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1 Newtonian mechanics

We all learned at school that the essence of classical mechanics is given by 3 laws of
Newton. As I will try to argue during this set of lectures there are much better ways
of formulating the classical dynamics. Before we start to describe these methods we
formulate the 3 laws

e First law (given by Galileo)

There ezist reference frames (called inertial) in which a body, very distant
from all other bodies, moves along a straight line with constant speed. One
often encounters completely absurd definitions using the notion of force that is
defined in the second law!

e Second law
The notion of force F is defined as
dp
F:=— 1.1
i (1.1)
where momentum p := mv, m is ’amount of matter’ and v is a velocity measured
with respect to the inertial frame.

1. This definition would be rather useless if not for the very fortunate fact that
for two most important interactions, electromagnetic and gravitational, we can
(approximately) give the expression of the LHS in terms of distances between
bodies.

2. the definition is valid also in relativistic physics but the definition of momentum
changes.

3. It is much better physically not to think in terms of forces but in terms of the
flow of momenta.
e ’action s equal to reaction’ — the body acting on another body with the force

F 1s itself subject to the force —F from the other body

this law is a trivial application of the conservation of momentum and we will not
use it in the following.



1. NEWTONIAN MECHANICS

1.1 Definitions

The first law says that far away from any other bodies a = 0 hence F # 0 is a measure
of interactions i.e no interactions = force = 0. The arrow is only to the right since it
may happen that even in the presence of interactions the flow of momenta is zero (for
example when sitting on a chair).

Let us introduce some useful definitions.

For a system of bodies

P= Z Pa (1.2)
a
is a total momentum.
Center of mass definition
R = &Ml (1.3)
> Mg
Hence
MR=> mev,=P (1.4)

so the movement of the center of mass is uniquely given by the total momentum.

If the system is isolated i.e. P=const then the center of mass moves with a constant
velocity so its own (CM) reference frame is inertial and R = 0 — no internal moves can
change the position of the CM. It is usual to prove at this point that the RHS does not
depend on the internal interactions (using F,;, = —Fp, but the statement follows from
the conservation of momentum and is general.

We introduce the notion of angular momentum

Jo=rs X pg (1.5)
The total angular momentum is given by

J = DY raxmeva=) (ta—R+R)xXmq(ve = V+V)

a

= Y (ra—R)xma(va—V)+RxP (1.6)

a

so it is given by the sum of CM angular momentum and the ’internal’ angular momen-
tum.
Differentiating J we get

J=rxp=N (1.7)
where we introduced moment of force
N:=rxF (1.8)

For a system of bodies we have
J=>r.xF, (1.9)
a
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and the usual argument using the third Newton’s law shows that J is conserved only
when we have central forces i.e. r, — r} is parallel to the force between a and b

J= Zra X ZFab = Z (rg X Fap+1p X Fpp) = Z (rg —1p) X Fpp  (1.10)
a b#a a,b,a<b a,b,a<b

But the conservation of J can be proved in much more general situations (by Noether’s
theorem to be discussed later) so we will not discuss it here.

It is however important to emphasize here the difference between the conservation
of momentum and the conservation of angular momentum. The first gives as a corollary
the impossibility to move center of mass position by means of internal forces only. The
second does not have as a corollary that the angle with respect to some inertial frame
cannot change using only internal forces and deformations, as a cat jumping and rotating
clearly shows. We will discuss this issue later on.

1.2 Mechanical energy and potential

If the forces are independently given then

(1.11)

and multiplying and summing we get

d

mgv>
> Farva=4 <Z T) (1.12)

The sum on RHS is the total kinetic energy T'.
2
MoV
T: = —= 1.13
> (1.13)

Therefore integrating over time

Tf—Ti:/ZFa-vadt:/ZFa-dra (1.14)

The most important class of forces are so called potential forces — when there exists
a function V'(¢,r,...) such that

Fo = —VoV(tr1,...) (1.15)

If on top V(¢,ry,...) = V(ry,...) i.e. it does not depend explicitly on time the forces
are called conservative.
Then

Ty —T; = /;Fa-dra = —/za:vaV(rl,...)-dra =—(V; - V) (1.16)



1. NEWTONIAN MECHANICS

ie.
E =T +V = const (1.17)
so the total mechanical energy for conservative potentials is conserved (hence the name).

