�x

�w

�

y

�

�w

�z

�

y

(10.47)

10.6 Generating functions of canonical transformations

We will now show how to generate the anonial transformations with the use of a gener-

ating funtion. The argument of the funtion an be any pair (q;Q); (q; P ); (p;Q); (p; P )

for de�niteness we hoose q;Q pair.

We hoose a funtion F (q;Q) suh that the equation

p

a

=

�F

�q

a

(10.48)

is invertible i.e. one an get Q = Q(q; p) out of this equation. Then we de�ne

P

a

= �

�F

�Q

a

(10.49)

and we will now show that the pair (Q;P ) satis�es the orret Poisson brakets. To

avoid proliferation of indies we show it for 1 dof. Then

fQ;Pg =

�

�Q

�q

�

p

�

�P

�p

�

q

�

�

�Q

�p

�

q

�

�P

�q

�

p

(10.50)

Now we use the manipulations for the partial derivatives

fQ;Pg =

�

�Q

�q

�

p

�

�P

�Q

�

q

�

�Q

�p

�

q

�

�

�Q

�p

�

q

 

�

�P

�q

�

Q

+

�

�P

�Q

�

q

�

�Q

�q

�

p

!

=

�

�Q

�p

�

q

 

�

2

F

�q�Q

!

=

�

�Q

�p

�

q

�

�p

�Q

�

q

= 1 (10.51)
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The de�nitions for the 3 remaining pairs ((q; P ), (p;Q) and (p; P )) are analogous.

If the anonial transformation depends expliitly on time we have

_

P

a

= fP

a

; Hg+

�P

a

�t

= fP

a

; Hg �

�

2

F

�Q

a

�t

= �

�H

�Q

a

�

�

2

F

�Q

a

�t

(10.52)

so to keep the usual Hamilton's eqs we have to modify the hamiltonian

H ! H

0

= H +

�F

�t

(10.53)

We will use these formulae in the Hamilton-Jaobi equation in the next leture
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11 Hamilton-Jacobi equation

We reall that for the lagrangian we had the priniple that the ation

S =

Z

t

2

t

1

dtL(q

a

; _q

a

; t) (11.1)

is extremal when the variations Æq

a

vanish at the ends. We now have a similar priniple

S =

Z

t

2

t

1

dt(p

a

_q

a

�H(q

a

; _q

a

; t)) (11.2)

where _q

a

's are funtions of q

a

and p

a

. We have

ÆS =

Z

t

2

t

1

dt

�

Æp

a

_q

a

+ p

a

Æ _q

a

�

�

�H

�p

a

Æp

a

�

�H

�q

a

Æq

a

��

(11.3)

Integrating by parts we get

ÆS =

Z

t

2

t

1

dt

��

_q

a

�

�H

�p

a

Æp

a

�

+

�

� _p

a

�

�H

�q

a

Æq

a

��

+ p

a

Æq

a

j

t

2

t

1

(11.4)

If the variations Æq

a

vanish at the ends we get the Hamilton's equations.

If we impose not only Æq

a

vanishing at the ends but also Æp

a

we an add to H a full

derivative dF (p; q)=dt.

11.1 Hamilton-Jacobi equation

We now treat the ation S as a funtion of �nal time t and �nal positions q

a

(t) assuming

initial time t

1

and initial positions q

a

(t

1

) as �xed. We assume that it is possible to �nd

initial veloities _q

a

(t

1

) suh that the �nal positions along the allowed trajetories are

q

a

(t). Then

S(t; q

a

(t)) =

Z

t

t

1

d�L(q

a

(� ); _q

a

(� ); � ) (11.5)

Performing the same steps as before we have

ÆS = p

a

Æq

a

j

t

t

1

(11.6)

Hene

p

a

=

�S

�q

a

(11.7)
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We have

dS

dt

= L (11.8)

but on the other hand we have

dS

dt

=

�S

�t

+

X

a

�S

�q

a

_q

a

=

�S

�t

+

X

a

p

a

_q

a

(11.9)

The LHS is equal to L and therefore

�S

�t

+H

�

q

a

;

�S

�q

a

; t

�

= 0 (11.10)

This is the Hamilton-Jaobi equation. It is the most eÆient tool of �nding onserved

quantities in lassial mehanis as we will see.

We an therefore write the di�erential of S as

dS = �Hdt+

X

p

a

dq

a

(11.11)

what for one partile is equal to the 4-dimensional expression

dS = p

�

dx

�

(11.12)

i.e. the phase di�erential in the quantum mehanial language. We will disuss solving

the mehanial problems by the Hamilton-Jaobi equation later.

