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1 Newtonian mechanics

We all learned at s
hool that the essen
e of 
lassi
al me
hani
s is given by 3 laws of

Newton. As I will try to argue during this set of le
tures there are mu
h better ways

of formulating the 
lassi
al dynami
s. Before we start to des
ribe these methods we

formulate the 3 laws

� First law (given by Galileo)

There exist referen
e frames (
alled inertial) in whi
h a body, very distant

from all other bodies, moves along a straight line with 
onstant speed. One

often en
ounters 
ompletely absurd de�nitions using the notion of for
e that is

de�ned in the se
ond law!

� Se
ond law

The notion of for
e F is de�ned as

F :=

dp

dt

(1.1)

where momentum p := mv, m is 'amount of matter' and v is a velo
ity measured

with respe
t to the inertial frame.

1. This de�nition would be rather useless if not for the very fortunate fa
t that

for two most important intera
tions, ele
tromagneti
 and gravitational, we 
an

(approximately) give the expression of the LHS in terms of distan
es between

bodies.

2. the de�nition is valid also in relativisti
 physi
s but the de�nition of momentum


hanges.

3. It is mu
h better physi
ally not to think in terms of for
es but in terms of the


ow of momenta.

� 'a
tion is equal to rea
tion' { the body a
ting on another body with the for
e

F is itself subje
t to the for
e �F from the other body

this law is a trivial appli
ation of the 
onservation of momentum and we will not

use it in the following.
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1. Newtonian me
hani
s

1.1 Definitions

The �rst law says that far away from any other bodies a = 0 hen
e F 6= 0 is a measure

of intera
tions i.e no intera
tions ) for
e = 0. The arrow is only to the right sin
e it

may happen that even in the presen
e of intera
tions the 
ow of momenta is zero (for

example when sitting on a 
hair).

Let us introdu
e some useful de�nitions.

For a system of bodies

P =

X

a

p
a

(1.2)

is a total momentum.

Center of mass de�nition

R :=

P

m

a

r
a

P

m

a

(1.3)

Hen
e

M

_R =

X

m

a

v
a

= P (1.4)

so the movement of the 
enter of mass is uniquely given by the total momentum.

If the system is isolated i.e. P=
onst then the 
enter of mass moves with a 
onstant

velo
ity so its own (CM) referen
e frame is inertial and R = 0 { no internal moves 
an


hange the position of the CM. It is usual to prove at this point that the RHS does not

depend on the internal intera
tions (using F

ab

= �F

ba

but the statement follows from

the 
onservation of momentum and is general.

We introdu
e the notion of angular momentum

J
a

= r
a

� p
a

(1.5)

The total angular momentum is given by

J =

X

a

r
a

�m

a

v
a

=

X

a

(r
a

�R+R)�m

a

(v
a

�V +V)

=

X

a

(r
a

�R)�m

a

(v
a

�V) +R�P (1.6)

so it is given by the sum of CM angular momentum and the 'internal' angular momen-

tum.

Di�erentiating J we get

_J = r� _p = N (1.7)

where we introdu
ed moment of for
e

N := r� F (1.8)

For a system of bodies we have

_J =

X

a

r
a

� F
a

(1.9)
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and the usual argument using the third Newton's law shows that J is 
onserved only

when we have 
entral for
es i.e. r
a

� r
b

is parallel to the for
e between a and b

_J =

X

a

r
a

�

0

�

X

b6=a

F
ab

1

A

=

X

a;b;a<b

(r
a

� F

ab

+ r
b

� F

ba

) =

X

a;b;a<b

(r
a

� r
b

)� F

ab

(1.10)

But the 
onservation of J 
an be proved in mu
h more general situations (by Noether's

theorem to be dis
ussed later) so we will not dis
uss it here.

It is however important to emphasize here the di�eren
e between the 
onservation

of momentum and the 
onservation of angular momentum. The �rst gives as a 
orollary

the impossibility to move 
enter of mass position by means of internal for
es only. The

se
ond does not have as a 
orollary that the angle with respe
t to some inertial frame


annot 
hange using only internal for
es and deformations, as a 
at jumping and rotating


learly shows. We will dis
uss this issue later on.

1.2 Mechanical energy and potential

If the for
es are independently given then

F
a

= m

a

dv
a

dt

(1.11)

and multiplying and summing we get

X

F
a

� v
a

=

d

dt

 

X

m

a

v

2

a

2

!

(1.12)

The sum on RHS is the total kineti
 energy T .

T :=

X

m

a

v

2

a

2

(1.13)

Therefore integrating over time

T

f

� T

i

=

Z

X

F
a

� v
a

dt =

Z

X

F
a

� dr
a

(1.14)

The most important 
lass of for
es are so 
alled potential for
es { when there exists

a fun
tion V (t; r
;

: : :) su
h that

F
a

= �r

a

V (t; r
1

; : : :) (1.15)

If on top V (t; r
1

; : : :) = V (r
1

; : : :) i.e. it does not depend expli
itly on time the for
es

are 
alled 
onservative.

Then

T

f

� T

i

=

Z

X

a

F
a

� dr
a

= �

Z

X

a

r

a

V (r
1

; : : :) � dr
a

= �(V

f

� V

i

) (1.16)
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i.e.

E = T + V = 
onst (1.17)

so the total me
hani
al energy for 
onservative potentials is 
onserved (hen
e the name).

The total kineti
 energy of a system is the sum of the CM kineti
 energy and the

internal kineti
 energy

T =

X

a

m

a

v

2

a

2

=

X

a

m

a

(v
a

�V+V)

2

2

=

X

a

m

a

(v
a

�V)

2

2

+

MV

2

2

(1.18)

1.3 Non-potential forces

There are some for
es that do not have any potential asso
iated with them. The most


ommon is a fri
tion for
e. It is a 
lear example that the se
ond law is useless if we don't

know the for
e as a fun
tion of positions and velo
ities. The fri
tion for
e has several

approximate des
riptions

� it is proportional to the normal for
e pressing the body to the surfa
e with the so


alled 
oeÆ
ient of fri
tion. It is impossible to 
al
ulate it from �rst prin
iples,

depends on many fa
tors, roughness, humidity, history et
. It also depends on

whether the body is at rest or moves (stati
 and kineti
 COF). Polishing the

surfa
es 
an make COF to grow and not to de
rease and so on. Even the very

notion of COF is an approximate des
ription of the a
tual fri
tion for
e be
ause

for larger pressures the fri
tion for
e does not respond linearly!

� it is proportional to some power of velo
ity { usually used for fri
tion in air or

water. Here the situation is better sin
e at least we have Navier-Stokes equations

with the boundary 
ondition that the relative velo
ity on the surfa
e vanishes {

the 
ondition that does not depend sensitively on the roughness of the surfa
e

(although not totally independent, espe
ially at larger speeds).

In any 
ase the for
es that are not of potential type are very phenomenologi
al and mu
h

less interesting for physi
s with vis
osity in 
uids as the only ex
eption. Therefore in

what follows we will assume that the for
es are of potential type and dis
uss 
uids

separately.

1.4 One dimensional motion

In one dimension with a potential independent of time we 
an solve the problem to the

very end by quadratures.

We start with the 
onserved energy

E = T + U(x) =

m _x

2

2

+ U(x) (1.19)
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Assuming that we are des
ribing part of the traje
tory with positive velo
ity we have

dx

dt

=

s

2

m

(E � U(x)) (1.20)

hen
e

t� t

0

=

r

m

2

Z

dx

p

E � U(x)

(1.21)

The motion is possible only for those x for whi
h U(x) 6 E. If there are two x i.e. x

1

(E)

and x

2

(E) for whi
h

U(x

i

) = E (1.22)

and in between U(x) < E then parti
le stops there and (generi
ally) starts to move ba
k

(it os
illates between x

1

and x

2

). The period is equal to

T (E) =

p

2m

x

2

(E)

Z

x

1

(E)

dx

p

E � U(x)

(1.23)

As an example let us 
onsider a pendulum with

E =

ml

2

_

�

2

2

�mgl 
os � (1.24)

Then writing E = �mgl 
os �

0

where �

0

is the maximal angle we get

T = 4

s

l

2g

�

0

Z

0

d�

p


os � � 
os �

0

(1.25)

Using well known formulae we get

T = 4

s

l

4g

�

0

Z

0

d�

q

sin

2

�

0

=2� sin

2

�=2

(1.26)

Introdu
ing sin(�=2) = sin(�

0

=2) sin � we get

T = 4

s

l

g

�=2

Z

0

d�

q

1� sin

2

(�

0

=2) sin

2

�

= 4

s

l

g

�=2

Z

0

d�

q


os

2

� + 
os

2

(�

0

=2) sin

2

�

(1.27)

For small �

0

we get

T = 4

s

l

g

�=2

Z

0

d�(1 +

1

8

�

2

0

sin

2

� + : : :) = 2�

s

l

g

(1 +

1

16

�

2

0

+ : : :) (1.28)

The full result is given by ellipti
 integrals.
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There is a 
lever way of 
al
ulating this integral. We 
onsider the integral

I(a; b) =

�=2

Z

0

d�

q

a

2


os

2

� + b

2

sin

2

�

(1.29)

As we will show below we 
an 
hange a and b into the arithmeti
al mean (a+ b)=2 and

geometri
al one

p

ab, respe
tively, without 
hanging the value of the integral

I(a; b) = I

�

a+ b

2

;

p

ab

�

(1.30)

As it turns out the two means get 
loser to ea
h other extremely qui
kly and 
onverge

to a 
ommon value a

1

. Then we get

I(a; b) =

�=2

Z

0

d�

q

a

2

1


os

2

� + b

2

1

sin

2

�

=

�

2a

1

(1.31)

Proof:

I(a; b) =

�=2

Z

0

d�

q

a

2


os

2

� + b

2

sin

2

�

(1.32)

We 
hange the variable

x = b tan� (1.33)

Then

I(a; b) =

1

Z

0

dx

p

(a

2

+ x

2

)(b

2

+ x

2

)

(1.34)

We now introdu
e

x =

1

2

�

t�

ab

t

�

; dx =

1

2

�

1 +

ab

t

2

�

dt (1.35)

and 
al
ulate

p

x

2

+ ab =

1

2

�

t+

ab

t

�

s

x

2

+

(a+ b)

2

4

=

1

2t

q

(t

2

+ a

2

)(t

2

+ b

2

) (1.36)

Then

1

2

1

Z

0

dx

p

(x

2

+ ab)(x

2

+ (a+ b)

2

=4)

=

1

2

1

Z

0

dt

p

(t

2

+ a

2

)(t

2

+ b

2

)

(1.37)
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2 Lagrangian formalism

2.1 Hamilton’s principle

It was noti
ed in the XIXth 
entury that the 
lassi
al traje
tories 
an be formulated as

variational problems i.e. they are extrema of some fun
tional 
alled a
tion that is itself

an integral over time of some fun
tion of positions and velo
ities 
alled the lagrangian.

This observation led to the most fruitful formalisms in 
lassi
al physi
s and points

dire
tly to the quantum physi
s as we will dis
uss.

We de�ne a lagrangian as a fun
tion of positions x

A

and velo
ities _x

A

where A runs

over some �nite set (for N parti
les it would be A 2 1::3N).

We de�ne the lagrangian as

L(t; x

A

; _x

A

) = T ( _x

A

)� V (t; x

A

) (2.1)

i.e. as a di�eren
e between kineti
 energy and potential energy.

We then assume that all traje
tories that will be 
ompared start at time t

i

at the

same point x

A

i

and end at time t

f

at the same point x

A

f

We de�ne the a
tion S as a fun
tional

S =

t

f

Z

t

i

L(t; x

A

; _x

A

) dt (2.2)

so it depends upon the path between t

i

and t

f

.

Prin
iple of Least A
tion says that the a
tual traje
tory is su
h that it is the ex-

tremum of S.

We 
onsider the a
tual path x

A

(t). If it is an extremum of S it means that any

deviation from the traje
tory does not 
hange S up to terms linear in the deviation. We

add the deviation

x

A

(t)! x

A

(t) + Æx

A

(t) (2.3)

and we 
al
ulate the 
hange of the a
tion for the perturbed traje
tory (keeping the

initial and �nal times and the end points of the traje
tory un
hanged)

ÆS = Æ

t

f

Z

t

i

L(t; x

A

; _x

A

) dt =

t

f

Z

t

i

�

�L

�x

A

Æx

A

+

�L

� _x

A

Æ _x

A

�

dt (2.4)
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2. Lagrangian formalism

We integrate by parts and we get up to linear terms in Æx

A

ÆS =

t

f

Z

t

i

�

�L

�x

A

�

d

dt

�

�L

� _x

A

��

Æx

A

dt+

�

�L

� _x

A

Æx

A

�

t

f

t

i

(2.5)

A

ording to our assumption the endpoints of the traje
tory are kept �xed so the last

term vanishes. Sin
e Æx

A

(t) is arbitrary we 
on
lude that for ea
h A

d

dt

�

�L

� _x

A

�

�

�L

�x

A

= 0 (2.6)

These equations are 
alled Euler-Lagrange equations.

We see that adding a full time derivative to L does not 
hange the equations of

motion so we treat su
h lagrangians as equivalent:

L � L+

df

dt

(2.7)

In the simplest 
ase of one-dimensional parti
le

L =

m _x

2

2

� V (t; x) (2.8)

the EL equations give

m�x = �

dV

dx

(2.9)

i.e. indeed the Newton equation.

For a free parti
le (V = 
onst) we 
an see that su
h a lagrangian is invariant (up to

total derivatives) under Galilean Transformations v! v +V with V = 
onst:

L! L+mv �V +

mV

2

2

= L+

d

dt

 

mr �V +

mV

2

2

t

!

(2.10)

However, the formulation in terms of Euler-Lagrange equations has several important

advantages over the Newton formulation.

First of all it is a variational formulation what points dire
tly to the quantum me-


hani
al origin of these equations as we will dis
uss later.

Se
ond, the equations look the same in all 
oordinate systems while the Newton

equations are written down only in inertial frames (otherwise one has to add �
titious

for
es).

Let us prove the se
ond feature

We 
hange the 
oordinates x

A

into y

A

(with number of y equal to the number of xs)

assuming this 
hange to everywhere invertible. We have

_x

A

=

�x

A

�y

B

_y

B

+

�x

A

�t

(2.11)
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K.A. Meissner

Then

�L

�y

B

=

�L

�x

A

�x

A

�y

B

+

�L

� _x

A

 

�

2

x

A

�y

B

�y

C

_y

C

+

�

2

x

A

�y

B

�t

!

(2.12)

and

�L

� _y

B

=

�L

� _x

A

� _x

A

� _y

B

(2.13)

Now we use the fa
t that

� _x

A

� _y

B

=

�x

A

�y

B

what 
an be seen from (2.11). Therefore the EL

equations read in the new 
oordinates

d

dt

�

�L

� _y

B

�

�

�L

�y

B

=

�

d

dt

�

�L

� _x

A

�

�

�L

�x

A

�

�x

A

�y

B

(2.14)

so they are equivalent to the original ones (assuming invertibility of the 
hange).

2.2 Mechanical similarity and virial theorem

Assume that the potential (independent of time) has a property that

U(�r
1

; �r
2

; : : :) = �

k

U(r
1

; r
2

; : : :) (2.15)

We substitute simultaneous 
hange of time

r
i

! �r
i

; t! �t (2.16)

and require that the kineti
 energy has the same fa
tor in front as the potential i.e.

�

2

�

2

= �

k

) � = �

1�k=2

(2.17)

Then the whole lagrangian is just multiplied by �

k

i.e. all the EOM will be the same

(with res
aled time and positions).

As an example let us quote the Coulomb potential U = �
=r Then

k = �1) � = �

3

2

(2.18)

Hen
e we re
over Kepler's third law

�

T

0

T

�

2

=

�

R

0

R

�

3

(2.19)

Now we turn to another appli
ation { so 
alled virial theorem.

Consider a bounded system of parti
les. The kineti
 energy is a quadrati
 form

of velo
ities so (even for non-diagonal 
ase from the Euler theorem on homogeneous

fun
tions))

X

a

�T

�v
a

= 2T (2.20)
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2. Lagrangian formalism

Introdu
ing momenta

p
a

:=

�T

�v
a

(2.21)

we 
an write

2T =

X

a

p
a

� v
a

=

d

dt

 

X

a

p
a

� r
a

!

�

X

a

r
a

� _p
a

(2.22)

Let us take the average over time of this equality. The average of a full derivative tends

to zero with growing time sin
e

�

f := lim

�!1

1

�

Z

�

0

f(t)dt (2.23)

On the RHS we repla
e _p
a

by derivatives of the potential and we get

2T =

X

a

r
a

�U

�r
a

(2.24)

Using again our assumption on U we get the virial theorem

2T = kU (2.25)

So that in terms of the total energy

T =

k

k + 2

E; U =

2

k + 2

E (2.26)

The most famous example is the Coulomb potential where k = �1 and (with E negative)

T = �E; U = 2E (2.27)

Extra
ting energy from the system (for example by radiation) gives more negative E

so T grows { that's one of the reasons why the Sun gets hotter over time (the main

one being a very sensitive dependen
e of the nu
lear rea
tions in the Sun's 
ore on the

parameters of the 
ore).
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3 Examples

3.1 2-dim case in polar coordinates

We have

L =

1

2

m( _r

2

+ r

2

_

�

2

)� U(r; �) (3.1)

EL eqs. read

m�r = mr

_

�

2

�

�U

�r

d

dt

(mr

2

_

�) = �

�U

��

(3.2)

The �rst equation in
ludes the 
entrifugal for
e and the se
ond is (in 3-dim notation)

�J

�t

= N (3.3)

sin
e

�rU = �

�U

�r

e
r

�

1

r

�U

��

e
�

(3.4)

and

r� (�rU) = �

�U

��

e
r

� e
�

(3.5)

with

J = mr

2

_

�e
r

� e
�

(3.6)

3.2 Reduced mass

If we have two bodies without any external intera
tions we 
an write

L =

m

1

_r2
1

2

+

m

2

_r2
2

2

� U(jr
1

� r
2

j) (3.7)

We know that without external intera
tion the CM moves with 
onstant velo
ity. There-

fore we 
hoose CM system

m

1

r
1

+m

2

r
2

= 0 (3.8)

and then we introdu
e

r := r
1

� r
2

(3.9)
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3. Examples

Solving these two equations we have

r
1

=

m

2

m

1

+m

2

r; r
2

= �

m

1

m

1

+m

2

r; (3.10)

Plugging these expressions ba
k into the lagrangian we get

L =

� _r2

2

� U(r) (3.11)

where the redu
ed mass �

� =

m

1

m

2

m

1

+m

2

(3.12)

So the problem of two bodies boils down to the problem of one body with redu
ed mass.