The total kinetic energy of a system is the sum of the CM kinetic energy and the
internal kinetic energy

S Ma(ve = V)® | MV (1.18)

2 2
T z : mqv Z ’na(va -V+ V)
a a

5 =

a

1.3 Non-potential forces

There are some forces that do not have any potential associated with them. The most
common is a friction force. It is a clear example that the second law is useless if we don'’t
know the force as a function of positions and velocities. The friction force has several
approximate descriptions

e it is proportional to the normal force pressing the body to the surface with the so
called coefficient of friction. It is impossible to calculate it from first principles,
depends on many factors, roughness, humidity, history etc. It also depends on
whether the body is at rest or moves (static and kinetic COF). Polishing the
surfaces can make COF to grow and not to decrease and so on. Even the very
notion of COF is an approximate description of the actual friction force because
for larger pressures the friction force does not respond linearly!

e it is proportional to some power of velocity — usually used for friction in air or
water. Here the situation is better since at least we have Navier-Stokes equations
with the boundary condition that the relative velocity on the surface vanishes —
the condition that does not depend sensitively on the roughness of the surface
(although not totally independent, especially at larger speeds).

In any case the forces that are not of potential type are very phenomenological and much
less interesting for physics with viscosity in fluids as the only exception. Therefore in
what follows we will assume that the forces are of potential type and discuss fluids
separately.

1.4 One dimensional motion

In one dimension with a potential independent of time we can solve the problem to the
very end by quadratures.
We start with the conserved energy
_ ma?

BE=T+U(e)= "~ +U(c) (1.19)

10
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Assuming that we are describing part of the trajectory with positive velocity we have

@ = (m - (1.20)

hence

m dz
t—tozg/ﬁ (1.21)

The motion is possible only for those x for which U(z) < E. If there are two z i.e. z1(E)
and z(F) for which
U(z;) = E (1.22)

and in between U(z) < E then particle stops there and (generically) starts to move back
(it oscillates between z; and z5). The period is equal to

z2(E)
T(E) = v2m / EiizU(:z:) (1.23)
z1(E)

As an example let us consider a pendulum with

mi262
2

E = — mglcos 6 (1.24)

Then writing E = —mgl cos §y where 6y is the maximal angle we get

- 4[/ \/cose — cos 6 (1.23)

Using well known formulae we get

de
4\/7/ \/sm 80/2 — sin® §/2 (4:20)

Introducing sin(6/2) = sin(6y/2) sin £ we get

/2 /2
. 4\[ / f / de (1.27)
\/1 — sin? 90/2 sin? ¢ \/cos2 ¢ + cos?(6p/2) sin? ¢

For small 6y we get

/2
1 1
T=4 £/d§(1—|——€§sin2§+...):27r 5(1+—9§+...) (1.28)
g J 8 g 16

The full result is given by elliptic integrals.

11



1. NEWTONIAN MECHANICS

There is a clever way of calculating this integral. We consider the integral

™/2

d§
I(a,b) =
0/ \/a,2 cos2 £ + b2sin? ¢

As we will show below we can change a and b into the arithmetical mean (a + b)/2 and
geometrical one v/ab, respectively, without changing the value of the integral

I(a,b) = I <“ : b \/E) (1.30)

(1.29)

As it turns out the two means get closer to each other extremely quickly and converge
to a common value ao. Then we get

w/2 d
_ / ¢ _ 7 (1.31)
2 \/a,go cos? £ + b2, sin? ¢ 2000
Proof:
w/2 d
I(a,b) = / 3 (1.32)
o \/a2 cos2 ¢ + b2sin? ¢
We change the variable
z =btan¢ (1.33)
Then -
I(a,b) —/ de (1.34)
’ ) V(a? + z?)(b% + z2) '
We now introduce ) b ) ;
a a
and calculate
1 b
V2 +ab = 3 <t+%>
(a +b)? 1
2 — (42 1 a2) (42 + b2
2+ 2t\/(t + a2)(£2 + b2) (1.36)
Then - -
1 dz 1
— — 1.37
20/ (z2 + ab)(z2 + (a + b)2/4) 20/ t2+a2 (82 +b?) (1.37)

12



2 Lagrangian formalism

2.1 Hamilton’s principle

It was noticed in the XIXth century that the classical trajectories can be formulated as
variational problems i.e. they are extrema of some functional called action that is itself
an integral over time of some function of positions and velocities called the lagrangian.