11.2 Canonical transformations and the Hamilton-Jacobi
equation

We reall that for a funtion F (q;Q) suh that the equation

p

a

=

�F

�q

a

(11.13)

is invertible i.e. one an get Q = Q(q; p) out of this equation. Then we de�ne

P

a

= �

�F

�Q

a

(11.14)

and we have shown that the pair (Q;P ) satis�es the orret Poisson brakets. To keep

the usual Hamilton's eqs we have to modify the hamiltonian

H ! H

0

= H +

�F

�t

(11.15)

It an also be seen from the fat that the two expressions an di�er by a full di�erential

�P

a

dQ

a

+H

0

dt� (�p

a

dq

a

+Hdt) = dF (11.16)
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We now use this formula to arrive at the HJ equation again to explain the role of

onstants. If we hoose F to be equal to the HJ funtion S then

H +

�S

�t

= 0) H

0

= 0 (11.17)

Therefore we know that Q

a

and P

a

have to be onstant. Then expressing S as a funtion

of positions and onstants of integration (identi�ed with Q

a

)

S = S(t; q

a

; �

a

) (11.18)

we know that also

�S

��

a

= �

a

(11.19)

are onstant. Therefore we have the solution given by 2s+ 1 onstants as it should be.

11.3 Jacobi (Maupertuis) principle

If the energy E in a given system is onserved we an write

S = �Et+

X

a

p

a

dq

a

= �Et+ S

0

(11.20)

We an now formulate the priniple of least ation in the form

ÆS

0

= 0 (11.21)

where the variations are along suh trajetories that keep the energy E onstant. One

usually applies this proniple to �nd the trajetories and not their dependene on time.

Therefore we �nd dt as a funtion of positions q

a

and di�erentials dq

a

and plug it to S

0

.

We illustrate the proedure by applying it to the usual lagrangian with generalized

kineti term:

L =

1

2

X

a;b

M

ab

_q

a

_q

b

� U(q) (11.22)

The momenta are given by

p

a

=

X

b

M

ab

_q

b

(11.23)

and the energy

E =

1

2

X

a;b

M

ab

_q

a

_q

b

+ U(q) (11.24)

Hene

dt =

s

P

a;b

M

ab

dq

a

dq

b

2(E � U)

(11.25)

so that

S

0

=

Z

s

2(E � U)

X

a;b

M

ab

dq

a

dq

b

(11.26)
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11. Hamilton-Jaobi equation

For one partile we get

Æ

Z

q

2m(E � U)dl = 0 (11.27)

In QM it is analogous to the Fermat priniple in optis sine

p =

h

�

) Æ

Z

dl

�

= 0 (11.28)

i.e. the number of rests or troughs along a trajetory should by extremal.

11.4 Derivation of the Hamilton-Jacobi equation from
quantum mechanics

It is very instrutive to 'derive' lassial mehanis from quantum mehanis (of ourse

the historial path was reverse as is till today the order of teahing...).

We start with the non-relativisti Shr�odinger equation for a partile in the salar

potential U

iℏ
� 

�t

= �

ℏ
2

2m

� + U (11.29)

what omes from an operator analogy for the equality

E =

p

2

2m

+ U (11.30)

when we identify

p = �iℏr (11.31)

and

 = e

�iEt=ℏ
 

E

(11.32)

We now write

 = Re

iS=ℏ
(11.33)

where both R and S are real. The real part of the SE reads

�

�S

�t

=

1

2m

(rS)

2

+ U �

ℏ
2

2m

�R

R

(11.34)

and the momentum

p = rS +O(ℏ) (11.35)

and negleting ℏ orretions we reover the Hamilton-Jaobi equation. The full equation

is used in the pilot wave (de Broglie-Bohm) interpretation of quantum mehanis as the

lassial trajetory with 'quantum potential' (i.e. the last part) added.

The imaginary part reads

1

R

�R

�t

= �

1

mR

rRrS �

1

2m

�S )

�R

2

�t

= �

1

m

r(R

2

rS) (11.36)

Hene the probability

R

R

2

d

3

x is onserved in time.
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12 Hamilton-Jacobi equation II

12.1 Solving HJ equation

We now disuss the equivalene of HJ equations to the lagrangian or hamiltonian for-

mulations.

H +

�S

�t

= 0) H

0

= 0 (12.1)

We know that with a trivial hamiltonian both Q

a

and P

a

have to be onstant. Then

expressing S as a funtion of positions and onstants of integration (identi�ed with Q

a

)

S = S(t; q

a

; �

a

) (12.2)

we know that also

�S

��

a

= �

a

; (12.3)

being momenta P

a

, are also onstant. Therefore we have the solution given by 2N + 1

onstants as it should be. It solves the apparent paradox sine S naively depends on

only N + 1 onstants being an equation with �rst order derivatives wrt q

a

only with no

_q

a

s or p

a

s { the derivatives wrt these onstants are also onstant supplying the missing

set.