3.3 Rotating reference frame

We have a free parti
le in 2 dimensions

L =

m

2

( _x

2

+ _y

2

) (3.13)

Introdu
ing

x = x

0


os!t+ y

0

sin!t; y = �x

0

sin!t+ y

0


os!t; (3.14)

we have

L =

m

2

�

( _x

0

� !y

0

)

2

+ ( _y

0

+ !x

0

)

2

�

(3.15)

The EOM read

�x

0

� 2! _y

0

� !

2

x

0

= 0

�y

0

+ 2! _x

0

� !

2

y

0

= 0 (3.16)

where we re
ognize the 
entrifugal for
e ! � (! � r) and the Coriolis for
e 2! � _r.

3.4 Kepler orbits

We dis
uss a test body moving in the most important potential in 3 dimensions

U(r) = �

GM

r

(3.17)

Let us re
all the beautiful solution of the problem of orbits given by Lapla
e. We noti
e

that the angular momentum J is 
onserved so the orbit has to lie in a plane perpendi
ular

to J. Introdu
ing polar 
oordinates in this plane we have

r = re
r

) v = _re
r

+ r _e
r

(3.18)
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hen
e

J = mr� v = mr

2e
r

� _e
r

(3.19)

We now 
al
ulate the time derivative of v� J

d

dt

(v � J) = _v � J = �

GM

r

2

e
r

� (mr

2e
r

� _e
r

) (3.20)

We see that r

2


an
els out and using

e
r

� (e
r

� _e
r

) = � _e
r

(3.21)

we get

d

dt

(v � J�GMme
r

) = 0 (3.22)

so that

v � J�GMme
r

= GMms (3.23)

where s is a 
onstant ve
tor.

Using this ve
tor we 
an write

J

2

= J � (mr� v) = mr � (v � J) = GMm

2r � (e
r

+ s) = GMm

2

r(1 + � 
os�) (3.24)

where � is an angle between r and s and � is the length of s 
alled the e

entri
ity.

Therefore the orbit is given by

r =

J

2

GMm

2

(1 + � 
os�)

=

p

1 + � 
os�

; p =

J

2

GMm

2

(3.25)

whi
h is an ellipse with the semiaxis (obtained from

p

x

2

+ y

2

+ �x = p) (x(1� �

2

) +

p�)

2

+ y

2

(1� �

2

) = p

2

)

a =

p

1� �

2

; b = a

p

1� �

2

(3.26)

The middle point is a� from the fo
us.

Using

dS

dt

=

1

2

r� v =

J

2m

(3.27)

we get

�ab =

JT

2m

) J

2

T

2

= GMm

2

a(1� �

2

)T

2

= 4m

2

�

2

a

2

a

2

(1� �

2

) (3.28)

hen
e

a

3

=

GM

4�

2

T

2

(3.29)
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3. Examples

3.5 Central potential

We 
onsider a general potential depending only on the distan
e U(r) then

J = r� p (3.30)

is 
onserved. We 
an 
hoose the spheri
al 
oordinate system su
h that z is dire
ted

towards J and then the whole traje
tory has to lie in the � = �=2 plane. We therefore

negle
t from now on the � variable. We 
an write

L =

m

2

( _r

2

+ r

2

_

�

2

)� U(r) (3.31)

The EOM for � reads

mr

2

_

� = 
onst (3.32)

i.e. the 
onservation of J in these spe
ial 
oordinates. We shouldn't solve this equation

for

_

� and plug it ba
k to L! But we 
an use the se
ond 
onserved quantity i.e. energy -

there we 
an do it.

E =

m

2

( _r

2

+ r

2

_

�

2

) + U(r) =

m

2

_r

2

+

J

2

2mr

2

+ U(r) (3.33)

Therefore

_r = �

s

2

m

(E � U(r))�

J

2

m

2

r

2

(3.34)

with the sign depending on the a
tual moment of motion. Therefore

t =

Z

dr

q

2

m

(E � U(r))�

J

2

m

2

r

2

+ 
onst (3.35)

or

� =

Z

Jdr

r

2

q

2m(E � U(r))�

J

2

r

2

+ 
onst (3.36)

3.6 Relativistic rocket

A ro
ket of (variable) mass m throws ba
kwards �m with velo
ity w (�m 6= �dm in

the relativisti
 
ase sin
e it 
osts energy to throw what 
hanges the mass of the ro
ket).

The velo
ity of the ro
ket is v. We have to �nd the dependen
e of the ro
ket mass on v.

We start with 
onservation of momentum and energy

d

0

�

mv

q

1�

v

2




2

1

A

=

u�m

q

1�

u

2




2

d

0

�

m


2

q

1�

v

2




2

1

A

= �

�m


2

q

1�

u

2




2

(3.37)
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where

u =

w � v

1�

vw




2

(3.38)

For nonrelativisti
 ro
ket we would get �m = �dm as we would expe
t.

Therefore

d

0

�

mv

q

1�

v

2




2

1

A

= �ud

0

�

m

q

1�

v

2




2

1

A

(3.39)

Expanding and multiplying by

q

1�

v

2




2

we get

vdm+mdv +

mv

2

dv

(1�

v

2




2

)


2

=

v �w

1�

vw




2

 

dm+

mvdv

(1�

v

2




2

)


2

!

(3.40)

Reorganizing the terms we get a surprisingly simple equation

dm

m

= �

dv

w(1�

v

2




2

)

(3.41)

with a solution

M

m

=

 

1 +

v




1�

v




!




2w

(3.42)

For v=
! 0 we get the well known result

M

m

= e

v

w

(3.43)

while for w = 
 we get

v = 


M

2

�m

2

M

2

+m

2

(3.44)

and for m! 0 we get v ! 
 as 
ould be expe
ted.

3.7 Three body problem

As is well known the three body problem is unsolved analyti
ally - many great physi
ists

tried to �nd a new integral of motion (besides energy and angular momentum) but with

no su

ess. Poin
ar�e analyzing the system had the �rst idea of a 
haos in deterministi


systems. There are spe
ial solutions (like the 8-form solution of Christopher Moore in

1993) but generally we have to resort to numeri
al solutions.There are simple fa
ts that


an be drawn and we would like to point one of them.

We write the lagrangian as

L = T � U (3.45)

where

T =

m

1

v

2

1

2

+

m

2

v

2

2

2

+

m

3

v

2

3

2

(3.46)
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and

U(r
1

; r
2

; r
3

) = �

Gm

1

m

2

jr
1

� r
2

j

�

Gm

1

m

3

jr
1

� r
3

j

�

Gm

2

m

3

jr
2

� r
3

j

(3.47)

The total energy is 
onserved

E = T + V (3.48)

Let us introdu
e (in the CM frame) the obje
t

I =

1

2

X

i

m

i

r

2

i

(3.49)

Di�erentiating twi
e wrt t we get

d

2

I

dt

2

=

X

i

m

i

v

2

i

+

X

i

r
i

� _v
i

(3.50)

Using EOM we 
an rewrite this as

d

2

I

dt

2

= 2T +

X

ij

r
i

�

Gm

i

m

j

r

3

ij

(r
j

� r
i

) (3.51)

where the sum is over i 6= j. Expanding we get

d

2

I

dt

2

= T +E = 2E � U (3.52)

If E < 0 then

�U = T �E � �E (3.53)

Then

inf(r

12

; r

13

; r

23

) � �

G

E

(m

1

m

2

+m

1

m

3

+m

2

m

3

) (3.54)

If E > 0 then

�

I and hen
e I for large times 
an only grow.

I � I

1

+ I

0

1

(t� t

1

) +E(t� t

1

)

2

(3.55)

It has to go to in�nity at large times so the traje
tory has to be open.

3.8 Noether’s theorem

Let us start with the de�nition of the 
onstant of motion G(q

a

; _q

a

; t):

dG

dt

=

X

i

�

�G

�q

a

_q

a

+

�G

� _q

a

�q

a

�

+

�G

�t

= 0 (3.56)

when the EOM 
an be used.

We have two straightforward examples.
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Energy H

H :=

X

a

_q

a

�L

� _q

a

� L (3.57)

if L does not depend expli
itly on t sin
e then

dH

dt

=

X

i

�

d

dt

�L

� _q

a

�

�L

�q

a

�

_q

a

= 0 (3.58)

be
ause of EOM.

If L does not depend on some q

b

(but may depend on _q

b

) for some b then

p

b

:=

�L

� _q

b

(3.59)

is the 
onstant of motion. The proof is straightforward.

The Noether's theorem is a generalization of these 
on
epts.

If we have a one-parameter map

q

a

(t)! Q

a

(s; t); Q

a

(0; t) = q

a

(t) (3.60)

su
h that

�

�s

L(Q

a

(s; t);

_

Q

a

(s; t); t) = 0 (3.61)

we say that this map is a (
ontinuous) symmetry of the theory (if time also 
hanges

under the map the argument has to be slightly generalized).

We have then

0 =

�

�s

L(Q

a

(s; t);

_

Q

a

(s; t); t)

�

�

�

�

s=0

=

 

�L

�q

a

�Q

a

�s

+

�L

� _q

a

�

_

Q

a

�s

!

s=0

=

=

d

dt

�

�L

� _q

a

�Q

a

�s

�

s=0

(3.62)

so that

�

�L

� _q

a

�Q

a

�s

�

s=0

(3.63)

is 
onserved along the traje
tory.

Examples

� if the spatial translations are a symmetry

r
a

! r
a

+ sn (3.64)

then the 
onserved quantity is

X

a

�L

� _r
a

� n =

X

a

p
a

� n = P � n (3.65)

i.e the total momentum in the dire
tion n. If n is arbitrary then the total momen-

tum is 
onserved.
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� if the spatial rotations around the axis n are a symmetry

r
a

! r
a

+ sn� r (3.66)

then the 
onserved quantity is

X

a

�L

� _r
a

� (n� r
a

) =

X

a

p
a

� (n� r
a

) = n � (r
a

� p
a

) = n � J (3.67)

i.e the total angular momentum in the dire
tion n. If n is arbitrary then the total

angular momentum is 
onserved.
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4 Lagrangian formalism with constraints

4.1 Types of constraints

In the previous le
ture we have de�ned lagrangians and dis
ussed their properties. It

is very often the 
ase that the variables are subje
t to 
onstraints and su
h a situation

requires spe
ial treatment.

There are several types of 
onstraints

� holonomi


– equalities (or two-sided 
onstraints)

f

�

(t; x

A

) = 0; � = 1; : : : ; 3N � n (4.1)

or inequalities (one-side 
onstraints)

f

�

(t; x

A

) > 0; � = 1; : : : ; 3N � n (4.2)

.

– depending on time

f

�

(t; x

A

) = 0; � = 1; : : : ; 3N � n (4.3)


alled reonomi
 or

f

�

(x

A

) = 0; � = 1; : : : ; 3N � n (4.4)


alled s
leronomi
 
onstraints

� non holonomi
 - all other like 
onstraints that depend on velo
ities and 
annot be

integrated to ones depending only on positions

We will deal mostly with holonomi
, two-sided, s
leronomi
 
onstraints.

In the presen
e of 
onstraints we de�ne the lagrangian as

L




= L(x

A

; _x

A

; t) +

X

�

�

�

f

�

(x

A

; t) (4.5)

where �

�

are auxiliary additional 
oordinates 
alled Lagrange multipliers.
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4. Lagrangian formalism with 
onstraints

The EL equations wrt � give indeed the 
onstraint equations

�L




��

= f

�

(x

A

; t) = 0 (4.6)

On the other hand the EL equations wrt to x

A

have additional terms:

d

dt

�

�L

� _x

A

�

�

�L

�x

A

= �

�

�f

�

�x

A

(4.7)

The RHS plays the role of additional for
es 
oming from the presen
e of 
onstraints.

If the potential U and f

�

's are independent of time then the energy is 
onserved

dE

dt

=

d

dt

 

X

A

_x

A

�L

� _x

A

� L

!

=

X

A

_q

A

X

�

�

�

�f

�

�q

A

= �

X

�

�

�

�f

�

�t

(4.8)

where we used

df

�

dt

= 0.

4.1.1 2-dim pendulum of length d

L




=

1

2

m( _z

2

+ _x

2

) +mgz + �(z

2

+ x

2

� d

2

) (4.9)

One equation is of 
ourse the 
onstraint equation

z

2

+ x

2

� d

2

= 0 (4.10)

The two other read

m�z �mg = 2�z; m�x = 2�x (4.11)

Substituting

x = d sin �; z = d 
os � (4.12)

we identi
ally satisfy the 
onstraint equation and for the other two we get (after multi-

plying by sin or 
os and adding/subtra
ting)

�md

�

� �mg sin � = 0

�md

_

�

2

�mg 
os � = 2�d (4.13)

The �rst one is the usual equation along the 
onstraints hypersurfa
e, the se
ond one

gives the rea
tion for
e perpendi
ular to 
onstraints hypersurfa
e.

4.2 Reduced lagrangians

It is very useful that if we are not interested in the rea
tion for
es and want to solve

the equations only along the 
onstraints we 
an do so in an 'easy' way (this is the usual

physi
al approa
h while the rea
tion for
es usually have to be 
al
ulated in te
hni
al

appli
ations). Instead of x

A

let us introdu
e new 
oordinates

x

A

! q

a

; f

�

(4.14)
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If the 
onstraints are all independent (at least in the vi
inity of some point in the


on�guration spa
e) one 
an introdu
e n independent variables q

1

; : : : ; q

n

and express

all x

A

in terms of q

i

by solving these 
onstraint equations.

x

A

= x

A

(q

1

; : : : ; q

n

) (4.15)

and plug these solutions to the equations of motion.

As we have proven the EL eqs. are independent of the 
hoi
e of 
oordinates so we


an immediately write

d

dt

�

�L

� _q

a

�

�

�L

�q

a

= �

�

�f

�

�q

a

(4.16)

But in these 
oordinates f

�

are 
oordinates by 
onstru
tion independent of q

a

so the RHS

vanishes. Therefore the lagrangian in terms of q

a


an be 
onsidered as self-
ontained and

the solutions will be automati
ally along the 
onstraints hypersurfa
es (but we 
annot


al
ulate from it the rea
tion from 
onstraints).

4.3 Lagrange points

Imagine two large bodies m

1

and m

2


ir
ulating on a 
ir
ular orbit around ea
h other.

We des
ribe the system in the rotating CM frame i.e.

!

2

=

G(m

1

+m

2

)

d

3

(4.17)

where d is the distan
e between the bodies. The bodies are

r

1

=

d�

m

1

; r

2

=

d�

m

2

(4.18)

from the CM. The equation for !

2


omes from the equality

m

1

!

2

r

1

=

Gm

2

m

1

d

2

(4.19)

Now we add a third very small body m

3

, m

3

� m

1

;m

2

and ask about the points in

spa
e where there is e�e
tively no for
e from the two large bodies. We immediately

see that the small body has to lie in the plane orthogonal to the rotation (otherwise it

would be attra
ted by both large bodies). Introdu
ing the rotating frame with x axis

joining large bodies and y orthogonal to it (but in the plane of rotation) we write the

lagrangian for the small body

L =

m

3

2

�

( _x� !y)

2

+ ( _y + !x)

2

�

+

Gm

1

m

3

r

13

+

Gm

2

m

3

r

23

(4.20)

where

r

13

=

q

(x+ d�=m

1

)

2

+ y

2

; r

23

=

q

(x� d�=m

2

)

2

+ y

2

(4.21)
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We write the EOM

m

3

(�x� ! _y) = m

3

!( _y + !x)�

Gm

1

m

3

(x+ d�=m

1

)

r

3

13

�

Gm

2

m

3

(x� d�=m

2

)

r

3

23

m

3

(�y + ! _x) = �m

3

!( _x� !y) �

Gm

1

m

3

y

r

3

13

�

Gm

2

m

3

y

r

3

23

(4.22)

We are looking for points (x; y) for whi
h and _x = _y = 0 and �x = �y = 0 therefore

0 = !

2

x�

Gm

1

(x+ d�=m

1

)

r

3

13

�

Gm

2

(x� d�=m

2

)

r

3

23

0 = !

2

y �

Gm

1

y

r

3

13

�

Gm

2

y

r

3

23

(4.23)

� If y = 0 the se
ond equation is trivially satis�ed and we are left with

!

2

x =

Gm

1

(x+ d�=m

1

)

jx+ d�=m

1

j

3

+

Gm

2

(x� d�=m

2

)

jx� d�=m

2

j

3

(4.24)

There are 3 solutions to this equation in the intervals x < �d�=m

1

, �d�=m

1

<

x < d�=m

2

and x > d�=m

2

(in ea
h one solution). They are 
alled L

2

, L

1

and L

3

and one 
an show that they are unstable i.e. deviation from these points makes the

a

eleration pointing away from these points. They are used for satellites orbiting

the Sun together with the Earth sin
e being unstable they don't gather 
osmi


dust.