This observation led to the most fruitful formalisms in classical physics and points
directly to the quantum physics as we will discuss.

We define a lagrangian as a function of positions z#4 and velocities 24 where A runs
over some finite set (for N particles it would be A € 1..3N).

We define the lagrangian as

L(t,z4, 2% = T(z%) — V(t,z4) (2.1)

i.e. as a difference between kinetic energy and potential energy.

We then assume that all trajectories that will be compared start at time ¢; at the
same point z# and end at time ¢; at the same point :z:‘f‘1

We define the action S as a functional

ty
S = / L(t, 2%, &%) dt (2.2)
t;

so it depends upon the path between ¢; and ;.

Principle of Least Action says that the actual trajectory is such that it is the ex-
tremum of S.

We consider the actual path z#(¢). If it is an extremum of S it means that any
deviation from the trajectory does not change S up to terms linear in the deviation. We
add the deviation

zA(t) — z2(t) + dz4(¢) (2.3)

and we calculate the change of the action for the perturbed trajectory (keeping the
initial and final times and the end points of the trajectory unchanged)

t tf
oL oL
— A A _ A s A
65_5/L(t,a: & )dt_/<azA5:c + a0t ) dt (2.4)

i

13



2. LAGRANGIAN FORMALISM

We integrate by parts and we get up to linear terms in dz4

65 = /(81:A (:ﬂ))a Adt+ [:—&c ]:f (2.5)

According to our assumption the endpoints of the trajectory are kept fixed so the last
term vanishes. Since dz“(¢) is arbitrary we conclude that for each A
d < oL > oL 0 (2.6)
dt \ 8z4 ozA )
These equations are called Euler-Lagrange equations.

We see that adding a full time derivative to L does not change the equations of
motion so we treat such lagrangians as equivalent:

df

L=L+-*% 2.7
+ 5 (2.7)

In the simplest case of one-dimensional particle

mz?

the EL equations give
mz = _dv (2.9)
- dz '

i.e. indeed the Newton equation.
For a free particle (V' = const) we can see that such a lagrangian is invariant (up to
total derivatives) under Galilean Transformations v — v + V with V = const:

L L -V
— L+mv + 5 1

2
—L-l—E(mr-V-i-m;/ t) (2.10)

However, the formulation in terms of Euler-Lagrange equations has several important
advantages over the Newton formulation.

First of all it is a variational formulation what points directly to the quantum me-
chanical origin of these equations as we will discuss later.

Second, the equations look the same in all coordinate systems while the Newton
equations are written down only in inertial frames (otherwise one has to add fictitious
forces).

Let us prove the second feature

We change the coordinates z# into y# (with number of y equal to the number of zs)
assuming this change to everywhere invertible. We have

4 0Oz4 .5 ozt

-7 - 2.11

14
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Then A 2,,A 2,,A
oL 8L Oz oL ocz* o°z
B~ 574548 374 5509+ 5.5 (2.12)
oy oz4 Oy ozt oy~ oy oy~ot
and M
oL 0L 01
el (2.13)
oyB 814 oyEB
Now we use the fact that g;% = gz—;? what can be seen from (2.11). Therefore the EL
equations read in the new coordinates
i(@L)_BL_(E(BL)_aL)Ba)A (2.14)
dt \ 8y8 ayB  \dt \oz4 dz4 ) oyB '
so they are equivalent to the original ones (assuming invertibility of the change).
2.2 Mechanical similarity and virial theorem
Assume that the potential (independent of time) has a property that
U(arl,arz,...) :akU(rl,rg,...) (215)
We substitute simultaneous change of time
r, — ar;, t— ,Bt (2.16)

and require that the kinetic energy has the same factor in front as the potential i.e.

a2

5 of = B =al k> (2.17)
Then the whole lagrangian is just multiplied by o i.e. all the EOM will be the same
(with rescaled time and positions).