Let us disuss the method of separation of variables. Let us assume that q

1

and p

1

appear in the hamiltonian only as a ombination �(q

1

; p

1

) (without any dependene on

time). Then we an try

S = S

0

(q

a

; t) + S

1

(q

1

) (12.4)

where a denotes all variables exept q

1

. Then the HJ equation reads

�S

0

�t

+H

�

t; q

a

;

�S

0

�q

a

; �

�

q

1

;

��

�q

1

��

= 0 (12.5)

The solution an be solved only when � is equal to a onstant

�

�

q

1

;

��

�q

1

�

= �

1

(12.6)

and then we are left with the HJ equation with one smaller number of variables

�S

0

�t

+H

�

t; q

a

;

�S

0

�q

a

; �

1

�

= 0 (12.7)
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12. Hamilton-Jaobi equation II

The obvious example is a ylial oordinate { then

S = S

0

(q

a

; t) + �

1

q

1

(12.8)

and the redued HJ equation reads

�S

0

�t

+H

�

t; q

a

;

�S

0

�q

a

; �

1

�

= 0 (12.9)

If H does not depend on time then we have

S = �Et+ S

0

(q

a

) (12.10)

and the HJ equation reads

H

�

q

a

;

�S

0

�q

a

�

= E (12.11)

12.2 Hamilton’s evolution as a canonical transformation

We will now prove that the Hamilton's evolution is also a anonial transformation.

We onsider an in�nitesimal transformation (parametrized by �) whih by assump-

tion is anonial

q

a

! Q

a

= q

a

+ ��

a

(q; p)

p

a

! P

a

= p

a

+ ��

a

(q; p)

(12.12)

We require the transformation to be anonial (to �rst order in �)

GJG

T

= J (12.13)

where

G =

 

Æ

ab

+ �

��

a

�q

b

�

��

a

�p

b

�

��

a

�q

b

Æ

ab

+ �

��

a

�p

b

!

(12.14)

Therefore multiplying

��

a

�q

b

= �

��

a

�p

b

(12.15)

The solution to this is

�

a

=

�R

�p

a

�

b

= �

�R

�q

a

(12.16)

for some R(q; p) whih is alled the generator of the transformation.

If � is a short interval of time then we know that R = H { therefore hamiltonian

generates time translations

If for example R =

P

b

�

b

p

b

then

q

a

! q

a

+ ��

a

; p

a

! p

a

(12.17)
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i.e. momenta generate translations.

Another example is

R(q; p) =

X

a;b

q

a

�

ab

p

b

(12.18)

Then we reover linear point transformations

q

a

! ��

ab

q

a

; p

a

! p

a

� ��

ab

p

b

(12.19)

12.3 Example

We onsider 1-dim harmoni osillator

�S

�t

+

1

2m

�

�S

�x

�

2

+

m!

2

2

x

2

= 0 (12.20)

Sine the energy is onserved we write

S = �Et+ S

0

�

x;

�S

0

�x

�

(12.21)

so that

1

2m

�

�S

0

�x

�

2

+

m!

2

2

x

2

= E (12.22)

Then

S

0

=

Z

dz

p

2mE �m

2

!

2

z

2

=

x

2

p

2mE �m

2

!

2

x

2

+

E

m

artan

�

m!x

p

2mE �m

2

!

2

x

2

�

(12.23)

Our onstant of integration is E so we di�erentiate S over E and equate it to a onstant

�t+

1

!

artan

�

m!x

p

2mE �m

2

!

2

x

2

�

= �t

0

(12.24)

what gives us the trajetory of the osillator

x(t) =

s

2E

m!

2

os(!(t� t

0

)) (12.25)

12.4 Relativistic Hamilton-Jacobi equation

The relativisti analog of the HJ equation in the presene of gravity reads

g

��

�S

�x

�

�S

�x

�

= �m

2



4

(12.26)

We will illustrate this equation by the example of the Shwarzshild metri. We reall

the ation for a partile in the Shwarzshild metri (for � = �=2)

S = �m

2

Z

dt

v

u

u

t

1�

r

s

r

�

_r

2



2

(1�

r

s

r

)

�

r

2

_

�

2



2

(12.27)
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12. Hamilton-Jaobi equation II

where the Shwarzshild radius

r

s

=

2GM



2

(12.28)

We alulate the momenta

p

r

=

m _r

(1� r

s

=r)

r

1�

r

s

r

�

_r

2



2

(1�

r

s

r

)

�

r

2

_

�

2



2

p

�

=

mr

2

_

�

r

1�

r

s

r

�

_r

2



2

(1�

r

s

r

)

�

r

2

_

�

2



2

= J (12.29)

Then the energy

E =

X

i

_q

i

p

i

� L =

m

2

(1� r

s

=r)

r

1�

r

g

r

�

_r

2



2

(1�

r

s

r

)

�

r

2

_

�

2



2

(12.30)

We make the assignments

�S

�t

= �E;

�S

�r

= p

r

;

�S

��

= p

�

(12.31)

and indeed we have

g

��

�S

�x

�

�S

�x

�

= �

E

2

1�

r

s

r

+ (1�

r

s

r

)

2

p

2

r

+



2

p

2

�

r

2

= �m

2



4

(12.32)

For m = 0 we have

�

E

2

1�

r

g

r

+ (1�

r

s

r

)