For example if x > x

3

(i.e. on the right of L

3

) we have from the �rst equation

�x > 0 sin
e

!

2

x ";

Gm

1

(x+ d�=m

1

)

r

3

13

#;

Gm

2

(x� d�=m

2

)

r

3

23

# (4.25)

so m

3

is repelled from L

3

.

� if y 6= 0 the se
ond equation gives

!

2

=

Gm

1

r

3

13

+

Gm

2

r

3

23

(4.26)

Multiplying it by x and adding to the �rst equation we get

r

13

= r

23

= d (4.27)

where the last equation 
omes from the equation for !

2

. So we have two points

forming equilateral triangle in the rotation plane. They are 
alled L

4

, and L

5

and one 
an show that they are stable i.e. deviation from these points makes the

a

eleration pointing ba
k to these points. There are Kordylewski 
louds (1961)

around L5 not yet fully 
on�rmed.
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4.4 Orbits in the Schwarzschild metric

we start with the lagrangian in the S
hwarzs
hild metri
 (for � = �=2)

S = �m


2

Z

dt

v

u

u

t

1�

r

g

r

�

_r

2




2

(1�

r

g

r

)

�

r

2

_

�

2




2

(4.28)

where

r

g

=

2GM




2

(4.29)

We 
al
ulate the momenta

p

r

=

m _r

(1� r

r

=r)

r

1�

r

g

r

�

_r

2




2

(1�

r

g

r

)

�

r

2

_

�

2




2

p

�

=

mr

2

_

�

r

1�

r

g

r

�

_r

2




2

(1�

r

g

r

)

�

r

2

_

�

2




2

= J (4.30)

Then the energy

E =

X

i

_q

i

p

i

� L =

m


2

(1� r

g

=r)

r

1�

r

g

r

�

_r

2




2

(1�

r

g

r

)

�

r

2

_

�

2




2

(4.31)

Cal
ulating

_

� from J

_

� =

(1� r

g

=r)J


2

Er

2

(4.32)

we get

E

2

�

 

r

02

1� r

g

=r

+ r

2

!

(1� r

g

=r)J

2




2

r

4

= m

2




4

(1� r

g

=r) (4.33)

Writing

E =

~

E +m


2

(4.34)

we get

�

~

E +

GMm

r

�

2m

J

2

+

~

E

2

J

2




2

+

2GM

r

3




2

=

r

02

+ r

2

r

4

(4.35)

Introdu
ing w = 1=r and di�erentiating we get

GMm

2

J

2

+

3GMw

2




2

= w

00

+w (4.36)

This equation is exa
t and leads to the rotation of the perihelion of planets (for Mer
ury

42' per hundred years).
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onstraints

Without the se
ond term on the LHS we would get the Kepler orbits r = p=(1 +

� 
os�). With the se
ond term (very small) we substitute

w = A+B 
os(��) (4.37)

From the 
lassi
al solution we have

w =

(1 + � 
os(��))

p

; p =

J

2

GMm

2

= a(1 � �

2

) (4.38)

where the large and small axis

a =

p

1� �

2

; b = a

p

1� �

2

(4.39)

Plugging this solution into (4.35) we get the 
oeÆ
ient in front of 
os(��)

1� �

2

=

6GM

p


2

=

3r

S

a(1� �

2

)

; r

S

=

2GM




2

(4.40)

Hen
e

� � 1�

3r

S

2a(1 � �

2

)

(4.41)

so that

Æ =

3�r

S

a(1� �

2

)

(4.42)

For the Mer
ury T = 88 days (100 years � 415 rotations), a = 57:9 mln km, � = 0:206

so it gives Æ � 43:5

00

/100 years.

Using the same formula (4.35) we 
an derive the equation for the traje
tory of light

(m = 0).

~

E

2

J

2




2

+

2GM

r

3




2

=

r

02

+ r

2

r

4

(4.43)

where

~

E = h� and J are measured far away from the Sun. We therefore have an exa
t

equation

w

00

+w =

3r

s

w

2

2

(4.44)

Constant r is possible when

r

ph

=

3

2

r

s

(4.45)

but this traje
tory is unstable: w = 2=(3r

s

) + � sinh�+O(�

2

).

To derive the bending of light formula we start from r

s

= 0 i.e.

w =


os�

r

0

(4.46)

Using this on the RHS we get to the �rst order in r

s

w

00

+w =

3r

s


os

2

(�)

2r

2

0

(4.47)
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with a solution

w =


os�

r

0

+ r

s

=2

+

r

s

2r

2

0

(1 + sin

2

�) (4.48)

so that w = 0 for

� = �(

�

2

+ Æ); Æ =

r

s

r

0

(4.49)

so that the bending is 2r

s

=r

0

. The exa
t solution is given in terms of the Weierstrass

fun
tion that will be dis
ussed later.

We 
an derive the di�eren
e in time (with respe
t to the far-away observer) for the

Earth and for the GPS satellites. We have

dt

0

= dt

v

u

u

t

1�

r

g

r

�

_r

2




2

(1 �

r

g

r

)

�

r

2

_

�

2




2

(4.50)

where r

g

= 8:75 mm. Assuming that we are on the Equator the time runs slower by

r = 6:4 � 10

6

m; T = 86400 s) �t = 60 �s=day (4.51)

For the GPS satellites (making full 
ir
le in 12 hours) the time runs slower by

r = 26:6 � 10

6

m; T = 43200 s) �t = 22 �s=day (4.52)

so the time runs slower on Earth than in satellites by 38 �s/day where 45 �s/day 
omes

from general relativity (satellites are further away from the 
enter of the Earth than the

surfa
e) and -7 �s/day from spe
ial relativity (satellites are faster than the surfa
e of

the Earth)
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5 Oscillations

5.1 Many-body problem

Lagrangian 
an be written in general as

L =

1

2

M

ab

_q

a

_q

b

� U(q) (5.1)

where M is real, positive, symmetri
, 
onstant matrix. We 
an assume that M is di-

agonal. Let us assume that there exists an extremum of U i.e. at some point q

0

all

derivatives of U vanish. So we 
an write in the vi
inity of q

0

q

a

(t) = q

0a

+ �(t) (5.2)

and expand the EOM up to O(�) (in matrix notation)

M �� = �V � ) �� = �M

�1

V � (5.3)

where

V

ab

=

�

2

U

�q

a

�q

b

�

�

�

�

�

q=q

0

(5.4)

We now look for eigenvalues of this equation. Let us �rst prove that they are real. We

assume that for some �

k

we have

��

k

= ��

2

k

�

k

(5.5)

where �

2

k

and �

k


an be a priori real or 
omplex. We rewrite it as

�M

�1

V �

k

= ��

2

k

�

k

(5.6)

so that after we multiply by ��

T

k

we get

��

T

k

V �

k

= �

2

k

��

T

k

M�

k

(5.7)

Sin
e V and M are real symmetri
 matri
es �

2

k

has to be real as well. Therefore all

eigenve
tors 
an also be 
hosen real.

Now we distinguish two situations

� all �

2

k

positive - the system is stable

�(t) =

X

k

A

k

�

k


os(�

k

(t� t

k

)) (5.8)

� one or more �

2

k

is negative - the system is unstable in the dire
tion of the eigen-

ve
tor �

k

.

�(t) = A

k

�

k

(exp(�

k

(t� t

k

)) + exp(��

k

(t� t

k

))) + : : : (5.9)
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5. Os
illations

5.2 Forced oscillations

We dis
uss here the problem of os
illations (with fri
tion) under the external periodi


for
e

�x+ 2
 _x+ !

2

0

x = A 
os!t (5.10)

As always the general solution is given by a sum of a spe
ial solution of the inhomoge-

neous eq. and a general solution of the homogeneous eq. It is more 
onvenient to write

in the 
omplex form

�x+ 2
 _x+ !

2

0

x = Ae

i!t

(5.11)

Substituting

x

s

(t) = Be

i!t

(5.12)

we �nd the spe
ial solution:

B =

A

�!

2

+ !

2

0

+ 2i
!

(5.13)

The real part of the solution solves the original problem i.e.

x

s

(t) =

A

p

(�!

2

+ !

0

)

2

+ 4


2

!

2


os(!t+ Æ) (5.14)

where

tan Æ =

2
!

�!

2

+ !

2

0

(5.15)

5.3 Parametric resonance

Let us dis
uss the problem of solutions of a one-dimensional os
illator with variable

parameters (for example mass or the moment of inertia for the pendulum). We 
an

write

d

dt

(m(t) _x) + k(t)x = 0 (5.16)

If we introdu
e di�erent time variable d� = dt=m(t) we have

d

2

x

d�

2

+mkx = 0 so that we

don't lose generality if we 
onsider

�x+ !

2

(t)x = 0 (5.17)

We assume that !(t) is periodi
 with some period T i.e.

!(t+ T ) = !(t) (5.18)

If we have two independent solutions of (5.17) then the property (5.18) requires that

ea
h x

i

(t + T ) has to be a linear 
ombination of these two solutions. We 
an always

diagonalize this relation and 
hoose these 
ombinations in su
h a way that

x

1

(t+ T ) = �

1

x

1

(t); x

2

(t+ T ) = �

2

x

2

(t) (5.19)
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where now in general �

i

and x

i


an be 
omplex as a result of diagonalization (if they are


omplex then ne
essarily �

?

2

= �

1

sin
e !

2

(t) is assumed to be real). We assume that �

i

are not simultaneously equal to 1. The pro
edure depends on the fa
t that any square

matrix B 
an be diagonalized by PBP

�1

with P possibly 
omplex, the only ex
eption

being when some eigenvalues have multipli
ity > 1 { then it is possible that the resulting

matrix is of Jordan form. Here we assume that two eigenvalues are distin
t (otherwise

they would have to be both equal to 1, see below)

There is a relation between �

1

and �

2


oming from the Wronskian of x

1

and x

2

:

d

dt

( _x

1

x

2

� _x

2

x

1

) = 0) _x

1

x

2

� _x

2

x

1

= 
onst (5.20)

But the LHS for t! t+ T gets multiplied by �

1

�

2

so we get

�

1

�

2

= 1 (5.21)

Therefore

�

i


omplex ) j�

i

j = 1; �

2

= �

?

1

�

i

real ) �

2

=

1

�

1

(5.22)

If �

i

are 
omplex their norm is one so the solutions just rotate after t! t+T . However,

if they are real then one of them (say, �

1

) is bigger than 1. It means that after nT it

gets the fa
tor �

n

1

i.e. it grows exponentially with time - then su
h a phenomenon bears

the name 'parametri
 resonan
e'.

Let us dis
uss this phenomenon in a very well known example known from 
hildhood

- the see-saw. We very well remember that to make the amplitude bigger one has to

make the leg movements with twi
e bigger frequen
y than the proper frequen
y of the

see-saw. Let us substitute

!

2

(t) = !

2

0

(1 + h 
os(2!

0

+ ")t) (5.23)

where h is small and "� !

0

. We substitute two independent solutions in the form

x = a(t) 
os(!

0

+ "=2)t + b(t) sin(!

0

+ "=2)t (5.24)

where a(t and b(t) 
hange slowly in time, mu
h slower than !

0

. Substituting this form

and negle
ting �a,

�

b and 
os(3!

0

t); sin(3!

0

t) we get

�(2 _a + b"+

h!

0

2

b)!

0

sin(!

0

+ "=2)t+ (2

_

b� a"+

h!

0

2

a)!

0


os(!

0

+ "=2)t = 0 (5.25)

The fun
tions in front of both have to be simultaneously equal to 0. We assume that

(a(t); b(t)) � e

st

(A;B) (5.26)
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and look for solution with s > 0 (and there also should be a

ompanying solution with

s < 0). We get

s

2

=

1

4

"

�

h!

0

2

�

2

� "

2

#

(5.27)

And indeed for

�

h!

0

2

< " <

h!

0

2

(5.28)

we have real solutions and in that interval there exists the phenomenon of parametri


resonan
e.

If we in
lude fri
tion we 
an write

�x+ 2
 _x+ !

2

(t)x = 0 (5.29)

We introdu
e

y(t) = e

�
t

x(t) (5.30)

and we get

�y + (!

2

(t)� 


2

)y = 0 (5.31)

We 
an repeat the steps done before while repla
ing !

0

! !




=

q

!

2

0

� 


2

and then we

get

(s� �)

2

=

1

4

"

�

h!




2

�

2

� "

2

#

(5.32)

therefore we have parametri
 resonan
e if

�

s

�

h!




2

�

2

� 4�

2

< " <

s

�

h!




2

�

2

� 4�

2

(5.33)

There is also a possibility of the parametri
 resonan
e if ! = 2!

0

=n but both the

exponent s and the allowed width shrink as h

n

i.e. are then mu
h smaller. We dis
uss

below the 
ase n = 2:

!

2

(t) = !

2

0

(1 + h 
os(!

0

+ ")t) (5.34)

and we substitute (note the shift in x(t)!)

x = a(t) 
os(!

0

+ ")t+ b(t) sin(!

0

+ ")t+ 
(t) (5.35)

Assuming a; b; 
 � exp(st) and negle
ting sin(
os)(2!

0

+ 2�) we get


 = �

ha

2

; �2sa!

0

� 2b!

0

� = 0; �2a!

0

�+ 2sb!

0

�

h

2

!

2

0

2

a = 0 (5.36)

what gives

4s

2

+ 4�

2

+ h

2

!

0

� = 0 (5.37)

Hen
e

s 2 R if �

h

2

!

0

4

6 � 6 0 (5.38)

so that indeed s; � � h

2

.

The same parametri
 resonan
e is responsible for Faraday waves.
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6 Rigid bodies

6.1 Inertia tensor

The kineti
 term for a body rotating with the angular velo
ity !

T =

1

2

X

a

m

a

_r2
a

=

1

2

X

a

m

a

(! � r
a

)

2

=

1

2

!

i

I

ij

!

j

(6.1)

where the inertia tensor is given by

I

ij

=

X

a

m

a

(r

2

a

Æ

ij

� r

i

a

r

j

a

) (6.2)

or for a 
ontinuous distribution

I

ij

=

Z

d

3

r�(r)(r2Æij � rirj) (6.3)

A symmetri
 real matrix 
an alway be diagonalized i.e. there exists an orthogonal


oordinate system in whi
h I is real and diagonal, moreover all eigenvalues are in this


ase non-negative (one 
an 
onsider b

i

I

ij

b

j

what is obviously > 0 for arbitrary ve
tor r

to see this).

The sum of the eigenvalues is given by

Æ

ij

I

ij

= 2

Z

d

3

r�(r)r2 (6.4)

For example we 
an get the eigenvalues for the ball of radius R

3I

1

= 2

Z

d

3

r�r

2

=

8�

5

�R

5

) I

1

=

2

5

MR

2

(6.5)

For a dis
 and the axis perpendi
ular to the disk we have

I

3

= �

Z

rdrd�r

2

=

�R

4

�

2

=

MR

2

2

(6.6)

while for the axis in the plane of the dis


I

1

= I

2

=

MR

2

4

(6.7)

sin
e the sum has to be equal to 2

R

2�rdr�r

2

=MR

2

.
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6. Rigid bodies

If we measure I

0

wrt 
enter of mass then wrt to any other axis there is a simple

formula

I

ij

= I

ij

0

+M(


2

Æ

ij

� 


i




j

) (6.8)

where c is a ve
tor 
onne
ting CM with the new axis.

The angular momentum is given by

J =

X

a

m

a

r
a

� _r
a

=

X

a

m

a

r
a

� (! � r
a

) =

X

a

m

a

(r

2

a

! � (! � r
a

)r
a

) (6.9)

hen
e

J

i

= I

ij

!

j

(6.10)

Hen
e J does not have to 
oin
ide with ! and it leads sometimes to a very 'strange'

motion.

6.2 Euler equations

Using a rotating 
oordinate frame and introdu
ing the prin
ipal axes of the inertia tensor

e
i

in this frame with the eigenvalues I

i

we 
an write

J =

X

i

I

i

!

i

e
i

(6.11)

Di�erentiating it wrt time we get

X

i

I

i

_!

i

e
i

+

X

i

I

i

!

i

(! � e
i

) = N (6.12)

where N is the moment of for
e.

We get in 
omponents

I

j

_!

j

+

X

k

I

i

!

i

!

k

�

ijk

= N

j

(6.13)

i.e.

I

1

_!

1

+ (I

3

� I

2

)!

3

!

2

= N

1

I

2

_!

2

+ (I

1

� I

3

)!

1

!

3

= N

2

I

3

_!

3

+ (I

2

� I

1

)!

2

!

1

= N

3

(6.14)

They are 
alled Euler equations.

6.2.1 Free body

Let us analyze these equations for a free body (N = 0).

If we multiply ea
h of them by the respe
tive !

i

we get the 
onserved energy

I

1

!

2

1

2

+

I

2

!

2

2

2

+

I

3

!

2

3

2

= E = 
onst (6.15)
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If we multiply ea
h of them by the respe
tive I

i

!

i

we get the square of the 
onserved

angular momentum

I

2

1

!

2

1

+ I

2

2

!

2

2

+ I

2

3

!

2

3

= J

2

= 
onst (6.16)

so we have 2 
onserved quantities and only one Euler equation is independent. Analysis

of su
h systems led to the theory of ellipti
 fun
tions in the XIXth 
entury. Let us note

that

2E = J � ! (6.17)

Sin
e both E and J are 
onstant it means that the proje
tion of ! on the dire
tion of J

is 
onstant.

We now 
onsider 3 
ases

� When I

1

= I

2

= I

3

i.e. spheri
al body we have all !

i

= 
onst and ! is in the

dire
tion of J.

� when I

1

= I

2

then !

3

= 
onst and we arrive at the equation for !

1;2

_!

1

� !!

2

= 0; _!

2

+ !!

1

= 0; (6.18)

where

! =

�

1�

I

3

I

1

�

!