As an example let us quote the Coulomb potential U = —v/r Then

k=-1=pf=as (2.18)

Hence we recover Kepler's third law

T\>  (R\°
— | == 2.19
(z) = (%) 219

Now we turn to another application — so called virial theorem.

Consider a bounded system of particles. The kinetic energy is a quadratic form
of velocities so (even for non-diagonal case from the Euler theorem on homogeneous
functions))

oT
— Ova -

oT (2.20)

15



2. LAGRANGIAN FORMALISM

Introducing momenta

8T
= 2.21
P Bv. (2.21)

we can write
d )
2T:Zpa-va:&<2pa-ra>—Zra-pa (2.22)
a a a

Let us take the average over time of this equality. The average of a full derivative tends
to zero with growing time since

_ . 1 T
Fi=time oo /0 F(t)at (2.23)

On the RHS we replace p, by derivatives of the potential and we get
— U
2T = 2.24
2o, (2:24)

Using again our assumption on U we get the virial theorem

oT = kU (2.25)
So that in terms of the total energy
_ k = 2
T=——F U=—— 2.26
k+2"' k+2 (2.26)
The most famous example is the Coulomb potential where £ = —1 and (with F negative)
T=-E, U=2E (2.27)

Extracting energy from the system (for example by radiation) gives more negative E
so T' grows — that’s one of the reasons why the Sun gets hotter over time (the main
one being a very sensitive dependence of the nuclear reactions in the Sun’s core on the
parameters of the core).

16



3 Examples

3.1 2-dim case in polar coordinates

We have )
L= m(i® +1°¢%) — U(r,¢) (3.1)
EL egs. read
. ou
. 2 _ov
mr = mreo e
d, . oU
- = 3.2
Gmd) = 5 (32)
The first equation includes the centrifugal force and the second is (in 3-dim notation)
oJ
— =N 3.3
5 (3.3)
since - 1 8T
VU =——e, — —— 3.4
or " 1 8g? (3:4)
and -
r x (=VU) = —a—¢e,. X €4 (3.5)
with _
J = mrige, x ey (3.6)

3.2 Reduced mass

If we have two bodies without any external interactions we can write

mir?  mor2
L= ; L4 % — U(|ry — 2)) (3.7)

We know that without external interaction the CM moves with constant velocity. There-
fore we choose CM system
miry + mors =0 (3.8)

and then we introduce
r:=ri;—rp (3.9)

17



3. ExXAMPLES

Solving these two equations we have

m m
rn=——>r rp=-—" 1 (3.10)
my + Mo mi + mo

Plugging these expressions back into the lagrangian we get

L= “7‘”2 —U(r) (3.11)

where the reduced mass u
mime

-2 3.12
b= (3.12)

So the problem of two bodies boils down to the problem of one body with reduced mass.

3.3 Rotating reference frame

We have a free particle in 2 dimensions

m,. .
L= 5(::;2 +4?) (3.13)
Introducing
z =1 coswt +y'sinwt, y=—z'sinwt+y coswt, (3.14)
we have m
L= 0 ((:c' —wy' ) + (@ + ww')2> (3.15)

The EOM read

i — 2wy —wiz =

7+ 2wt —w?y' = 0 (3.16)

where we recognize the centrifugal force w x (w x r) and the Coriolis force 2w X r.

3.4 Kepler orbits

We discuss a test body moving in the most important potential in 3 dimensions

U(r) = —g (3.17)

Let us recall the beautiful solution of the problem of orbits given by Laplace. We notice
that the angular momentum J is conserved so the orbit has to lie in a plane perpendicular
to J. Introducing polar coordinates in this plane we have

r =re, =V =re, +re, (3.18)

18
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hence

J=mr xv=mr’e, xé& (3.19)

We now calculate the time derivative of v x J

d GM
G(VXI)=vxJ=—="re x (mre, x &,) (3.20)
We see that 72 cancels out and using
e X (e, x&)=—é, (3.21)
we get
d
E(v xJ—GMme,) =0 (3.22)
so that
v xJ—-GMme, = GMms (3.23)

where s is a constant vector.
Using this vector we can write

J2=J-(mrxv)=mr-(vxJ)=GMm?r- (e, +s) = GMm?r(1 +ecosp) (3.24)

where ¢ is an angle between r and s and € is the length of s called the eccentricity.
Therefore the orbit is given by
. J? _ P o J?
 GMm2(1+e€cos¢) 1+ecosg’ P= GcMm?