2

�

�S

�r

�

2

+



2

p

2

�

r

2

= 0 (12.33)

and hene

S = �

Z

dr

s

E

2



2

(1� r

g

=r)

2

�

J

2

r

2

(1� r

g

=r)

�Et+ J� (12.34)

and we an reover the photon trajetory by

�S

�J

= onst = �

0

= ��

Z

dr

1

r

2

q

E

2

J

2



2

�

1�r

s

=r

r

2

= ��

Z

dw

1

q

E

2

J

2



2

�w

2

(1� r

s

w)

(12.35)

We reall the equation for the photon trajetory that we derived earlier

w

00

+w =

3r

s

w

2

2

; w =

1

r

(12.36)

and

w

02

+w

2

� r

s

w

3

=

E

2

J

2



2

(12.37)
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so we reover the expression (12.35).

If we hange the variable

w =

4z + 1=3

r

s

(12.38)

then we have

�� �

0

=

Z

1

dz

p

4z

3

� g

2

z � g

3

; g

2

=

1

12

; g

3

=

2=27 � �

2

r

2

s

16

(12.39)

and the solution is the Weierstrass (ellipti) funtion

z = P(�� �

0

; g

2

; g

3

) (12.40)
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13 Fluid mechanics

13.1 Navier-Stokes equation

Fluid is desribed by several parameters { density, pressure, veloity, temperature et.

We divide the volume into very small domains { in eah domain number of moleules

is large but these parameters an be treated as onstant and the whole distribution as

ontinuous.

We have a onvetive time derivative (moving with the uid)

lim

Æt!0

�(r+ vÆt; t+ Æt)� �(r; t)

Æt

=

��

�t

+ (v � r)� (13.1)

We will write this derivative as

D�

Dt

=

��

�t

+ (v � r)� (13.2)

The ontinuity equation an be written as

��

�t

+r � (�v) = 0 (13.3)

The Navier-Stokes equation reads

�

�

�v

�t

+ (v � r)v

�

= �r(�� �r � v)�rp+ �

�

�v+

1

3

r(r � v)

�

(13.4)

where � (shear) visosity, sometimes written as �� and � volume visosity (often ne-

gleted); � is the external potential. It is an unsolved problem to prove under what

onditions the solutions exist...

For an inompressible uid � = onst we have

r � v = 0 (13.5)

Then the NS equation reads

�v

�t

+ (v � r)v = �

1

�

r��r

p

�

+ ��v (13.6)

If on top � = 0 ('dry water') we have

�v

�t

+ (v � r)v = �r

�

�

�

+

p

�

�

(13.7)
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13. Fluid mehanis

We an write it in a di�erent form using the equality

(v � r)v = Ω� v +

1

2

rv

2

(13.8)

where

Ω = r� v (13.9)

Then

�v

�t

= v �Ω�r

�

�

�

+

1

2

v

2

+

p

�

�

(13.10)

If we have a stationary ow (�v=�t = 0) then multiplying by v we get

v � r

�

�

�

+

1

2

v

2

+

p

�

�

= 0 (13.11)

whih is a Bernoulli equation (the quantity inside the brakets is onstant along the

ow).

13.2 Propagation of sound

We now disuss the propagation of sound in the uid (ompressible, of ourse). We

assume that the uid is at rest and we write

� = �

0

+ Æ�; p = p

0

+ Æp; v = Æv (13.12)

We expand the ontinuity equation to �rst order in perturbations

�Æ�

�t

+ �

0

r � Æv = 0 (13.13)

and we di�erentiate wrt time:

�

2

Æ�

�t

2

+r �

�

�

0

Æv

�t

�

=

Æ

2

�

�t

2

��Æp = 0 (13.14)

We an write this equation as

�

2

Æ�

�t

2

� 

2

0

�Æ� = 0 (13.15)

where



2

0

=

�p

��

�

�

�

�

p=p

0

;�=�

0

(13.16)

For adiabati proesses (ompression for the sound wave is very fast) we have

pV

�

= onst) p = onst�

�

)

�p

��

�

�

�

�

p=p

0

;�=�

0

= �

p

0

�

0

(13.17)

what gives for air (� = 1:4, p = 10

5

Pa, � = 1:3 kg/m

3

)



0

= 330 m=s (13.18)

at T = 0

Æ

C.
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13.3 Viscous fluid

Taking rotation of (13.7) we get

�Ω

�t

+r� (Ω� v) = 0 (13.19)

and in the ase of the visous uid (13.6) it reads

�Ω

�t

+r� (Ω� v) = ��Ω (13.20)

For dimensionless quantities (given by some harateristi length D and veloity U)

we an resale time and lengths (x = D~x; v = U ~v; t = D�=U) to arrive at

�

~Ω

��

+

~

r� (

~Ω� ~v) =
1

R

~

�

~Ω (13.21)

where

R =

UD

�

(13.22)

is the so alled Reynolds number (it is the priniple of aerodynami tunnels). For small

Reynolds numbers the ow is laminar for larger turbulent.