3

(6.19)

Therefore

!

1

= !

0

sin!t; !

2

= !

0


os!t (6.20)

so that in the body frame ! pre
esses around e
3

with angular frequen
y ! in

di�erent dire
tions depending on whether I

1

< I

3

or I

1

> I

3

� when all of them are di�erent I

1

< I

2

< I

3

we will dis
uss only the 
ase when only

one of the initial !

i

is large and two other very small.

If !

1

= 
 is large and two other small (Æ

2

and Æ

3

) then negle
ting quadrati
 terms

we get

Æ

2

= A

2

sin �t; Æ

3

= A

3


os �t (6.21)

where

� =

s

(I

2

� I

1

)(I

3

� I

1

)

I

2

I

3


 (6.22)

so it is stable.

The same situation is when !

3

= 
 is large and two other small (Æ

1

and Æ

2

)

Æ

1

= A

1


os �t; Æ

2

= A

2

sin �t (6.23)

where

� =

s

(I

3

� I

2

)(I

3

� I

1

)

I

1

I

2


 (6.24)
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6. Rigid bodies

and

A

2

=

s

I

1

(I

3

� I

1

)

I

2

(I

3

� I

2

)

A

1

(6.25)

so it is also stable.

We 
onsider now the third 
ase when !

2

= 
 is large and two other small (Æ

1

and

Æ

3

). Then

Æ

1

= A

1


osh �t; Æ

3

= A

3

sinh �t (6.26)

where

� =

s

(I

3

� I

2

)(I

2

� I

1

)

I

1

I

3


 (6.27)

and

A

3

= �

s

I

1

(I

2

� I

1

)

I

3

(I

3

� I

2

)

A

1

(6.28)

so it unstable. Numeri
al analysis shows that later the nonlinear terms take over

and �nally the motion is it is periodi
 (with the period given approximately by

T � 1=� the pre
ise value given by an ellipti
 integral) and 'jumps' from 
 to �


while two other are large at the jump.
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7 Rigid bodies part II

7.1 Euler angles

We introdu
e now the des
ription in the spa
e frame X;Y; Z (and not in the body frame

as before). The Euler angles are de�ned as subsequent rotation around z axis by � then

around new x

0

axis by � and then again around the new axis z

00

by  (see the pi
ture).

To unwind the rotation we use the matrix (note the signs of angles, reverse to the

usual ones) wrt the Z axis, then X axis and again Z azis:

R( ; �; �) =

0

B

�


os sin 0

� sin 
os 0

0 0 1

1

C

A

�

0

B

�

1 0 0

0 
os � sin �

0 � sin � 
os �

1

C

A

�

0

B

�


os� sin� 0

� sin� 
os� 0

0 0 1

1

C

A

Multiplying we get

R( ; �; �) =

0

B

�


os 
os�� sin 
os � sin� 
os sin�+ sin 
os � 
os� sin � sin 

� sin 
os�� 
os 
os � sin� � sin sin�+ 
os 
os � 
os� sin � 
os 

sin � sin� � sin � 
os� 
os �

1

C

A

We 
an use this matrix to unwind the body frame unit ve
tors e
1

, e
2

and e
3

to the spa
e

unit ve
tors (e
x

; e
y

; e
z

). Therefore

R( ; �; �)(e
1

; e
2

; e
3

) = I ) (e
1

; e
2

; e
3

) = R( ; �; �)

�1

= R( ; �; �)

T

(7.1)

so we have

e
1

=

0

B

�


os 
os�� sin 
os � sin�


os sin�+ sin 
os � 
os�

sin � sin 

1

C

A

(7.2)

e
2

=

0

B

�

� sin 
os�� 
os 
os � sin�

� sin sin�+ 
os 
os � 
os�

sin � 
os 

1

C

A

(7.3)

e
3

=

0

B

�

sin � sin�

� sin � 
os�


os �

1

C

A

(7.4)

41



7. Rigid bodies part II

Fig. Euler angles

In the body frame we have

! = !

1

e
1

+ !

2

e
2

+ !

3

e
3

(7.5)

To get the expression for !

i

we use the fa
t that

_e
i

= ! � e
i

(7.6)

so that for example

_e
3

= ! � e
3

= �!

1

e
2

+ !

2

e
1

(7.7)

therefore

e
2

� _e
3

= �!

1

; e
1

� _e
3

= !

2

(7.8)

Cal
ulating the above expressions we arrive at

! = (

_

� sin � sin +

_

� 
os )e
1

+ (

_

� sin � 
os �

_

� sin )e
2

+ (

_

 +

_

� 
os �)e
3

(7.9)

We 
an also express J in the spa
e frame (for simpli
ity only in the 
ase I

1

= I

2

)

using the previous expressions for e
1

; e
2

; e
3

. We get

J =

0

B

�

I

3

_

 sin � sin�+ I

1

_

� 
os�+ (I

3

� I

1

)

_

� 
os � sin � sin�

�I

3

_

 sin � 
os�+ I

1

_

� sin�+ (I

1

� I

3

)

_

� sin � 
os � 
os�

I

3

(

_

�+

_

 
os �) + (I

1

� I

3

)

_

� sin

2

�

1

C

A

(7.10)

7.2 Wobbling plate

If we apply the formulae to the wobbling plate with I

1

= I

2

=MR

2

=4 and I

3

=MR

2

=2

we know that the frequen
y (in the body frame) !

3

is 
onstant and that !

1

and !

2

rotate with frequen
y


 =

�

1�

I

3

I

1

�

!

3

(7.11)
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with

!

1

= !

0

sin
t; !

2

= !

0


os 
t (7.12)

We have

!

2

1

+ !

2

2

= !

2

0

(7.13)

but on the other hand it is equal to

!

2

1

+ !

2

2

=

_

�

2

sin

2

� +

_

�

2

(7.14)

If we 
hoose J to lie in the Z axis then

_

� = 0, � = �

0

(we 
an see it from the expression

for J

x


os�+ J

y

sin� = I

1

_

� = 0). Then !

0

=

_

� sin �

0

,

_

� is 
onstant. From

!

1

=

_

� sin �

0

sin = !

0

sin
t (7.15)

hen
e


 =

_

 (7.16)

so

_

 is also 
onstant. Hen
e

!

3

=

_

 +

_

� 
os �

0

= 
+

_

� 
os � = !

3

�

I

3

I

1

!

3

+

_

� 
os �

0

(7.17)

so that

_

� =

I

3

!

3

I

1


os �

0

=

2!

3


os �

0

(7.18)

For small �

0

the plate wobbles with twi
e the frequen
y of rotation.

For the Earth

I

3

� I

1

I

3

�

1

300

(7.19)

so we would expe
t the period of wobbling 300 days. It is a
tually around 430 days with

the ! pre
essing around the North pole with radius about 10 m (but rather irregularly).

7.3 Heavy top

We now 
onsider a symmetri
 top spinning in the gravitational �eld on its tip. The

rotation is 
ounted form the tip so both I

1

and I

2

are bigger by Ml

2

from the usual

inertia 
oeÆ
ients 
al
ulated at CM. Let us write the lagrangian using !

i

but treating

Euler angles as the fundamental variables

L =

1

2

I

1

(!

2

1

+ !

2

2

) +

1

2

I

3

!

2

3

+Mgl(1 � 
os �) (7.20)

We use the expressions for !

i

to get

L =

1

2

I

1

(

_

�

2

sin

2

� +

_

�

2

) +

1

2

I

3

(

_

 +

_

� 
os �)

2

+Mgl(1 � 
os �) (7.21)
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7. Rigid bodies part II

We see that there are 2 
onserved momenta

J

3

=

�L

�

_

 

= I

3

(

_

 +

_

� 
os �) = I

3

!

3

= 
onst (7.22)

and

J

z

=

�L

�

_

�

= I

1

sin

2

�

_

�+ I

3

!

3


os � = 
onst (7.23)

We 
an solve for

_

�

_

� =

J

z

� J

3


os �

I

1

sin

2

�

(7.24)

We also have the 
onserved energy

E =

1

2

I

1

(

_

�

2

sin

2

� +

_

�

2

) +

1

2

I

3

!

2

3

�Mgl(1� 
os �) (7.25)

Let us rewrite this expression using the 
onstants

~

E =

1

2

I

1

_

�

2

+

(J

z

� J

3


os �)

2

2I

1

sin

2

�

�Mgl(1 � 
os �) =

1

2

I

1

_

�

2

+ U

eff

(�) (7.26)

where

~

E = E �

1

2

I

3

!

2

3

.

If J

3

6= J

z

then U

eff

(�)!1 for both � ! 0 and � ! �. Therefore there must be a

minimum in between and � os
illates between some �

1

and �

2

(so 
alled nutation). The

behavior of

_

� (pre
ession) depends on whether the sign of J

z

�J

3


os � 
hanges between

�

1

and �

2

or not.

The question of stability in the verti
al position � = 0 (then J

z

= J

3

) 
an be answered

by expansion in �. First we have


 =

_

� =

J

3

2I

1

(7.27)

and then

U

eff

(�) �

J

2

3

8I

1

�

2

�

Mgl

2

�

2

(7.28)

so that the motion is stable if

!

2

3

>

4I

1

Mgl

I

2

3

(7.29)

7.4 Balancing car wheels

We assume that we want to keep the axis �xed and ask how large momentum of for
e

has to be exerted to arrive at this. We orient the axis of rotation along the z axis. Then

the angular momentum reads

J =

X

a

r
a

� (m

a

v
a

) =

X

a

r
a

� (m

a

! � r
a

) =

X

a

m

a

(!(r

2

a

)� r
a

(! � r
a

)) (7.30)
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what in 
omponents reads

(J

x

; J

y

; J

z

) = (�

X

a

m

a

z

a

x

a

;�

X

a

m

a

z

a

y

a

;

X

a

m

a

(x

2

a

+ y

2

a

)) (7.31)

Assuming that

x

a

= R 
os(!t+ �

a

); y

a

= R sin(!t+ �

a

) (7.32)

we get the moment of for
e needed to keep the axis unmoved

(N

x

; N

y

; N

z

) = (

X

a

m

a

z

a

R! sin(!t+ �

a

);�

X

a

m

a

z

a

R! 
os(!t+ �

a

); 0) (7.33)

Measuring N

x

; N

y

at time t = 0 we get

N

x

=

X

a

m

a

z

a

R! sin(�

a

); N

y

= �

X

a

m

a

z

a

R! 
os(�

a

) (7.34)

To balan
e the wheel i.e. 
an
el the moment of for
e we have to add some mass M at

the point (z; �) (� is de�ned wrt (N

x

; N

y

)) su
h that

�MzR! 
os(�) +N

y

= 0; �MzR! sin(�)�N

x

= 0 (7.35)

so that tan� = �N

x

=N

y

and M =

q

N

2

x

+N

2

y

=(zR!).

45



7. Rigid bodies part II

46



8 Hamiltonian formalism

8.1 Legendre transform and the Hamilton’s equations

For the lagrangian we have the EL equations

d

dt

�

�L

� _q

a

�

�

�L

�q

a

= 0 (8.1)

Now we want to treat symmetri
ally q

a

and _q

a

. We introdu
e momenta

p

a

:=

�L

� _q

a

(8.2)

It would not be 
orre
t to solve these equations and plug them ba
k into the lagrangian.

What we have to do is to make the Legendre transform.

8.2 Legendre transform

If we have a fun
tion f(x) we introdu
e an additional variable s and we 
reate a fun
tion

~

f(s; x) = sx� f(x) (8.3)

Then

d

~

f(s; x) = xds+ sdx�

df

dx

dx (8.4)

The di�erential depends on two variables unless we impose

s =

df

dx

(8.5)

and then we 
an treat

~

f as a fun
tion of only s

d

~

f(s) = x(s)ds (8.6)

where x(s) is a solution of (8.5) and we have

d

~

f

ds

= x(s) (8.7)

The inverse transform is

f(x) = xs�

~

f (8.8)
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The transform

As an example take

f(x) = e

x=a

(8.9)

then

s =

1

a

e

x=a

) x = a ln(as) (8.10)

Therefore

~

f(s) = as ln(as)� as (8.11)

and indeed

~

f

0

= x(s). We see that the domain of f(x) i.e the whole real line R is di�erent

from the domain of

~

f(s) whi
h is R
+

.

8.3 Hamilton’s equations

We now apply the Legendre transform to the lagrangian repla
ing all _q

a

's by momenta.

We write the transformed fun
tion

H(q

a

; p

a

; t) =

X

a

p

a

_q

a

� L(q

a

; _q

a

; t) (8.12)

where all _q

a

are expressed as fun
tions of p

a

and q

a

. Then

dH = _q

a

dp

a

+ p

a

d _q

a

�

�

�L

�q

a

dq

a

+

�L

� _q

a

d _q

a

+

�L

�t

�

(8.13)

Using the de�nition of p

a

and the EL equations we get

dH = _q

a

dp

a

� _p

a

dq

a

�

�L

�t

dt (8.14)

and therefore we get the Hamilton's equations

_q

a

=

�H

�p

a

; _p

a

= �

�H

�q

a

; �

�L

�t

=

�H

�t

(8.15)

8.4 Examples

8.4.1 A particle in a potential

L =

m _r2

2

� V (r) (8.16)

Then

p = m _r (8.17)

and

H =

p2

2m

+ V (r) (8.18)

Then

_r =
p

m

; _p = �rV (8.19)
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8.4.2 Particle in rotating frame

We re
all the lagrangian

L =

m

2

(( _x� !y)

2

+ ( _y + !x)

2

) (8.20)

Therefore

p

x

= m( _x� !y)

p

y

= m( _y + !x)

then

H = _xp

x

+ _yp

y

� L =

m

2

( _x

2

+ _y

2

)�

m!

2

(x

2

+ y

2

)

2

=

p

2

x

+ p

2

y

2m

+ p

x

!y � p

y

!x (8.21)

The HE read

_p

x

= !p

y

_p

y

= �!p

x

therefore

_p

x

= m�x�m! _y = p

y

! = m! _y +m!

2

x

_p

y

= m�y +m! _x = �p

x

! = �m! _x+m!

2

y

i.e. the expressions for the Coriolis and 
entrifugal for
es.

8.4.3 Particle in an electromagnetic field

We start with the lagrangian

L =

m _r2

2

� q(�� _r �A) (8.22)

Then

p = m _r+ qA ) _r =
p� qA

m

(8.23)

and

H = p � _r� L =

(p� qA)

2

2m

+ q� (8.24)

Cal
ulating the momentum HE we get (in 
omponents)

_p

i

= m _r

i

+ q

_

A

i

=

q(p

j

� qA

j

)�

i

A

j

m

� q�

i

� (8.25)

Hen
e

m _r

i

= q _r

j

(�

i

A

j

� �

j

A

i

) + q _r

j

�

j

A

i

� q�

i

�� q _r

j

�

j

A

i

� q

_

A

i

(8.26)

what using B

i

= �

ijk

�

j

A

k

and E

i

= ��

i

��

_

A

i

is just the Lorentz for
e.
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8.4.4 Relativistic particle in de Sitter space

We start from the lagrangian (
 = 1)

L = �m

p

1� e

2H

�

t

v

2

(8.27)

Then the momenta

p

i

=

me

2H

�

t

v

i

p

1� e

2H

�

t

v

2

= 
onst (8.28)

Therefore

H =

X

i

p

i

v

i

� L =

m

p

1� e

2H

�

t

v

2

=

q

m

2

+ p

2

e

�2H

�

t

(8.29)

The Hamilton equations

_q

i

=

�H

�p

i

=

p

i

e

�2H

�

t

p

m

2

+ p

2

e

�2H

�

t

(8.30)

It 
an be integrated to give

q

i

= q

i

0

+

p

i

p

2

H

�

�

q

m

2

+ p

2

�

q

m

2

+ p

2

e

�2H

�

t

�

(8.31)

Therefore the range is �nite even after in�nite time. The range of photons (m = 0) is

equal to H

�1

�

.

8.4.5 Relativistic particle in the Radiation Dominated Universe

We start from the lagrangian (
 = 1)

L = �m

s

1�

t

t

0

v

2

(8.32)

Then the momenta

p

i

=

m

t

t

0

v

i

q

1�

t

t

0

v

2

= 
onst (8.33)

Therefore

H =

X

i

p

i

v

i

� L =

m

q

1�

t

t

0

v

2

=

s

m

2

+ p

2

t

0

t

(8.34)

The Hamilton equations

_q

i

=

�H

�p

i

=

p

i

t

0

t

q

m

2

+ p

2

t

0

t

(8.35)

The traje
tory of photons (m = 0) is given by ds

2

= 0 { the solution is given by

x(t) = 2

p

tt

0

(8.36)

so the range of photons is in�nite.
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8.5 Conservation laws in the Hamiltonian formalism

We start with the 
onservation of energy. If H does not depend expli
itly on time

dH

dt

=

�H

�q

a

_q

a

+

�H

�p

a

_p

a

+

�H

�t

=

�H

�t

(8.37)

If some 
oordinate is 
y
li
 (i.e. H does not depend on this 
oordinate) then the


orresponding momentum is 
onserved

_p

a

:=

�H

�q

a

= 0 (8.38)

8.6 Principle of Least Action

For the lagrangian we had the prin
iple that the a
tion

S =

Z

t

2

t

1

dtL(q

a

; _q

a

; t) (8.39)

is extremal when the variations Æq

a

vanish at the ends. We now have a similar prin
iple

S =

Z

t

2

t

1

dt(p

a

_q

a

�H(q

a

; _q

a

; t)) (8.40)

where _q

a

's are fun
tions of q

a

and p

a

. We have

ÆS =

Z

t

2

t

1

�

Æp

a

_q

a

+ p

a

Æ _q

a

�

�

�H

�p

a

Æp

a

�

�H

�q

a

Æq

a

��

(8.41)

Integrating by parts we get

Z

t

2

t

1

��

_q

a

�

�H

�p

a

Æp

a

�

+

�

� _p

a

�

�H

�q

a

Æq

a

��

+ p

a

Æq

a

j

t

2

t

1

(8.42)

If the variations Æq

a

vanish at the ends we get the Hamilton's equations.

If we impose not only Æq

a

vanishing at the ends but also Æp

a

we 
an add to H a full

derivative dF (p; q)=dt.

8.7 Adiabatic invariants

It is sometimes possible to �nd a set of invariants of the motion i.e. entities satisfying

fI

i

; Hg = 0 (8.43)

If we introdu
e them as our 
oordinates it means that the 
onjugate variables �

i

are


y
li
 (the 
oordinates are then a
tion-angle variables). If the number of su
h invariants

is equal to the number of variables we say that the system is integrable. One dimensional
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systems with 
onserved energy are therefore always integrable , in more dimensions it

is very rare.

Independently of the eqs of motion we 
an have obje
ts that vary very little when

we 
hange the hamiltonian. We introdu
e some parameter �(t) that varies slowly (we

will de�ne what means slowly) and we ask what does not 
hange to the �rst order in

derivatives of �(t).

If we have a bounded motion with period T that 
hanges slowly under the 
hange

of �(t) we 
an de�ne the 
hange as slow if

T

d�

dt

� � (8.44)

over a period T . Sin
e the parameters 
hange with time the energy is not 
onserved

(but very little). We 
an write the hamiltonian as H(q; p;�). Then

dE

dt

=

�H

��

d�

dt

(8.45)

Averaging over one period we 
an take the

_

� outside of the averaging and we get

dE

dt

=

d�

dt

�H

��

(8.46)

so that we 
an write

dE

dt

=

d�

dt

1

T

Z

T

0

�H

��

dt (8.47)

Using Hamilton's eqs we get

dt =

dq

�H

�p

(8.48)

so that

dE

dt

=

d�

dt

H

�H

��

�H

�p

dq

H

dq

�H

�p

(8.49)

Now we know from the triple produ
t formula that

�H

��

�H

�p

= �

�p

��

(8.50)

We therefore get

I

 

�p

�E

dE

dt

+

�p

��

d�

dt

!

dq = 0 (8.51)

Introdu
ing

I =

1

2�

I

X

a

p

a

dq

a

(8.52)
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we �nally get

dI

dt

= 0 (8.53)

We also noti
e that

�I

�E

=

T

2�

(8.54)

We 
an also write

I =

1

2�

Z

dp ^ dq (8.55)

For example for the os
illator

H =

p

2

2m

+

m!

2

q

2

2

(8.56)

so that for a �xed energy E we have an ellipse with semiaxis

p

2mE and

p

2E=m!

2

so

that the area �ab divided by 2� is equal to

I =

E

!

(8.57)

Einstein noti
ed it during Solvay 
onferen
e 1911 that later led to the Bohr-Sommerfeld

quantization rule. It is related to adiabati
 invariants and the same 
on
erns the equation

E = nℏ! (8.58)

We now apply this to a very slowly varying length of a pendulum. We have

E(t) = I!(t) (8.59)

where I is an adiabati
 invariant. On the other hand

�

E =

ml

2

2

�

_

�

2

+

mgl

2

�

�

2

(8.60)

where we have taken slowly varying l out of the averaging sign. Averaging gives

�

_

�

2

=

!

2

�

2

0

2

;

�

�

2

=

�

2

0

2

(8.61)

so we have

�

E =

mg

2

l�

2

0

(8.62)

Dividing by ! =

p

g=l we get an adiabati
 invariant i.e. 
onstant

l

3=2

�

2

0

= 
onst) l

3=4

�

0

= 
onst (8.63)

Therefore when we slowly make the pendulum longer the angle �

0

de
reases and the

linear amplitude l�

0

in
reases.
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9 Hamiltonian formalism II

9.1 Liouville theorem

Imagine the 
ow of (q

a

; p

a

) i.e. a tube of 
lose traje
tories (in the phase spa
e). Its

volume is

V = dq

1

: : : dq

n

dp

1

: : : dp

n

(9.1)

We ask what will be this in�nitesimal volume after time dt. Then

q

a

! ~q

a

= q

a

+

�H

�p

a

dt; p

a

! ~p

a

= p

a

�

�H

�q

a

dt; (9.2)

The ja
obian from V to

~

V reads

J =

 

�~q

a

�q

b

�~q

a

�p

b

�~p

a

�q

b

�~p

a

�p

b

!

(9.3)

We now use the formula

exp(Tr lnM) = detM (9.4)

for an arbitrary matrix M with positive eigenvalues. It 
an be proven using the fa
t

that any matrix 
an be brought to the diagonal (or Jordan) form by some (
omplex)

matrix A. Indeed, writing

M = 1+ Æ (9.5)

we have (M

0

is in the diagonal or Jordan form)

M

0

= AMA

�1

) Tr lnM = Tr

�

Æ +

1

2

Æ

2

+ : : :

�

= Tr

�

Æ

0

+

1

2

Æ

02

+ : : :

�

=

X

ln �

i

(9.6)

and we see that both sides of the equation (9.4) are equal to the produ
t of the eigen-

values. In our 
ase

M = 1+ Æ ) detM = 1 + TrÆ +O(Æ

2

) (9.7)

but

TrÆ =

X

a

 

�

2

H

�q

a

�p

a

�

�

2

H

�p

a

�q

a

!

dt = 0 (9.8)

so that

V =

~

V (9.9)

It says that 'squeezing' the traje
tories in q requires 'expanding' them in p { it resembles

quantum un
ertainty relation but it is very di�erent being purely 
lassi
al.
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9.2 Poincaré recurrence theorem

We now prove one of the most striking theorems in 
lassi
al me
hani
s.

We assume that the phase spa
e is of �nite phase volume (for example of �nite energy

and in �nite spatial volume). We 
onsider �nite time steps 0; T; 2T; : : :. The theorem

says that for any point P

0

and for any neighborhood D

0

of P

0

in the phase spa
e there

exists su
h n that

D

n

\D

0

6= ; (9.10)

where D

n

is D

0

transformed by H after time nT .

The proof 
onsists in showing that sin
e for all n regions D

n

have the same volume

then there must exist su
h n

0

and n

00

(di�erent from ea
h other) for whi
h

D

n

0

\D

n

00

6= ; (9.11)

sin
e otherwise the volume of the phase spa
e would be in�nite. Taking for example

n

0

< n

00

then a
ting with H ba
kwards n times (a
tion of the hamiltonian is reversible)

we get

D

0

\D

n

00

�n

0

6= ; (9.12)

what �nishes the proof.

9.3 Liouville’s equation

For a system of N bodies we 
an introdu
e a density (probability) on the phase spa
e

�(q; p) su
h that

Z

�(q; p)dq

1

: : : dq

n

dp

1

: : : dp

n

= N (9.13)

Sin
e the volume of the phase spa
e is 
onstant we get

d�

dt

=

��

�t

+

X

a

�

��

�q

a

_q

a

+

��

�p

a

_p

a

�

= 0 (9.14)

what gives the Liouville equation

��

�t

= �

X

a

�

��

�q

a

�H

�p

a

�

��

�p

a

�H

�q

a

�

= �f�;Hg

PB

(9.15)

We have introdu
ed here the notion of a Poisson Bra
ket de�ned as

ff; gg

PB

:=

X

a

�f

�q

a

�g

�p

a

�

�f

�p

a

�g

�q

a

(9.16)

We will dis
uss its role in great detail later.

An important role is played by time independent (equilibrium or stationary) densities

for whi
h

��

�t

= 0. An example of su
h stationary distributions is given by

� = �(H(q; p)) (9.17)
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where H does not depend on time. Then indeed

��

�t

=

��

�H

�

�

�H

�q

a

�H

�p

a

+

�H

�p

a

�H

�q

a

�

= 0 (9.18)

The most famous example of su
h a distribution is the Boltzmann fa
tor in the


anoni
al ensemble

�(H(q; p)) = exp

�

�

H(q; p)

kT

�

(9.19)

whi
h in 
lassi
al statisti
al physi
s for free parti
les is proven to des
ribe the equilibrium

distribution for a small sytem in 
onta
t with a large reservoir of temperature T (if H.

If H(q; p) des
ribes free parti
les, H =

P

p

2

=(2m), the distribution is 
alled Maxwell-

Boltzmann distribution.

It is interesting to note that in the 
ase of a magneti
 �eld des
ribed by the ve
tor

potential A the Boltzmann fa
tor gives

exp

 

�

(p� qA)

2

2mkT

!

= exp

 

�

m _r2

2kT

!

(9.20)

and it is the same distribution in velo
ities with or without the magneti
 �eld! This is

the paradox that in 
lassi
al physi
s bodies should not rea
t to a magneti
 �eld while

obviously su
h a rea
tion exists - this is solved in quantum me
hani
s where there are

quantized levels (Landau levels) and quantized spin degrees of freedom and the 
lassi
al

Boltzmann fa
tor does not des
ribe the real rea
tion of the bodies to the magneti
 �eld.

9.4 Classical statistical physics

In 
lassi
al statisti
al physi
s we are interested in the 
lassi
al partition fun
tion for N

parti
les. One distinguishes di�erent ensembles: mi
ro
anoni
al, 
anoni
al and ma
ro-


anoni
al.

9.4.1 Microcanonical ensemble

The mi
ro
anoni
al ensemble is des
ribed by the number of parti
les N , volume of the

phase spa
e (assuming that it is �nite) and �nite energy U (within a small interval �U).

The number of 'states' in 
lassi
al physi
s is formally in�nite so to make it well de�ned

we need to appeal to quantum physi
s where there is a heuristi
 rule that a new state

is possible when �q�p di�ers by h (the Plan
k 
onstant). Using this heuristi
 rule we


al
ulate the number of states in an interval �U around

Z

N

(V; U;�U) = �U

Z

d

3N

pd

3N

q

N !h

3N

Æ(U � T

N

� V

N

) (9.21)

1=N ! is the Gibbs fa
tor, yet another fa
tor that 
an be justi�ed only in quantum physi
s

(indistinguishability of identi
al parti
les). Z

N

(V; U) is then the number of states around

U in the interval �U .
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A

ording to the famous Boltzmann formula logarithm of the number of states, i.e.

logarithm of Z

N

, is equal to the entropy (modulo a 
onstant)

S = k logW (9.22)

This formula is on Boltzmann's grave in Vienna { it required an in
redible ingenuity

of Boltzmann to write it down in 1875, 25 years before the Plan
k's assumption of

quantization of photon emissions and absorptions.

It 
an be justi�ed by the formula (also given by Boltzmann in 1866)

S = �

X

P lnP (9.23)

and using equal (maximal) probability P = 1=Z

N

for all states (

P

P = 1).

In the following we put the Boltzmann's 
onstant k equal to 1 (it 
an always be

reinstated if need arises). Knowing S(U; V;N) we 
an re
over all thermodynami
al

fun
tions in this ensemble by (we keep N �xed)

dS =

1

T

dU +

p

T

dV (9.24)

i.e.

1

T

=

�

�S

�U

�

V

;

p

T

=

�

�S

�V

�

U

(9.25)

They are de�nitions of 1=T and p=T . If we have two subsystems with

dS

1

= �

1

dU

1

; dS

2

= �

2

dU

2

; (9.26)

then in equilibrium the total system should have maximal entropy under a 
hange of U

1

and U

2

:

d(S

1

+ S

2

) = 0 when dU

1

= �dU

2

(9.27)

what gives �

1

= �

2

and we identify it with the inverse temperature.

As an example let us dis
uss free non-relativisti
 parti
les. Then

Z

N

(V; U;�U) =

�UV

N




(3N�1)

N !h

3N

Z

dp p

3N�1

Æ

 

U �

p

2

2m

!

(9.28)

where 


(3N�1)

is the volume of 3N � 1-dimensional unit sphere




(3N�1)

= 2

�

3N=2

�(3N=2)

(9.29)

and Æ(f(x)) =

P

Æ(x� x

i

)=jf

0

(x

i

)j where x

i

are zeroes of f(x). Hen
e

Z

N

(V; U;�U) =

V

N




(3N�1)

N !h

3N

(2mU)

3N=2

(9.30)
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and (using ln(N !) = N ln(N) �N +

1

2

ln(2�N) +O(1=N))

S = NC +N ln(V=N) +

3N

2

ln(U=N) + 
onst (9.31)

We see that without the N ! fa
tor in the denominator S would not be proportional to

N but there would be logarithmi
 
orre
tions to S=N growing like lnN . The result is

the so 
alled Sa
kur-Tetrode equation.

Hen
e

1

T

=

3N

2U

;

p

T

=

N

V

(9.32)

9.4.2 Canonical ensemble

In the 
anoni
al ensemble we do not assume that the energy is 
onstant but that the

system is in 
onta
t with a very large system of temperature T . The large system has a

number of states exp(S(E

0

)) and if we extra
t energy E to the small system the number

of states is equal to

e

S(E

0

�E)

� e

S(E

0

)�

�S

�E

0

E+:::

� e

S(E

0

)�E=T

(9.33)

where we applied the de�nition of the temperature to the large system. Therefore we

see that a probability of a given state of energy E of the small system is given by

P = e

�(F�E)

(9.34)

the famous Gibbs-Boltzmann fa
tor, where � = 1=T and F is a normalizing fa
tor. Sum

of probabilities must be equal to 1 so

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��H(p;q)

(9.35)

where 1=N ! is again the Gibbs fa
tor. We know that the entropy S is given by

S = �

X

P lnP = �

X

�(F �E)e

�(F�E)

= ��F + �U (9.36)

Hen
e

F = U � TS (9.37)

and it 
an be identi�ed with the free energy.

Therefore

p = �

�

�F

�V

�

T

S = �

�

�F

�T

�

V

(9.38)
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As a �rst example we 
onsider again free non-relativisti
 parti
les. Then

e

��F (V;T )

=

Z

d

3N

pd

3N

q

N !h

3N

e

��p

2

=(2m)

(9.39)

We have

e

��F (V;T )

=

V

N




(3N�1)

N !h

3N

Z

p

3N�1

e

��p

2

=(2m)

dp (9.40)

The integral is straightforward and we get

e

��F (V;T )

=

V

N




(3N�1)

N !h

3N

(2m)

3N=2

�(3N=2)

�

3N=2

(9.41)

Hen
e

��F = NC

0

+N ln(V=N) �

3N

2

ln(�) (9.42)

and we re
over the known formulae.

As a se
ond example we dis
uss a gas of photons. If the are 
losed in a box then the

for
e on a wall is given by

F =

2h�v

z

=


2

2L=v

z

=

h�

L

v

z




2

=

1

3

U

L

(9.43)

Hen
e

pV =

1

3

U ) p =

1

3

� (9.44)

Assuming that nothing depends on the number of photons we substitute

S = �T

m

V; p = �T

N

; ) U = 3�T

n

V (9.45)

Using

dU = TdS � pdV (9.46)

we get

3�nT

n�1

V dT + 3�T

n

dV = �mT

m

V dT + �T

m+1

dV � �T

n

dV (9.47)

Comparing the expressions we get

� = 4�; m = 3; n = 4 (9.48)

so that

U = 3�T

4

V; p = �T

4

; S = 4�T

3

V (9.49)

It turns out (from the Plan
k bla
k body distribution) that

� =

�

2

k

4

45


3ℏ3
) U =

�

2

k

4

15


3ℏ3
T

4

V; S =

4�

2

k

3

45


3ℏ3
T

3

V (9.50)

the number of photons is given by

N =

2�(3)k

2

�

2




3ℏ3
T

3

V =

45�(3)

2�

4

S (9.51)
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9.4.3 Grand canonical ensemble

In the 
lassi
al setting the we assume that the system is immersed in a bath of tem-

perature T but 
an also ex
hange parti
les with the reservoir. We denote the energy

asso
iated to the ex
hange of one parti
le by � and 
all it the 
hemi
al potential �. We

assign a probability for N parti
les having energy E

N

as

p

N

(E

N

) = e

�(�N�E

N

)

(9.52)

and the normalizing fa
tor 
 de�ned as

X

1

N !

e

�(
+�N�E

N

)

= 1 (9.53)

We de�ne entropy as

S = �

X

p

i

ln p

i

= �

X

1

N !

�(
+�N�E

N

)e

�(
+�N�E

N

)

= ��
��� < N > +� < E >

(9.54)

and hen
e


 = U � TS + �N = �pV (9.55)

(we know from thermodynami
s that U�TS+pV +�N = 0) Therefore the fundamental

obje
t in the grand 
anoni
al ensemble is

e

��


=

1

X

N=0

1

N !

e

�N

Z

d�

N

e

��E

N

(9.56)

Using the grand 
anoni
al ensemble in quantum statisti
al physi
s one 
an derive the

distribution of the number of parti
les at a given energy level E

j

:

n

j

=

1

e

E

j

��

� 1

(9.57)

where � is for bosons (Bose-Einstein distribution) and + for fermions (Fermi-Dira


distribution).

The dis
ussion of all three ensembles (mi
ro
anoni
al, 
anoni
al and grand 
anoni
al)

belongs to the 
ourse on Statisti
al Physi
s and is outside of the s
ope of le
tures on

Classi
al Me
hani
s where it serves only as an illustration of the Liouville equation.

9.5 Debye theory of specific heat of solids

We will apply the derived distributions for phonons to derive the formula for the spe
i�


heat of solids (not in
luding the ele
troni
 heat 
apa
ity).
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9.5.1 classical computation

If we have a 1D string of atoms with harmoni
 potential and equilibrium distan
e a we

have

m�x

n

= K(x

n+1

� x

n

) +K(x

n�1

� x

n

) (9.58)

To solve this equation we substitute

x

n

= na+ e

i!t

sin(kna); �

�

a

� k �

�

a

(9.59)

to get

!