13.4 Poiseuille flow

We have an inompressible uid of visosity � in a pipe of radius R and length l with a

laminar stationary ow. On the side at a radius r we have a fore

F = ��2�rl

dv

dr

(13.23)

It has to be equal to the pressure di�erene inside the dis

F = �r

2

(p

1

� p

2

) (13.24)

Hene

dv

dr

= �

1

2�l

(p

1

� p

2

)r (13.25)

so that

v(r) =

p

1

� p

2

4�l

(R

2

� r

2

) (13.26)

where the onstant of integration was hosen to give v(R) = 0. The total volume per

unit time that ows is given by

dV

dt

=

Z

dr 2�r

p

1

� p

2

4�l

(R

2

� r

2

) =

�(p

1

� p

2

)R

4

8�l

(13.27)

It is important to note the fourth power - if a vein has slightly smaller diameter beause

of for example thrombosis it an result in vastly smaller ow through the blood vessel.
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13.5 Stokes’ law

We now disuss the fore ating on a ball with a laminar stationary ow. We start with

�Ω

�t

+r� (Ω� v) = ��Ω (13.28)

We neglet the LHS (beause of stationarity and the low Reynolds number) and we have

to solve

r� (r� 
) = 0 (13.29)

Far away we have

v

r

= U os �; v

�

= �U sin � ) 
 = 0 (13.30)

where we used rotation in spherial oordinates

(r�A)

�

=

1

r

�

�

�r

(rA

�

)�

�A

r

��

�

(13.31)

We assume the solution as




�

= U

g(r)

r

sin �; 


r

= 


�

= 0 (13.32)

and we alulate the rotation

r� 


r

= 2U

g

r

2

os �; r� 


�

= �U

g

0

r

sin �; 


�

= 0 (13.33)

and again

r� (r� 
)

�

= �

U

r

)(g

00

�

2g

r

) sin � (13.34)

Equating this to 0 we get the solution

g(r) =

C

r

(13.35)

Now we have to �nd veloity. To solve the r � v = 0 we assume

v = r�w (13.36)

and we have to solve

r� (r�w) =

C

r

(13.37)

The solution is

w
�

= U(�C

1

r +

C

2

+

C

3

r

2

) sin � (13.38)

Imposing the onditions at in�nity and on r = R we get

v

r

= U os �(1�

3R

2r

+

R

3

2r

3

); v

�

= �U sin �(1�

3R

4r

�

R

3

4r

3

) (13.39)
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Then we �nd pressure as

rp = �r� (r� v) (13.40)

Hene

p = p

1

�

3

2

UR�

os �

r

2

(13.41)

and the total fore

F

l

= 6��UR (13.42)

It should be ompared with the turbulent ow

F

t

=

C

x

�SU

2

2

(13.43)

Therefore for small Reynolds number R

r

= �2RU=�:

C

x

=

24

R

r

(13.44)

The assumption 


�

= U

g(r)

r

sin � stops to be valid at R

r

� 10 - a better approximation

up to R

r

< 10

4

is

C

x

=

24

R

r

+

3:7

ln(2 + 4R

r

)

(13.45)

At � 3 � 10

5

there is a sudden drop below 0:1 (drag risis). If the sphere is rough the

risis appears earlier and therefore for example golf balls are made in the form of smooth

polyhedrons and not round balls.
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14 Deterministic chaos

14.1 Dissipative terms in the Hamilton’s evolution

Up to now we disussed the equations without dissipative terms in the lagrangian or

hamiltonian formulations.

We will now inlude in the desription phenomenologial method od 'damping the

momentum' i.e.

_p

a

=

�H

�q

a

�R

a

(q; p) (14.1)

with some funtions R

a

desribing the dissipation.

We an alulate the dissipation introdued by these additional terms

dH

dt

=

X

a

�H

�q

a

_q

a

+

�H

�p

a

_p

a

= �

X

a

R

a

(q; p) _q

a

(14.2)

For example for the frition fore proportional to the veloity we have

R

i

= p

i

(14.3)

and the the 'leakage' of energy is equal to

dH

dt

= �

p

2

m

(14.4)

while for the 'aerodynami' drag fore proportional to v

2

we have

R

i

=

C

x

�S

2m

2

pp

i

(14.5)

and the the 'leakage' of energy is equal to

dH

dt

= �

C

x

�S

2

v

3

(14.6)

14.2 Attractors

It may happen that the dynamis fores the trajetories in the phase spae to be 'at-

trated' either to a point (�xed point) or to a higher dimensional hypersurfae. The

domain from whih trajetories are 'attrated' is alled the basin of attration. We give

below an example of suh a behavior with the loop in the phase spae
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The model we onsider is a so alled Van der Pol's equation

m�y + 2m(t) _y +m!

2

y = 0 (14.7)

where

(t) = 

0

 

y

2

(t)

y

2

0

� 1

!

; 

0

> 0 (14.8)

The 'damping term' damps the osillations for large amplitudes but enhanes them for

small ones.