2

=

4K

m

sin

2

(ka=2) (9.60)

We write

! = !

m

sin(ka=2); !

m

=

s

4K

m

(9.61)

The group velo
ity

v

g

=

�!

�k

=

!

m

a

2


os(ka=2) =

Ka

2

m


os(ka=2) = v

g0


os(ka=2) (9.62)

Density of states in 3D (k =

2

a

ar
sin(!=!=m); there are 2 transverse and 1 longitudinal

polarizations)

g(!)d! =

3V 4�k

2

dk

(2�)

3

=

V !

2

d!

2�

2

v

3

g0

�

1 + !

2

=(3!

2

m

) + : : :

p

1� !

2

=!

2

m

(9.63)

Einstein has used the formula for density for one spe
i�
 frequen
y g(!) = 3NÆ(!�

!

E

) { it explained the Dulong-Petit law that the heat 
apa
ity tends to 3R for large

temperatures but was not very good in explaining low temperature behavior of heat


apa
ity.

Debye assumed that all frequen
ies are present and wrote the formula (without any


orre
tions � !

2

=!

2

m

) to use measured v

g0

) and de�ned !

D

by

3N =

Z

!

D

0

g(!)d! =

Z

!

D

0

3V !

2

d!

2�

2

v

3

g0

=

V !

3

D

2�

2

v

3

g0

(9.64)

hen
e

!

D

= v

g0

�

6��

2

�

1

3

; � = N=V (9.65)

and

g(!)d! =

9N!

2

d!

!

3

D

(9.66)

If transverse and longitudinal speeds are di�erent one may use the averaging

3

�v

3

=

2

v

3

t

+

1

v

3

l

(9.67)
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Phonons are bosons so that the energy stored in phonons in temperature T is given

by

E =

Z

!

D

0

d!g(!)ℏ!
1

e

ℏ!

kT

� 1

(9.68)

The heat 
apa
ity




p

=

�E

�T

=

Z

!

D

0

d!

9Nℏ
2

!

4

!

3

D

kT

2

e

ℏ!

kT

�

e

ℏ!

kT

� 1

�

2

(9.69)

It 
an be rewritten as




p

= 9Nk

�

T

�

D

�

3

Z

�

D

=T

0

dx

x

4

e

x

(e

x

� 1)

2

(9.70)

where

�

D

=

ℏ!
D

k

(9.71)

For T � �

D

we have




p

! 9Nk

�

T

�

D

�

3

�

4�

4

15

(9.72)

while for T � �

D

we re
over the Dulong-Petit law 


p

! 3R.

This formula is in mu
h better agreement with experimentally measured values than

Einstein's but is not exa
t either. To have better des
ription one has to take into a

ount

the presen
e of (quantum) 
hara
teristi
 frequen
ies of a given 
rystal or dependen
e

of �

D

on temperature. The Debye temperatures of some of the elements (they de
rease

with the temperature to mat
h the experimental values!): aluminum 433 K, beryllium

1481 K, 
opper 347 K, lead 105 K, gold 227 K, diamond 2200 K (in room temperature

1840 K).
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10 Canonical transformations

We dis
uss here a very important formulation of 
lassi
al me
hani
s that led Paul Dira


to formulate quantum me
hani
s in a very analogous way.

10.1 Poisson brackets

For any two fun
tions on the phase spa
e f(q; p) and g(q; p) we de�ne a Poisson bra
ket

as

ff; gg

P

:=

X

a

�f

�q

a

�g

�p

a

�

�g

�q

a

�f

�p

a

(10.1)

Poisson bra
kets have features that are analogous to 
ommutators in the operator

language of QM.

� antisymmetry

ff; gg = �fg; fg (10.2)

� linearity

f�f + �f

0

; gg = �ff; gg + �ff

0

; gg (10.3)

� Ja
obi identity

fff; gg; hg + ffh; fg; gg + ffg; hg; fg = 0 (10.4)

It is important to note that in analogy to QM we have

fq

a

; q

b

g = 0; fp

a

; p

b

g = 0; fq

a

; p

b

g = Æ

ab

; (10.5)

Its introdu
tion is motivated by the appearan
e in the Hamilton's equations

_q

a

= fq

a

; Hg

P

; _p

a

= fp

a

; Hg

P

(10.6)

Therefore also for any fun
tion f(t; q; p) we have

df

dt

=

�f

�t

+ ff;Hg

P

(10.7)

where we used the Hamilton's eqs.

If we have a fun
tion I(q; p) that 
ommutes with H

fI;Hg = 0 ) I = 
onst (10.8)
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i.e. it is a 
onstant of motion. One example is a momentum p





onjugate to a 
y
li



oordinate q




sin
e then

fp




; Hg = 0 ) p




= 
onst (10.9)

as expe
ted.

The PB of two 
onstants of motion is again a 
onstant of motion.

ffI

1

; I

2

g; Hg = �ffH; I

1

g; I

2

g � ffI

2

; Hg; I

1

g = 0 (10.10)

10.2 Canonical transformations

We noti
ed earlier that in the lagrangian formulation one 
an arbitrarily 
hange 
oor-

dinates q ! q

0

and the EL eqs were invariant wrt this 
hange. We now dis
uss what

possible transformations 
an be applied to the pair (q

a

; p

a

) that lead again to the Hamil-

ton equations (the previous q ! q

0


onstitute a small subset of these).

The 
anoni
al transformations are de�ned as a pair

q

a

! Q

a

(t; q; p); p

a

! P

a

(t; q; p) (10.11)

that has 
anoni
al Poisson bra
kets i.e.

fQ

a

; Q

b

g = 0; fP

a

; P

b

g = 0; fQ

a

; P

b

g = Æ

ab

; (10.12)

If they are satis�ed then the Hamilton's equations have the usual form (with possibly

some new Hamilton's fun
tion).

To prove it let us introdu
e the symple
ti
 stru
ture that is present in the Hamilton's

formulation. We introdu
e a ve
tor

xT = (q

1

; : : : ; q

n

; p

1

; : : : ; p

n

) (10.13)

that has 2n 
omponents. We also introdu
e a 2n� 2n matrix J

J =

 

0 1

�1 0

!

(10.14)

It is 
ru
ial that J

2

= �1. Then we 
an rewrite the Poisson bra
kets as

ff; gg =

�f

�x

i

J

ij

�g

�x

j

(10.15)

and the Hamilton's eqs as

_x

i

= J

ij

�H

�x

j

(10.16)

Let us now transform x! y(x) where we temporarily assume that the transforma-

tion does not depend expli
itly on time. Then the eqs of motion for y read

_y

i

=

�y

i

�x

j

J

jk

�H

�y

l

�y

l

�x

k

= (GJG

T

)

ij

�H

�y

j

(10.17)
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Therefore we re
over the Hamilton's equations in the new 
oordinates if

GJG

T

= J (10.18)

where H is the same but expressed in new 
oordinates.

Matri
es satisfying su
h a 
ondition belong to the symple
ti
 group Sp(n) - it is

easy to show that they form a group of dimension n(2n+1) { for example we show that

the inverse element belongs to the group by the following argument (analogous to the

uniqueness of the inverse matrix)

G

�1T

JG

�1

= J ) JG

�1T

JG

�1

= �1) JG

�1T

= �(JG

�1

)

�1

)

) JG

�1

JG

�1T

= �1) G

�1

JG

�1T

= J (10.19)

One should spe
ify over whi
h �eld one de�nes the group and whether we allow for

only 
omponent 
onne
ted to the identity. In 2 dimensions any matrix of determinant 1

belongs to Sp(1;R) so Sp(1;R) � SL(2;R), in 4 dimensions the algebra sp(2) � so(5).

For a 2� 2 matrix

 

a b


 d

! 

0 1

�1 0

! 

a 


b d

!

=

 

0 1

�1 0

!

(10.20)

gives ad�b
 = 1 i.e. indeed the determinant should be equal to 1. We 
an impose further

that both eigenvalues should be positive i.e. allow only for transformations 
onne
ted

to the identity.

The Poisson bra
kets for the new 
oordinates

ff; gg =

�f

�x

i

J

ij

�g

�x

j

=

�f

�y

i

(GJG

T

)

ij

�g

�y

j

(10.21)

so the requirement of 
onserving the PBs gives the same 
ondition.

10.3 Examples of canonical transformations

� ex
hanging positions and momenta

P

a

= �q

a

; Q

a

= p

a

) G =

 

0 1

�1 0

!

(10.22)

it is obviously 
anoni
al

� 'point transformations'

Q

a

= Q

a

(q) (10.23)

Then

G =

 

�Q

a

�q

b

0

�P

a

�q

b

�P

a

�p

b

!

(10.24)
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The matrix

G =

 

A 0

B C

!

(10.25)

belongs to the symple
ti
 group if

C

T

= A

�1

; BA

�1

= (BA

�1

)

T

(10.26)

� linear transformation

q

a

! �

ab

q

b

; p

a

! �

�1

ba

p

a

(10.27)

with � 
onstant.

10.4 Harmonic oscillators on a line

We write the hamiltonian for n atoms (we assume that n is odd) bound by harmoni


for
es on a 
ir
le

H =

X

p

2

i

2m

+

m!

2

0

2

X

i

(x

i+1

� x

i

� d)

2

(10.28)

We now introdu
e the 
anoni
al transformation (x; p)! (q; P )

x

k

= kd+

1

p

n

X

a

e

2�iak=n

q

a

(10.29)

p

k

=

1

p

n

X

a

e

�2�iak=n

P

a

(10.30)

with the inverse transformation

q

a

=

1

p

n

X

a

e

�2�iak=n

(x

k

� kd) (10.31)

P

a

=

1

p

n

X

a

e

2�iak=n

p

k

(10.32)

SIn
e x

k

are real we have

q

y

0

= q

0

; P

y

0

= P

0

; q

y

a

= q

n�a

; P

y

a

= P

n�a

(10.33)

We 
he
k

fq

a

; P

b

g =

1

n

X

j;l

e

�2�iaj=n

e

2�ibl=n

fx

j

; p

l

g = Æ(a� b) (10.34)

Then

H =

1

2m

X

a

P

a

P

y

a

+

m!

2

2n

X

j

X

a

(1� e

2�ia=n

)e

2�iaj=n

q

a

X

b

(1� e

�2�ib=n

)e

�2�ibj=n

q

y

b

(10.35)
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Therefore we have a diagonalized hamiltonian

H =

1

2m

X

a

P

a

P

y

a

+

m!

2

0

2

X

a

4 sin

2

(�a=n)q

a

q

y

a

(10.36)

that 
an be written in terms of independent variables as

H =

1

2m

P

2

0

+

(n�1)=2

X

a=1

�

1

m

P

a

P

y

a

+m!

2

0

4 sin

2

(�a=n)q

a

q

y

a

�

(10.37)

where P

0


orresponds to global translations and 
an be dis
arded. Dividing into real

and imaginary parts

~q

a

=

1

p

2

�

q

a

+ q

y

a

�

; ~p

a

=

1

p

2

�

P

a

+ P

y

a

�

(10.38)

~r

a

=

i

p

2

�

q

a

� q

y

a

�

; ~s

a

=

i

p

2

�

P

a

� P

y

a

�

(10.39)

we get the redu
ed hamiltonian

H =

(n�1)=2

X

a=1

 

1

2m

(~p

a

~p

a

+ ~s

a

~s

a

) +

m!

2

0

2

4 sin

2

(�a=n)(~q

a

~q

a

+ ~r

a

~r

a

!

(10.40)

10.5 Some identities for partial derivatives

Assume that we have 3-dim manifold with a hypersurfa
e de�ned by f(x; y; z) = 0

and we would like to derive some identities between the partial derivatives wrt to dif-

ferent pairs of variables (sin
e only 2 are independent) { they are extensively used in

thermodynami
s.

We start with

dx =

�

�x

�y

�

z

dy +

�

�x

�z

�

y

dz

dy =

�

�y

�x

�

z

dx+

�

�y

�z

�

x

dz (10.41)

Plugging dy from the se
ond equation into the �rst we get

�

�x

�y

�

z

=

1

�

�y

�x

�

z

(10.42)

and the triple produ
t formula

�

�x

�y

�

z

�

�y

�z

�

x

�

�z

�x

�

y

= �1 (10.43)
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Similarly we 
an write

dx =

�

�x

�y

�

z

dy +

�

�x

�z

�

y

dz

dx =

�

�x

�y

�

w

dy +

�

�x

�w

�

y

dw (10.44)

Writing

dw =

�

�w

�y

�

z

dy +

�

�w

�z

�

y

dz (10.45)

and plugging into the previous equation we get

�

�x

�y

�

z

=

�

�x

�y

�

w

+

�

�x

�w

�

y

�

�w

�y

�

z

(10.46)

and

�

�x

�z

�

y

=

�

�x

�w

�

y

�

�w

�z

�

y

(10.47)

10.6 Generating functions of canonical transformations

We will now show how to generate the 
anoni
al transformations with the use of a gener-

ating fun
tion. The argument of the fun
tion 
an be any pair (q;Q); (q; P ); (p;Q); (p; P )

for de�niteness we 
hoose q;Q pair.

We 
hoose a fun
tion F (q;Q) su
h that the equation

p

a

=

�F

�q

a

(10.48)

is invertible i.e. one 
an get Q = Q(q; p) out of this equation. Then we de�ne

P

a

= �

�F

�Q

a

(10.49)

and we will now show that the pair (Q;P ) satis�es the 
orre
t Poisson bra
kets. To

avoid proliferation of indi
es we show it for 1 dof. Then

fQ;Pg =

�

�Q

�q

�

p

�

�P

�p

�

q

�

�

�Q

�p

�

q

�

�P

�q

�

p

(10.50)

Now we use the manipulations for the partial derivatives

fQ;Pg =

�

�Q

�q

�

p

�

�P

�Q

�

q

�

�Q

�p

�

q

�

�

�Q

�p

�

q

 

�

�P

�q

�

Q

+

�

�P

�Q

�

q

�

�Q

�q

�

p

!

=

�

�Q

�p

�

q

 

�

2

F

�q�Q

!

=

�

�Q

�p

�

q

�

�p

�Q

�

q

= 1 (10.51)
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The de�nitions for the 3 remaining pairs ((q; P ), (p;Q) and (p; P )) are analogous.

If the 
anoni
al transformation depends expli
itly on time we have

_

P

a

= fP

a

; Hg+

�P

a

�t

= fP

a

; Hg �

�

2

F

�Q

a

�t

= �

�H

�Q

a

�

�

2

F

�Q

a

�t

(10.52)

so to keep the usual Hamilton's eqs we have to modify the hamiltonian

H ! H

0

= H +

�F

�t

(10.53)

We will use these formulae in the Hamilton-Ja
obi equation in the next le
ture
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11 Hamilton-Jacobi equation

We re
all that for the lagrangian we had the prin
iple that the a
tion

S =

Z

t

2

t

1

dtL(q

a

; _q

a

; t) (11.1)

is extremal when the variations Æq

a

vanish at the ends. We now have a similar prin
iple

S =

Z

t

2

t

1

dt(p

a

_q

a

�H(q

a

; _q

a

; t)) (11.2)

where _q

a

's are fun
tions of q

a

and p

a

. We have

ÆS =

Z

t

2

t

1

dt

�

Æp

a

_q

a

+ p

a

Æ _q

a

�

�

�H

�p

a

Æp

a

�

�H

�q

a

Æq

a

��

(11.3)

Integrating by parts we get

ÆS =

Z

t

2

t

1

dt

��

_q

a

�

�H

�p

a

Æp

a

�

+

�

� _p

a

�

�H

�q

a

Æq

a

��

+ p

a

Æq

a

j

t

2

t

1

(11.4)

If the variations Æq

a

vanish at the ends we get the Hamilton's equations.

If we impose not only Æq

a

vanishing at the ends but also Æp

a

we 
an add to H a full

derivative dF (p; q)=dt.

11.1 Hamilton-Jacobi equation

We now treat the a
tion S as a fun
tion of �nal time t and �nal positions q

a

(t) assuming

initial time t

1

and initial positions q

a

(t

1

) as �xed. We assume that it is possible to �nd

initial velo
ities _q

a

(t

1

) su
h that the �nal positions along the allowed traje
tories are

q

a

(t). Then

S(t; q

a

(t)) =

Z

t

t

1

d�L(q

a

(� ); _q

a

(� ); � ) (11.5)

Performing the same steps as before we have

ÆS = p

a

Æq

a

j

t

t

1

(11.6)

Hen
e

p

a

=

�S

�q

a

(11.7)
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We have

dS

dt

= L (11.8)

but on the other hand we have

dS

dt

=

�S

�t

+

X

a

�S

�q

a

_q

a

=

�S

�t

+

X

a

p

a

_q

a

(11.9)

The LHS is equal to L and therefore

�S

�t

+H

�

q

a

;

�S

�q

a

; t

�

= 0 (11.10)

This is the Hamilton-Ja
obi equation. It is the most eÆ
ient tool of �nding 
onserved

quantities in 
lassi
al me
hani
s as we will see.

We 
an therefore write the di�erential of S as

dS = �Hdt+

X

p

a

dq

a

(11.11)

what for one parti
le is equal to the 4-dimensional expression

dS = p

�

dx

�

(11.12)

i.e. the phase di�erential in the quantum me
hani
al language. We will dis
uss solving

the me
hani
al problems by the Hamilton-Ja
obi equation later.