The equation is highly non-linear and does not have analyti solution so we will

analyze it numerially. We �rst introdue dimensionless variables { then the equations

read

_q = p

_p = �q + (�� q

2

)p (14.9)

It orresponds to

H =

1

2

(q

2

+ p

2

); R(q; p) = �(�� q

2

)p (14.10)

There is one parameter � in this equation and the solution depends on the initial

onditions (q

0

; p

0

) and �.

The point (0; 0) is a saddle point but it is unstable. The trajetory 'around q �

p

�'

is stable (a limit yle) but it is not exatly a irle (the bigger � is the more deformed it

is). The question how to determine the shape of the attrator (the ultimate trajetory)

is a global one and annot be answered loally.

We an determine some properties of the attrator by some triks for example we

an use the fat that the attrator returns to its original values in the phase spae after

the whole turn. Therefore if we �nd some full derivative of any quantity then its average

value shoud be zero for the attrator trajetory. We have then for example

< (�� q

2

)p

2

>= 0 (14.11)

For small � the trajetory (as we an hek numerially) is almost a irle. Plugging

q = R os t; p = R sin t (14.12)

we get

�

R

2

2

�

R

4

8

= 0) R = 2

p

� (14.13)

For arbitrary � we ould use the fat that the trajetory is periodi and write

q =

X

q

n

e

in!t

; p =

X

p

n

e

in!t

(14.14)

and get a nonlinear algebrai equation for q

n

and p

n

.
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14.3 Catastrophe theory of Thom - bifurcation of points

If we have a dynamial system given (in the matrix notation)

_x = F (�; x) (14.15)

where � = (�

1

; : : : ; �

k

) are parameters and x is an n-dimensional vetor. If k � 4 then

we have 7 types of possible bifuration points i.e. the points where the harater of the

evolution an hange. For k = 5 we have 11 types and for k > 5 there is an in�nite

number of possible types.

At k � 4 the bifuration points an be desribed by the speial points in polynomials

in 1 (4 types) or 2 variables (3 types). The former are alled uspoidal the latter umbilli.

The uspoidal are given by (F = V

0

)

� fold

V = x

3

+ ax (14.16)

� usp

V = x

4

+ ax

2

+ bx (14.17)

� swallowtail

V = x

5

+ ax

3

+ bx

2

+ x (14.18)

� buttery

V = x

6

+ ax

4

+ bx

3

+ x

2

+ dx (14.19)

The umbili are given by

� hyperboli

V = x

3

+ y

3

+ axy + bx+ y (14.20)

� ellipti

V = x

3

� 3xy

2

+ a(x

2

+ y

2

) + bx+ y (14.21)

� paraboli

V = x

2

y + y

4

+ ax

2

+ by

2

+ x+ dy (14.22)

For k = 5 we have one more uspoidal (wigwam) and 3 more umbili (seond hyperboli,

seond ellipti and symboli).

We analyze below in some detail only a usp.

The bifuration an only happen at points only at points x

0

where F (�; x

0

) = 0.

Suh a point an be stable or unstable. Then the behavior of the system depends on

the matrix of seond derivatives at the point x

0

. If this matrix has one (or more) zero

eigenvalues then suh a point (or urve) is alled a bifuration point. We write the

harateristi polynomial in a slightly di�erent way

V

0

= x

3

� 3ax

2

+ 2b (14.23)
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We have 3 roots of this equation and the bifuration point is when the harater of the

roots hanges from 1 real and 2 omplex to 3 real. If we want to hek when it happens

we write

V

0

= (x� )

2

(x+ 2) (14.24)

and plugging into the original equation we have

a = 

2

; b = 

3

(14.25)

or

a

3

� b

2

= 0 (14.26)

and it is a ondition for a bifuration point.

14.4 Poincaré mapping

To visualize the ow it is onvenient to use the notion of a Poinar�e mapping. We denote

a losed orbit in the phase spae (the attrator) by � and we ask about the behavior of

trajetories losed to it. We introdue the hypersurfae S in some sense 'perpendiular'

to � at some point x

0

on � and we hoose this point to have � = 0. The neighborhood

of x

0

we all S

0

.Then the hypersurfae will be punhed in exatly the same point after

T , 2T and so on where T is the period of the losed orbit. If we go away from the orbit

� the other trajetories ross the hypersurfae at some other time. The mapping

x! �(x) (14.27)

suh that x

0

! x

0

after time T is for all points from S

0

alled the Poinar�e mapping �

S

0

! �(S

0

) = S

1

(14.28)

Then we ask about a sequene

S

0

! S

1

! : : : S

n

(14.29)

It may happen that the sequene disperses or (as we expet for the limit yle) it shrinks

to smaller and smaller neighborhood of x

0

. In order to answer the question whether the

periodi orbit � is stable we ask about the so alled harateristi multipliers of the

linearized map

��

i

�x

k

�

�

�

�

�

x=x

0

(14.30)

if all harateristi multipliers (eigenvalues of this equation) lie stritly inside the unit

irle then the orbit  is stable; if one or more lies outside then the orbit is unstable.
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14.5 Bifurcation of periodic orbits