11.2 Canonical transformations and the Hamilton-Jacobi
equation

We re
all that for a fun
tion F (q;Q) su
h that the equation

p

a

=

�F

�q

a

(11.13)

is invertible i.e. one 
an get Q = Q(q; p) out of this equation. Then we de�ne

P

a

= �

�F

�Q

a

(11.14)

and we have shown that the pair (Q;P ) satis�es the 
orre
t Poisson bra
kets. To keep

the usual Hamilton's eqs we have to modify the hamiltonian

H ! H

0

= H +

�F

�t

(11.15)

It 
an also be seen from the fa
t that the two expressions 
an di�er by a full di�erential

�P

a

dQ

a

+H

0

dt� (�p

a

dq

a

+Hdt) = dF (11.16)
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We now use this formula to arrive at the HJ equation again to explain the role of


onstants. If we 
hoose F to be equal to the HJ fun
tion S then

H +

�S

�t

= 0) H

0

= 0 (11.17)

Therefore we know that Q

a

and P

a

have to be 
onstant. Then expressing S as a fun
tion

of positions and 
onstants of integration (identi�ed with Q

a

)

S = S(t; q

a

; �

a

) (11.18)

we know that also

�S

��

a

= �

a

(11.19)

are 
onstant. Therefore we have the solution given by 2s+ 1 
onstants as it should be.

11.3 Jacobi (Maupertuis) principle

If the energy E in a given system is 
onserved we 
an write

S = �Et+

X

a

p

a

dq

a

= �Et+ S

0

(11.20)

We 
an now formulate the prin
iple of least a
tion in the form

ÆS

0

= 0 (11.21)

where the variations are along su
h traje
tories that keep the energy E 
onstant. One

usually applies this pron
iple to �nd the traje
tories and not their dependen
e on time.

Therefore we �nd dt as a fun
tion of positions q

a

and di�erentials dq

a

and plug it to S

0

.

We illustrate the pro
edure by applying it to the usual lagrangian with generalized

kineti
 term:

L =

1

2

X

a;b

M

ab

_q

a

_q

b

� U(q) (11.22)

The momenta are given by

p

a

=

X

b

M

ab

_q

b

(11.23)

and the energy

E =

1

2

X

a;b

M

ab

_q

a

_q

b

+ U(q) (11.24)

Hen
e

dt =

s

P

a;b

M

ab

dq

a

dq

b

2(E � U)

(11.25)

so that

S

0

=

Z

s

2(E � U)

X

a;b

M

ab

dq

a

dq

b

(11.26)
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For one parti
le we get

Æ

Z

q

2m(E � U)dl = 0 (11.27)

In QM it is analogous to the Fermat prin
iple in opti
s sin
e

p =

h

�

) Æ

Z

dl

�

= 0 (11.28)

i.e. the number of 
rests or troughs along a traje
tory should by extremal.

11.4 Derivation of the Hamilton-Jacobi equation from
quantum mechanics

It is very instru
tive to 'derive' 
lassi
al me
hani
s from quantum me
hani
s (of 
ourse

the histori
al path was reverse as is till today the order of tea
hing...).

We start with the non-relativisti
 S
hr�odinger equation for a parti
le in the s
alar

potential U

iℏ
� 

�t

= �

ℏ
2

2m

� + U (11.29)

what 
omes from an operator analogy for the equality

E =

p

2

2m

+ U (11.30)

when we identify

p = �iℏr (11.31)

and

 = e

�iEt=ℏ
 

E

(11.32)

We now write

 = Re

iS=ℏ
(11.33)

where both R and S are real. The real part of the SE reads

�

�S

�t

=

1

2m

(rS)

2

+ U �

ℏ
2

2m

�R

R

(11.34)

and the momentum

p = rS +O(ℏ) (11.35)

and negle
ting ℏ 
orre
tions we re
over the Hamilton-Ja
obi equation. The full equation

is used in the pilot wave (de Broglie-Bohm) interpretation of quantum me
hani
s as the


lassi
al traje
tory with 'quantum potential' (i.e. the last part) added.

The imaginary part reads

1

R

�R

�t

= �

1

mR

rRrS �

1

2m

�S )

�R

2

�t

= �

1

m

r(R

2

rS) (11.36)

Hen
e the probability

R

R

2

d

3

x is 
onserved in time.
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12 Hamilton-Jacobi equation II

12.1 Solving HJ equation

We now dis
uss the equivalen
e of HJ equations to the lagrangian or hamiltonian for-

mulations.

H +

�S

�t

= 0) H

0

= 0 (12.1)

We know that with a trivial hamiltonian both Q

a

and P

a

have to be 
onstant. Then

expressing S as a fun
tion of positions and 
onstants of integration (identi�ed with Q

a

)

S = S(t; q

a

; �

a

) (12.2)

we know that also

�S

��

a

= �

a

; (12.3)

being momenta P

a

, are also 
onstant. Therefore we have the solution given by 2N + 1


onstants as it should be. It solves the apparent paradox sin
e S naively depends on

only N + 1 
onstants being an equation with �rst order derivatives wrt q

a

only with no

_q

a

s or p

a

s { the derivatives wrt these 
onstants are also 
onstant supplying the missing

set.

Let us dis
uss the method of separation of variables. Let us assume that q

1

and p

1

appear in the hamiltonian only as a 
ombination �(q

1

; p

1

) (without any dependen
e on

time). Then we 
an try

S = S

0

(q

a

; t) + S

1

(q

1

) (12.4)

where a denotes all variables ex
ept q

1

. Then the HJ equation reads

�S

0

�t

+H

�

t; q

a

;

�S

0

�q

a

; �

�

q

1

;

��

�q

1

��

= 0 (12.5)

The solution 
an be solved only when � is equal to a 
onstant

�

�

q

1

;

��

�q

1

�

= �

1

(12.6)

and then we are left with the HJ equation with one smaller number of variables

�S

0

�t

+H

�

t; q

a

;

�S

0

�q

a

; �

1

�

= 0 (12.7)
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The obvious example is a 
y
li
al 
oordinate { then

S = S

0

(q

a

; t) + �

1

q

1

(12.8)

and the redu
ed HJ equation reads

�S

0

�t

+H

�

t; q

a

;

�S

0

�q

a

; �

1

�

= 0 (12.9)

If H does not depend on time then we have

S = �Et+ S

0

(q

a

) (12.10)

and the HJ equation reads

H

�

q

a

;

�S

0

�q

a

�

= E (12.11)

12.2 Hamilton’s evolution as a canonical transformation

We will now prove that the Hamilton's evolution is also a 
anoni
al transformation.

We 
onsider an in�nitesimal transformation (parametrized by �) whi
h by assump-

tion is 
anoni
al

q

a

! Q

a

= q

a

+ ��

a

(q; p)

p

a

! P

a

= p

a

+ ��

a

(q; p)

(12.12)

We require the transformation to be 
anoni
al (to �rst order in �)

GJG

T

= J (12.13)

where

G =

 

Æ

ab

+ �

��

a

�q

b

�

��

a

�p

b

�

��

a

�q

b

Æ

ab

+ �

��

a

�p

b

!

(12.14)

Therefore multiplying

��

a

�q

b

= �

��

a

�p

b

(12.15)

The solution to this is

�

a

=

�R

�p

a

�

b

= �

�R

�q

a

(12.16)

for some R(q; p) whi
h is 
alled the generator of the transformation.

If � is a short interval of time then we know that R = H { therefore hamiltonian

generates time translations

If for example R =

P

b

�

b

p

b

then

q

a

! q

a

+ ��

a

; p

a

! p

a

(12.17)
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i.e. momenta generate translations.

Another example is

R(q; p) =

X

a;b

q

a

�

ab

p

b

(12.18)

Then we re
over linear point transformations

q

a

! ��

ab

q

a

; p

a

! p

a

� ��

ab

p

b

(12.19)

12.3 Example

We 
onsider 1-dim harmoni
 os
illator

�S

�t

+

1

2m

�

�S

�x

�

2

+

m!

2

2

x

2

= 0 (12.20)

Sin
e the energy is 
onserved we write

S = �Et+ S

0

�

x;

�S

0

�x

�

(12.21)

so that

1

2m

�

�S

0

�x

�

2

+

m!

2

2

x

2

= E (12.22)

Then

S

0

=

Z

dz

p

2mE �m

2

!

2

z

2

=

x

2

p

2mE �m

2

!

2

x

2

+

E

m

ar
tan

�

m!x

p

2mE �m

2

!

2

x

2

�

(12.23)

Our 
onstant of integration is E so we di�erentiate S over E and equate it to a 
onstant

�t+

1

!

ar
tan

�

m!x

p

2mE �m

2

!

2

x

2

�

= �t

0

(12.24)

what gives us the traje
tory of the os
illator

x(t) =

s

2E

m!

2


os(!(t� t

0

)) (12.25)

12.4 Relativistic Hamilton-Jacobi equation

The relativisti
 analog of the HJ equation in the presen
e of gravity reads

g

��

�S

�x

�

�S

�x

�

= �m

2




4

(12.26)

We will illustrate this equation by the example of the S
hwarzs
hild metri
. We re
all

the a
tion for a parti
le in the S
hwarzs
hild metri
 (for � = �=2)

S = �m


2

Z

dt

v

u

u

t

1�

r

s

r

�

_r

2




2

(1�

r

s

r

)

�

r

2

_

�

2




2

(12.27)
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where the S
hwarzs
hild radius

r

s

=

2GM




2

(12.28)

We 
al
ulate the momenta

p

r

=

m _r

(1� r

s

=r)

r

1�

r

s

r

�

_r

2




2

(1�

r

s

r

)

�

r

2

_

�

2




2

p

�

=

mr

2

_

�

r

1�

r

s

r

�

_r

2




2

(1�

r

s

r

)

�

r

2

_

�

2




2

= J (12.29)

Then the energy

E =

X

i

_q

i

p

i

� L =

m


2

(1� r

s

=r)

r

1�

r

g

r

�

_r

2




2

(1�

r

s

r

)

�

r

2

_

�

2




2

(12.30)

We make the assignments

�S

�t

= �E;

�S

�r

= p

r

;

�S

��

= p

�

(12.31)

and indeed we have

g

��

�S

�x

�

�S

�x

�

= �

E

2

1�

r

s

r

+ (1�

r

s

r

)


2

p

2

r

+




2

p

2

�

r

2

= �m

2




4

(12.32)

For m = 0 we have

�

E

2

1�

r

g

r

+ (1�

r

s

r

)


2

�

�S

�r

�

2

+




2

p

2

�

r

2

= 0 (12.33)

and hen
e

S = �

Z

dr

s

E

2




2

(1� r

g

=r)

2

�

J

2

r

2

(1� r

g

=r)

�Et+ J� (12.34)

and we 
an re
over the photon traje
tory by

�S

�J

= 
onst = �

0

= ��

Z

dr

1

r

2

q

E

2

J

2




2

�

1�r

s

=r

r

2

= ��

Z

dw

1

q

E

2

J

2




2

�w

2

(1� r

s

w)

(12.35)

We re
all the equation for the photon traje
tory that we derived earlier

w

00

+w =

3r

s

w

2

2

; w =

1

r

(12.36)

and

w

02

+w

2

� r

s

w

3

=

E

2

J

2




2

(12.37)
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so we re
over the expression (12.35).

If we 
hange the variable

w =

4z + 1=3

r

s

(12.38)

then we have

�� �

0

=

Z

1

dz

p

4z

3

� g

2

z � g

3

; g

2

=

1

12

; g

3

=

2=27 � �

2

r

2

s

16

(12.39)

and the solution is the Weierstrass (ellipti
) fun
tion

z = P(�� �

0

; g

2

; g

3

) (12.40)
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13 Fluid mechanics

13.1 Navier-Stokes equation

Fluid is des
ribed by several parameters { density, pressure, velo
ity, temperature et
.

We divide the volume into very small domains { in ea
h domain number of mole
ules

is large but these parameters 
an be treated as 
onstant and the whole distribution as


ontinuous.

We have a 
onve
tive time derivative (moving with the 
uid)

lim

Æt!0

�(r+ vÆt; t+ Æt)� �(r; t)

Æt

=

��

�t

+ (v � r)� (13.1)

We will write this derivative as

D�

Dt

=

��

�t

+ (v � r)� (13.2)

The 
ontinuity equation 
an be written as

��

�t

+r � (�v) = 0 (13.3)

The Navier-Stokes equation reads

�

�

�v

�t

+ (v � r)v

�

= �r(�� �r � v)�rp+ �

�

�v+

1

3

r(r � v)

�

(13.4)

where � (shear) vis
osity, sometimes written as �� and � volume vis
osity (often ne-

gle
ted); � is the external potential. It is an unsolved problem to prove under what


onditions the solutions exist...

For an in
ompressible 
uid � = 
onst we have

r � v = 0 (13.5)

Then the NS equation reads

�v

�t

+ (v � r)v = �

1

�

r��r

p

�

+ ��v (13.6)

If on top � = 0 ('dry water') we have

�v

�t

+ (v � r)v = �r

�

�

�

+

p

�

�

(13.7)
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We 
an write it in a di�erent form using the equality

(v � r)v = Ω� v +

1

2

rv

2

(13.8)

where

Ω = r� v (13.9)

Then

�v

�t

= v �Ω�r

�

�

�

+

1

2

v

2

+

p

�

�

(13.10)

If we have a stationary 
ow (�v=�t = 0) then multiplying by v we get

v � r

�

�

�

+

1

2

v

2

+

p

�

�

= 0 (13.11)

whi
h is a Bernoulli equation (the quantity inside the bra
kets is 
onstant along the


ow).

13.2 Propagation of sound

We now dis
uss the propagation of sound in the 
uid (
ompressible, of 
ourse). We

assume that the 
uid is at rest and we write

� = �

0

+ Æ�; p = p

0

+ Æp; v = Æv (13.12)

We expand the 
ontinuity equation to �rst order in perturbations

�Æ�

�t

+ �

0

r � Æv = 0 (13.13)

and we di�erentiate wrt time:

�

2

Æ�

�t

2

+r �

�

�

0

Æv

�t

�

=

Æ

2

�

�t

2

��Æp = 0 (13.14)

We 
an write this equation as

�

2

Æ�

�t

2

� 


2

0

�Æ� = 0 (13.15)

where




2

0

=

�p

��

�

�

�

�

p=p

0

;�=�

0

(13.16)

For adiabati
 pro
esses (
ompression for the sound wave is very fast) we have

pV

�

= 
onst) p = 
onst�

�

)

�p

��

�

�

�

�

p=p

0

;�=�

0

= �

p

0

�

0

(13.17)

what gives for air (� = 1:4, p = 10

5

Pa, � = 1:3 kg/m

3

)




0

= 330 m=s (13.18)

at T = 0

Æ

C.
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13.3 Viscous fluid

Taking rotation of (13.7) we get

�Ω

�t

+r� (Ω� v) = 0 (13.19)

and in the 
ase of the vis
ous 
uid (13.6) it reads

�Ω

�t

+r� (Ω� v) = ��Ω (13.20)

For dimensionless quantities (given by some 
hara
teristi
 length D and velo
ity U)

we 
an res
ale time and lengths (x = D~x; v = U ~v; t = D�=U) to arrive at

�

~Ω

��

+

~

r� (

~Ω� ~v) =
1

R

~

�

~Ω (13.21)

where

R =

UD

�

(13.22)

is the so 
alled Reynolds number (it is the prin
iple of aerodynami
 tunnels). For small

Reynolds numbers the 
ow is laminar for larger turbulent.

13.4 Poiseuille flow

We have an in
ompressible 
uid of vis
osity � in a pipe of radius R and length l with a

laminar stationary 
ow. On the side at a radius r we have a for
e

F = ��2�rl

dv

dr

(13.23)

It has to be equal to the pressure di�eren
e inside the dis


F = �r

2

(p

1

� p

2

) (13.24)

Hen
e

dv

dr

= �

1

2�l

(p

1

� p

2

)r (13.25)

so that

v(r) =

p

1

� p

2

4�l

(R

2

� r

2

) (13.26)

where the 
onstant of integration was 
hosen to give v(R) = 0. The total volume per

unit time that 
ows is given by

dV

dt

=

Z

dr 2�r

p

1

� p

2

4�l

(R

2

� r

2

) =

�(p

1

� p

2

)R

4

8�l

(13.27)

It is important to note the fourth power - if a vein has slightly smaller diameter be
ause

of for example thrombosis it 
an result in vastly smaller 
ow through the blood vessel.
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13.5 Stokes’ law

We now dis
uss the for
e a
ting on a ball with a laminar stationary 
ow. We start with

�Ω

�t

+r� (Ω� v) = ��Ω (13.28)

We negle
t the LHS (be
ause of stationarity and the low Reynolds number) and we have

to solve

r� (r� 
) = 0 (13.29)

Far away we have

v

r

= U 
os �; v

�

= �U sin � ) 
 = 0 (13.30)

where we used rotation in spheri
al 
oordinates

(r�A)

�

=

1

r

�

�

�r

(rA

�

)�

�A

r

��

�

(13.31)

We assume the solution as




�

= U

g(r)

r

sin �; 


r

= 


�

= 0 (13.32)

and we 
al
ulate the rotation

r� 


r

= 2U

g

r

2


os �; r� 


�

= �U

g

0

r

sin �; 


�

= 0 (13.33)

and again

r� (r� 
)

�

= �

U

r

)(g

00

�

2g

r

) sin � (13.34)

Equating this to 0 we get the solution

g(r) =

C

r

(13.35)

Now we have to �nd velo
ity. To solve the r � v = 0 we assume

v = r�w (13.36)

and we have to solve

r� (r�w) =

C

r

(13.37)

The solution is

w
�

= U(�C

1

r +

C

2

+

C

3

r

2

) sin � (13.38)

Imposing the 
onditions at in�nity and on r = R we get

v

r

= U 
os �(1�

3R

2r

+

R

3

2r

3

); v

�

= �U sin �(1�

3R

4r

�

R

3

4r

3

) (13.39)
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Then we �nd pressure as

rp = �r� (r� v) (13.40)

Hen
e

p = p

1

�

3

2

UR�


os �

r

2

(13.41)

and the total for
e

F

l

= 6��UR (13.42)

It should be 
ompared with the turbulent 
ow

F

t

=

C

x

�SU

2

2

(13.43)

Therefore for small Reynolds number R

r

= �2RU=�:

C

x

=

24

R

r

(13.44)

The assumption 


�

= U

g(r)

r

sin � stops to be valid at R

r

� 10 - a better approximation

up to R

r

< 10

4

is

C

x

=

24

R

r

+

3:7

ln(2 + 4R

r

)

(13.45)

At � 3 � 10

5

there is a sudden drop below 0:1 (drag 
risis). If the sphere is rough the


risis appears earlier and therefore for example golf balls are made in the form of smooth

polyhedrons and not round balls.
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14 Deterministic chaos

14.1 Dissipative terms in the Hamilton’s evolution

Up to now we dis
ussed the equations without dissipative terms in the lagrangian or

hamiltonian formulations.