For periodi orbits there is a qualitatively new feature namely a possibility of period

doubling. We now assume that the ow depends on some parameter �. If we have a

Poinar�e mapping the matrix of �rst derivatives then if for a given � the harateristi

multipliers have all absolute value less than 1 then the orbit is stable. The interesting

thing happens if for some value of � one of the multipliers reahes -1. Then we return

to the previous position in the diretion of this multiplier after 2 turns and the orbit

has twie bigger period (while the other diretions shrink like the matrix of multipliers

squared). Then we onsider the Poinar�e mapping after 2T and not T around the

new '�xed' trajetory with � = 1. It may turn out that hanging � from this new

value around the new trajetory the situation repeats itself { one of the harateristi

multipliers reahes -1 and we have yet another trajetory with the basi period 4T . It

may happen that the phenomenon repeats itself for smaller and smaller hanges of �

and for a �nite � we reah in�nite number of possible periodi orbits.

14.6 Deterministic chaos

We will desribe below suh a possibility for a Poinar�e ow in one dimension on the

most famous example of the logisti equation.

We start with some general remarks. If we measure some real value x

i

; i = 1; : : : ; n at

the onseutive times iT then the preditive power is large if there is a strong orrelation

between x

1

and any later x

i

even for large i. On the other hand if the orreletaion is

weaker and weaker then it is more and more diÆult to predit the value of x

i

for

onseutive i's.

We an introdue a measure of this orrelation by means of the following onstru-

tion. For a sequene of real numbers

(x

1

; : : : ; x

n

) (14.31)

where i denotes the time of measurement iT we assign the disrete Fourier transform

numbers ~x

�

~x

�

:=

1

p

n

X

k

e

�i2�k�=n

; � = 1; : : : ; n (14.32)

so that � orrespond to the disrete frequeny. They are omplex numbers but they

satisfy ~x

�

�

= ~x

n��

. They also have the same norm

X

k

x

2

k

=

X

�

j~x

�

j

2

(14.33)

and there is an inverse transform

x

k

:=

1

p

n

X

�

e

i2�k�=n

(14.34)
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We ask about the orrelation in time namely about the quantity

C

�

=

1

n

X

k

x

k

x

k+�

(14.35)

Plugging the expressions for x

�

k

and x

k+�

and using the fat that ~x

�

�

= ~x

n��

we get

C

�

=

1

n

X

�

j~x

�

j

2

e

�2���=n

=

1

n

X

�

j~x

�

j

2

os(2���=n) (14.36)

The inverse transform gives

j~x

�

j

2

=

1

n

X

�

C

�

os(2���=n) (14.37)

If C

�

goes to 0 for large � then j~x

�

j

2

has a ontinuous spetrum (and vie versa). If on

the ontrary C

�

does not derease at large � then j~x

�

j

2

has sharp peaks around some

frequenies. In the previous ase we expet haoti behavior in the latter a regular one.

14.7 Logistic equation

The logisti equation has one parameter �

x

k+1

= �x

k

(1� x

k

) = F

1

(�; x

k

) (14.38)

where

x

k

2 [0; 1℄; 1 < � � 4 (14.39)

where � � 4 to avoid moving out of the interval [0; 1℄. The �xed point of this transfor-

mation is for

~x =

� � 1

�

(14.40)

Hene � > 1.

The derivative

F

0

1

(~x) = �(1 � 2~x) = 2� � (14.41)

so that if � < 3 then the �xed point is stable sine jF

0

1

j < 1. When �

1

= 3 we have a

period doubling point so we start to analyze the new orbit (F

1

� F

1

)

x

k+1

= �

2

x

k

(1� x

k

)(1� �x

k

(1� x

k

)) = F

2

(�; x

k

) (14.42)

The previous �xed point ~x = (� � 1)=� is unstable for � > 3 but there are new stable

points

~x =

� + 1�

p

(� � 3)(� + 1)

2�

(14.43)

and then the new bifuration point is

F

0

2

(~x) = ��

2

+ 2� + 4 = �1 ) �

2

= 1 +

p

6 � 3:449::: (14.44)
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Going further the new bifuration points turn out to be denser and denser and at the

point (disovered numerially by Feigenbaum in 1975)

�

1

= 3:569945672::: (14.45)

at the ultimate rate

Æ = lim

k!1

�

k

� �

k�1

�

k+1

� �

k

= 4:669201 (14.46)

there is a deterministi haos - one annot predit how the evolution will proeed.
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Mathematical introduction

In the notation used in these letures indies i; j; k : : : will denote 1; 2; 3 i.e spatial

dimensions (Greek indies �; � : : : = 0; 1; 2; 3 will denote 4-dimensional quantities). The

summation over repeated indies will always be impliitly assumed. The derivative with

respet to time will be denoted by a dot and with respet to (artesian) spatial diretions

by

r

i

:=

�

�x

i

� �

i

(14.47)

This operator has well de�ned properties under rotations and transforms tensors into

tensors.