We will now in
lude in the des
ription phenomenologi
al method od 'damping the

momentum' i.e.

_p

a

=

�H

�q

a

�R

a

(q; p) (14.1)

with some fun
tions R

a

des
ribing the dissipation.

We 
an 
al
ulate the dissipation introdu
ed by these additional terms

dH

dt

=

X

a

�H

�q

a

_q

a

+

�H

�p

a

_p

a

= �

X

a

R

a

(q; p) _q

a

(14.2)

For example for the fri
tion for
e proportional to the velo
ity we have

R

i

= 
p

i

(14.3)

and the the 'leakage' of energy is equal to

dH

dt

= �


p

2

m

(14.4)

while for the 'aerodynami
' drag for
e proportional to v

2

we have

R

i

=

C

x

�S

2m

2

pp

i

(14.5)

and the the 'leakage' of energy is equal to

dH

dt

= �

C

x

�S

2

v

3

(14.6)

14.2 Attractors

It may happen that the dynami
s for
es the traje
tories in the phase spa
e to be 'at-

tra
ted' either to a point (�xed point) or to a higher dimensional hypersurfa
e. The

domain from whi
h traje
tories are 'attra
ted' is 
alled the basin of attra
tion. We give

below an example of su
h a behavior with the loop in the phase spa
e
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The model we 
onsider is a so 
alled Van der Pol's equation

m�y + 2m
(t) _y +m!

2

y = 0 (14.7)

where


(t) = 


0

 

y

2

(t)

y

2

0

� 1

!

; 


0

> 0 (14.8)

The 'damping term' damps the os
illations for large amplitudes but enhan
es them for

small ones.

The equation is highly non-linear and does not have analyti
 solution so we will

analyze it numeri
ally. We �rst introdu
e dimensionless variables { then the equations

read

_q = p

_p = �q + (�� q

2

)p (14.9)

It 
orresponds to

H =

1

2

(q

2

+ p

2

); R(q; p) = �(�� q

2

)p (14.10)

There is one parameter � in this equation and the solution depends on the initial


onditions (q

0

; p

0

) and �.

The point (0; 0) is a saddle point but it is unstable. The traje
tory 'around q �

p

�'

is stable (a limit 
y
le) but it is not exa
tly a 
ir
le (the bigger � is the more deformed it

is). The question how to determine the shape of the attra
tor (the ultimate traje
tory)

is a global one and 
annot be answered lo
ally.

We 
an determine some properties of the attra
tor by some tri
ks for example we


an use the fa
t that the attra
tor returns to its original values in the phase spa
e after

the whole turn. Therefore if we �nd some full derivative of any quantity then its average

value shoud be zero for the attra
tor traje
tory. We have then for example

< (�� q

2

)p

2

>= 0 (14.11)

For small � the traje
tory (as we 
an 
he
k numeri
ally) is almost a 
ir
le. Plugging

q = R 
os t; p = R sin t (14.12)

we get

�

R

2

2

�

R

4

8

= 0) R = 2

p

� (14.13)

For arbitrary � we 
ould use the fa
t that the traje
tory is periodi
 and write

q =

X

q

n

e

in!t

; p =

X

p

n

e

in!t

(14.14)

and get a nonlinear algebrai
 equation for q

n

and p

n

.
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14.3 Catastrophe theory of Thom - bifurcation of points

If we have a dynami
al system given (in the matrix notation)

_x = F (�; x) (14.15)

where � = (�

1

; : : : ; �

k

) are parameters and x is an n-dimensional ve
tor. If k � 4 then

we have 7 types of possible bifur
ation points i.e. the points where the 
hara
ter of the

evolution 
an 
hange. For k = 5 we have 11 types and for k > 5 there is an in�nite

number of possible types.

At k � 4 the bifur
ation points 
an be des
ribed by the spe
ial points in polynomials

in 1 (4 types) or 2 variables (3 types). The former are 
alled 
uspoidal the latter umbilli
.

The 
uspoidal are given by (F = V

0

)

� fold

V = x

3

+ ax (14.16)

� 
usp

V = x

4

+ ax

2

+ bx (14.17)

� swallowtail

V = x

5

+ ax

3

+ bx

2

+ 
x (14.18)

� butter
y

V = x

6

+ ax

4

+ bx

3

+ 
x

2

+ dx (14.19)

The umbili
 are given by

� hyperboli


V = x

3

+ y

3

+ axy + bx+ 
y (14.20)

� ellipti


V = x

3

� 3xy

2

+ a(x

2

+ y

2

) + bx+ 
y (14.21)

� paraboli


V = x

2

y + y

4

+ ax

2

+ by

2

+ 
x+ dy (14.22)

For k = 5 we have one more 
uspoidal (wigwam) and 3 more umbili
 (se
ond hyperboli
,

se
ond ellipti
 and symboli
).

We analyze below in some detail only a 
usp.

The bifur
ation 
an only happen at points only at points x

0

where F (�; x

0

) = 0.

Su
h a point 
an be stable or unstable. Then the behavior of the system depends on

the matrix of se
ond derivatives at the point x

0

. If this matrix has one (or more) zero

eigenvalues then su
h a point (or 
urve) is 
alled a bifur
ation point. We write the


hara
teristi
 polynomial in a slightly di�erent way

V

0

= x

3

� 3ax

2

+ 2b (14.23)
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We have 3 roots of this equation and the bifur
ation point is when the 
hara
ter of the

roots 
hanges from 1 real and 2 
omplex to 3 real. If we want to 
he
k when it happens

we write

V

0

= (x� 
)

2

(x+ 2
) (14.24)

and plugging into the original equation we have

a = 


2

; b = 


3

(14.25)

or

a

3

� b

2

= 0 (14.26)

and it is a 
ondition for a bifur
ation point.

14.4 Poincaré mapping

To visualize the 
ow it is 
onvenient to use the notion of a Poin
ar�e mapping. We denote

a 
losed orbit in the phase spa
e (the attra
tor) by � and we ask about the behavior of

traje
tories 
losed to it. We introdu
e the hypersurfa
e S in some sense 'perpendi
ular'

to � at some point x

0

on � and we 
hoose this point to have � = 0. The neighborhood

of x

0

we 
all S

0

.Then the hypersurfa
e will be pun
hed in exa
tly the same point after

T , 2T and so on where T is the period of the 
losed orbit. If we go away from the orbit

� the other traje
tories 
ross the hypersurfa
e at some other time. The mapping

x! �(x) (14.27)

su
h that x

0

! x

0

after time T is for all points from S

0


alled the Poin
ar�e mapping �

S

0

! �(S

0

) = S

1

(14.28)

Then we ask about a sequen
e

S

0

! S

1

! : : : S

n

(14.29)

It may happen that the sequen
e disperses or (as we expe
t for the limit 
y
le) it shrinks

to smaller and smaller neighborhood of x

0

. In order to answer the question whether the

periodi
 orbit � is stable we ask about the so 
alled 
hara
teristi
 multipliers of the

linearized map

��

i

�x

k

�

�

�

�

�

x=x

0

(14.30)

if all 
hara
teristi
 multipliers (eigenvalues of this equation) lie stri
tly inside the unit


ir
le then the orbit 
 is stable; if one or more lies outside then the orbit is unstable.
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14.5 Bifurcation of periodic orbits

For periodi
 orbits there is a qualitatively new feature namely a possibility of period

doubling. We now assume that the 
ow depends on some parameter �. If we have a

Poin
ar�e mapping the matrix of �rst derivatives then if for a given � the 
hara
teristi


multipliers have all absolute value less than 1 then the orbit is stable. The interesting

thing happens if for some value of � one of the multipliers rea
hes -1. Then we return

to the previous position in the dire
tion of this multiplier after 2 turns and the orbit

has twi
e bigger period (while the other dire
tions shrink like the matrix of multipliers

squared). Then we 
onsider the Poin
ar�e mapping after 2T and not T around the

new '�xed' traje
tory with � = 1. It may turn out that 
hanging � from this new

value around the new traje
tory the situation repeats itself { one of the 
hara
teristi


multipliers rea
hes -1 and we have yet another traje
tory with the basi
 period 4T . It

may happen that the phenomenon repeats itself for smaller and smaller 
hanges of �

and for a �nite � we rea
h in�nite number of possible periodi
 orbits.

14.6 Deterministic chaos

We will des
ribe below su
h a possibility for a Poin
ar�e 
ow in one dimension on the

most famous example of the logisti
 equation.

We start with some general remarks. If we measure some real value x

i

; i = 1; : : : ; n at

the 
onse
utive times iT then the predi
tive power is large if there is a strong 
orrelation

between x

1

and any later x

i

even for large i. On the other hand if the 
orreletaion is

weaker and weaker then it is more and more diÆ
ult to predi
t the value of x

i

for


onse
utive i's.

We 
an introdu
e a measure of this 
orrelation by means of the following 
onstru
-

tion. For a sequen
e of real numbers

(x

1

; : : : ; x

n

) (14.31)

where i denotes the time of measurement iT we assign the dis
rete Fourier transform

numbers ~x

�

~x

�

:=

1

p

n

X

k

e

�i2�k�=n

; � = 1; : : : ; n (14.32)

so that � 
orrespond to the dis
rete frequen
y. They are 
omplex numbers but they

satisfy ~x

�

�

= ~x

n��

. They also have the same norm

X

k

x

2

k

=

X

�

j~x

�

j

2

(14.33)

and there is an inverse transform

x

k

:=

1

p

n

X

�

e

i2�k�=n

(14.34)
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We ask about the 
orrelation in time namely about the quantity

C

�

=

1

n

X

k

x

k

x

k+�

(14.35)

Plugging the expressions for x

�

k

and x

k+�

and using the fa
t that ~x

�

�

= ~x

n��

we get

C

�

=

1

n

X

�

j~x

�

j

2

e

�2���=n

=

1

n

X

�

j~x

�

j

2


os(2���=n) (14.36)

The inverse transform gives

j~x

�

j

2

=

1

n

X

�

C

�


os(2���=n) (14.37)

If C

�

goes to 0 for large � then j~x

�

j

2

has a 
ontinuous spe
trum (and vi
e versa). If on

the 
ontrary C

�

does not de
rease at large � then j~x

�

j

2

has sharp peaks around some

frequen
ies. In the previous 
ase we expe
t 
haoti
 behavior in the latter a regular one.

14.7 Logistic equation

The logisti
 equation has one parameter �

x

k+1

= �x

k

(1� x

k

) = F

1

(�; x

k

) (14.38)

where

x

k

2 [0; 1℄; 1 < � � 4 (14.39)

where � � 4 to avoid moving out of the interval [0; 1℄. The �xed point of this transfor-

mation is for

~x =

� � 1

�

(14.40)

Hen
e � > 1.

The derivative

F

0

1

(~x) = �(1 � 2~x) = 2� � (14.41)

so that if � < 3 then the �xed point is stable sin
e jF

0

1

j < 1. When �

1

= 3 we have a

period doubling point so we start to analyze the new orbit (F

1

� F

1

)

x

k+1

= �

2

x

k

(1� x

k

)(1� �x

k

(1� x

k

)) = F

2

(�; x

k

) (14.42)

The previous �xed point ~x = (� � 1)=� is unstable for � > 3 but there are new stable

points

~x =

� + 1�

p

(� � 3)(� + 1)

2�

(14.43)

and then the new bifur
ation point is

F

0

2

(~x) = ��

2

+ 2� + 4 = �1 ) �

2

= 1 +

p

6 � 3:449::: (14.44)
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Going further the new bifur
ation points turn out to be denser and denser and at the

point (dis
overed numeri
ally by Feigenbaum in 1975)

�

1

= 3:569945672::: (14.45)

at the ultimate rate

Æ = lim

k!1

�

k

� �

k�1

�

k+1

� �

k

= 4:669201 (14.46)

there is a deterministi
 
haos - one 
annot predi
t how the evolution will pro
eed.
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Mathematical introduction

In the notation used in these le
tures indi
es i; j; k : : : will denote 1; 2; 3 i.e spatial

dimensions (Greek indi
es �; � : : : = 0; 1; 2; 3 will denote 4-dimensional quantities). The

summation over repeated indi
es will always be impli
itly assumed. The derivative with

respe
t to time will be denoted by a dot and with respe
t to (
artesian) spatial dire
tions

by

r

i

:=

�

�x

i

� �

i

(14.47)

This operator has well de�ned properties under rotations and transforms tensors into

tensors.

Ve
tors will be often denoted by boldfa
e for example r.

We introdu
e a s
alar produ
t of two ve
tors

A �B := A

i

B

i

(14.48)

with a number as a result and a ve
tor produ
t

(A�B)

i

:= "

ijk

A

j

B

k

(14.49)

with a ve
tor (in 3 dimensions) as a result { "

ijk

is a fully antisymmetri
 tensor with

�

123

= 1 (in 4 dimensions we 
hoose the 
onvention "

0123

= 1).

We have 
y
li
 identity easy to prove by 
y
li
ity of "

ijk

A � (B�C) = C � (A�B) = B � (C�A) (14.50)

We will often use the identity

"

ijk

"

ilm

= Æ

jl

Æ

km

� Æ

jm

Æ

kl

(14.51)

Therefore, for example

A� (B�C) = B(A �C)�C(A �B) (14.52)

In 
ylindri
al 
oordinates

e
�

; e
�

; e
z

; r = �e
�

+ ze
z

(14.53)

we have

_e
�

=

_

�e
�

; _e
�

= �

_

�e
�

; _e
z

= 0 (14.54)

so that the velo
ity

v = _�e
�

+ � _e
�

+ _ze
z

= _�e
�

+ �

_

�e
�

+ _ze
z

(14.55)

and

v

2

= _�

2

+ �

2

_

�

2

+ _z

2

(14.56)
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The lapla
ian on a s
alar fun
tion f reads

�f =

1

�

�

��

�

�

�f

��

�

+

1

�

2

�

2

f

��

2

+

�

2

f

�z

2

(14.57)

The lapla
ian on a ve
tor fun
tion A reads

�A = e
�

�

�A

�

�

A

�

�

2

�

2

�

2

�A

�

��

�

+e
�

�

�A

�

�

A

�

�
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+
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�
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�

+e
z

�A

z

(14.58)

In spheri
al 
oordinates

e
r

; e
�

; e
�

; r = re
r

(14.59)

we have

_e
r

=

_

�e
�

+

_

� sin �e
�

;

_e
�

= �

_

�e
r

+

_

� 
os �e
�

_e
�

= �

_

� sin �e
r

�

_

� 
os �e
�

(14.60)

so that the velo
ity

v = _re
r

+ r _e
r

= _re
r

+ r

_

�e
�

+ r

_

� sin �e
�

(14.61)

and

v

2

= _r

2

+ r

2

_

�

2

+ r

2

sin

2

�

_

�

2

(14.62)

The lapla
ian on a s
alar fun
tion f reads

�f =

1

r

�

2
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(14.63)

The lapla
ian on a ve
tor fun
tion A reads
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r
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r

r

2

�

2

r

2

sin �

�(A

�

sin �)

��

�

2

r

2

sin �

�A

�

��

�

+e
�

�

�A

�

�

A

�

r

2

sin

2

�

+

2

r

2

�A

r

��

�

2 
os �

r

2

sin

2

�

�A

�

��

�

+e
�

�

�A

�

�

A

�

r

2

sin

2

�

+

2

r

2

sin �

�A

r

��

+

2 
os �

r

2

sin

2

�

�A

�

��

�

(14.64)

We de�ne the a
tion S as a fun
tional

S =

t

f

Z

t

i

L(t; x

A

; _x

A

) dt (14.65)
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14. Deterministi
 
haos

so it depends upon the path between t

i

and t

f

.

We want to �nd su
h a traje
tory that is the extremum of S.

We 
onsider the a
tual path x

A

(t). If it is an extremum of S it means that any

deviation from the traje
tory does not 
hange S up to terms linear in the deviation. We

add the deviation

x

A

(t)! x

A

(t) + Æx

A

(t) (14.66)

and we 
al
ulate the 
hange of the a
tion for the perturbed traje
tory (keeping the

initial and �nal times and the end points of the traje
tory un
hanged)

ÆS = Æ

t

f

Z

t

i

L(t; x

A

; _x

A

) dt =

t

f

Z

t

i

�

�L

�x

A

Æx

A

+

�L

� _x

A

Æ _x

A

�

dt (14.67)

We integrate by parts and we get up to linear terms in Æx

A

ÆS =

t

f

Z

t

i

�

�L

�x

A

�

d

dt

�

�L

� _x

A

��

Æx

A

dt+

�

�L

� _x

A

Æx

A

�

t

f

t

i

(14.68)

A

ording to our assumption the endpoints of the traje
tory are kept �xed so the last

term vanishes. Sin
e Æx

A

(t) is arbitrary we 
on
lude that for ea
h A

d

dt

�

�L

� _x

A

�

�

�L

�x

A

= 0 (14.69)

These equations are 
alled Euler-Lagrange equations.

We see that adding a full time derivative to L does not 
hange the equations of

motion so we treat su
h lagrangians as equivalent:

L � L+

df

dt

(14.70)
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