Vetors will be often denoted by boldfae for example r.

We introdue a salar produt of two vetors

A �B := A

i

B

i

(14.48)

with a number as a result and a vetor produt

(A�B)

i

:= "

ijk

A

j

B

k

(14.49)

with a vetor (in 3 dimensions) as a result { "

ijk

is a fully antisymmetri tensor with

�

123

= 1 (in 4 dimensions we hoose the onvention "

0123

= 1).

We have yli identity easy to prove by yliity of "

ijk

A � (B�C) = C � (A�B) = B � (C�A) (14.50)

We will often use the identity

"

ijk

"

ilm

= Æ

jl

Æ

km

� Æ

jm

Æ

kl

(14.51)

Therefore, for example

A� (B�C) = B(A �C)�C(A �B) (14.52)

In ylindrial oordinates

e
�

; e
�

; e
z

; r = �e
�

+ ze
z

(14.53)

we have

_e
�

=

_

�e
�

; _e
�

= �

_

�e
�

; _e
z

= 0 (14.54)

so that the veloity

v = _�e
�

+ � _e
�

+ _ze
z

= _�e
�

+ �

_

�e
�

+ _ze
z

(14.55)

and

v

2

= _�

2

+ �

2

_

�

2

+ _z

2

(14.56)
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The laplaian on a salar funtion f reads

�f =

1

�

�

��

�

�

�f

��

�

+

1

�

2

�

2

f

��

2

+

�

2

f

�z

2

(14.57)

The laplaian on a vetor funtion A reads

�A = e
�

�

�A

�

�

A

�

�

2

�

2

�

2

�A

�

��

�

+e
�

�

�A

�

�

A

�

�

2

+

2

�

2

�A

�

��

�

+e
z

�A

z

(14.58)

In spherial oordinates

e
r

; e
�

; e
�

; r = re
r

(14.59)

we have

_e
r

=

_

�e
�

+

_

� sin �e
�

;

_e
�

= �

_

�e
r

+

_

� os �e
�

_e
�

= �

_

� sin �e
r

�

_

� os �e
�

(14.60)

so that the veloity

v = _re
r

+ r _e
r

= _re
r

+ r

_

�e
�

+ r

_

� sin �e
�

(14.61)

and

v

2

= _r

2

+ r

2

_

�

2

+ r

2

sin

2

�

_

�

2

(14.62)

The laplaian on a salar funtion f reads

�f =

1

r

�

2

(rf)

�r

2

+

1

r

2

sin �

�

��

�

sin �

�f

��

�

+

1

r

2

sin

2

�

�

2

f

��

2

(14.63)

The laplaian on a vetor funtion A reads

�A = e
r

�

�A

r

�

2A

r

r

2

�

2

r

2

sin �

�(A

�

sin �)

��

�

2

r

2

sin �

�A

�

��

�

+e
�

�

�A

�

�

A

�

r

2

sin

2

�

+

2

r

2

�A

r

��

�

2 os �

r

2

sin

2

�

�A

�

��

�

+e
�

�

�A

�

�

A

�

r

2

sin

2

�

+

2

r

2

sin �

�A

r

��

+

2 os �

r

2

sin

2

�

�A

�

��

�

(14.64)

We de�ne the ation S as a funtional

S =

t

f

Z

t

i

L(t; x

A

; _x

A

) dt (14.65)
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so it depends upon the path between t

i

and t

f

.

We want to �nd suh a trajetory that is the extremum of S.

We onsider the atual path x

A

(t). If it is an extremum of S it means that any

deviation from the trajetory does not hange S up to terms linear in the deviation. We

add the deviation

x

A

(t)! x

A

(t) + Æx

A

(t) (14.66)

and we alulate the hange of the ation for the perturbed trajetory (keeping the

initial and �nal times and the end points of the trajetory unhanged)

ÆS = Æ

t

f

Z

t

i

L(t; x

A

; _x

A

) dt =

t

f

Z

t

i

�

�L

�x

A

Æx

A

+

�L

� _x

A

Æ _x

A

�

dt (14.67)

We integrate by parts and we get up to linear terms in Æx

A

ÆS =

t

f

Z

t

i

�

�L

�x

A

�

d

dt

�

�L

� _x

A

��

Æx

A

dt+

�

�L

� _x

A

Æx

A

�

t

f

t

i

(14.68)

Aording to our assumption the endpoints of the trajetory are kept �xed so the last

term vanishes. Sine Æx

A

(t) is arbitrary we onlude that for eah A

d

dt

�

�L

� _x

A

�

�

�L

�x

A

= 0 (14.69)

These equations are alled Euler-Lagrange equations.

We see that adding a full time derivative to L does not hange the equations of

motion so we treat suh lagrangians as equivalent:

L � L+

df

dt

(14.70)
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