(3.25)

which is an ellipse with the semiaxis (obtained from /z2 + 32 + ez = p = (z(1 — €2) +
pe)? +y3(1 — €2) = p?)

a:LEZ, b=avV1-—¢? (3.26)

1—

The middle point is ae from the focus.

Using
ds 1 J
i = 3.27
i 2V 2m (3.27)
we get
JT 22 2 2\m2 2,2 2 2 2
7rab:2—:JT:GMma,(1—e)T =4m°m“a“a®(1 — €°) (3.28)
m
hence
GM
3 2
=—T 3.29

19



3. ExXAMPLES

3.5 Central potential
We consider a general potential depending only on the distance U(r) then
J=rxp (3.30)

is conserved. We can choose the spherical coordinate system such that z is directed
towards J and then the whole trajectory has to lie in the § = 7/2 plane. We therefore
neglect from now on the 8 variable. We can write

L= %(7’*2 +r24?) — U(r) (3.31)
The EOM for ¢ reads .
mr?¢ = const (3.32)

1.e. the conservation of J in these special coordinates. We shouldn’t solve this equation
for ¢ and plug it back to L! But we can use the second conserved quantity i.e. energy -
there we can do it.

m : m J?
= T2 242 _m.o .
252 +1240) + U(r) = 2% 4 s U(r) (333)
Therefore
i = | 2B - Ur) - (3.3)
N m m2r2 '
with the sign depending on the actual moment of motion. Therefore
t= / dr + const (3.35)
VEE - U(r) - 5
or 14
:/ r = + const (3.36)
r2\2m(E - U(r)) - 5

3.6 Relativistic rocket

A rocket of (variable) mass m throws backwards Am with velocity w (Am # —dm in

the relativistic case since it costs energy to throw what changes the mass of the rocket).

The velocity of the rocket is v. We have to find the dependence of the rocket mass on v.
We start with conservation of momentum and energy

d( muv ) _ ulAm
%) i

q mc? _ Amc?
1-2% Ji-%

(3.37)

20
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where W
U= T (3.38)
c2
For nonrelativistic rocket we would get Am = —dm as we would expect.
Therefore

d %) — _ud (%) (3.39)
(=) (2

Expanding and multiplying by /1 — Z—; we get

2d - d
vdm + mdv + mvv2fu =2 ::}U <dm+ Lﬂ:’) (3.40)
(1-%)c T (1-%)e
Reorganizing the terms we get a surprisingly simple equation
dm dv
w(l— %)
with a solution .
M [1+Z2\%™
E:<1—§> (3.42)
(o4
For v/c — 0 we get the well known result
M v
— =ew (3.43)
m
while for w = ¢ we get
M2 _ m2
V= (344)

and for m — 0 we get v — ¢ as could be expected.

3.7 Three body problem

As is well known the three body problem is unsolved analytically - many great physicists
tried to find a new integral of motion (besides energy and angular momentum) but with
no success. Poincaré analyzing the system had the first idea of a chaos in deterministic
systems. There are special solutions (like the 8-form solution of Christopher Moore in
1993) but generally we have to resort to numerical solutions.There are simple facts that
can be drawn and we would like to point one of them.
We write the lagrangian as

L=T-U (3.45)

where

mlv% mz’l}% mgvg

2 2 2

T (3.46)

21



3. ExXAMPLES

and
U( ) Gm1m2 Gm1m3 Gm2m3
r;,rs,rz) = — - -
. ry —ra| |ri—rs| |rz —r5
The total energy is conserved
E=T+V

Let us introduce (in the CM frame) the object
1 2
I= 5 Xz: m;r;
Differentiating twice wrt ¢ we get
d’r 2 :
3 = 2 MU ) T
1 7

Using EOM we can rewrite this as

d?r Gm;m;
E:2T+Zrz 7';’. J(I'j—ri)
i ij

where the sum is over 7 # 5. Expanding we get

d?r
— =T+ E=2E-U
de2 +

If B < 0 then
~U=T-E>-E

Then a
inf(712,713,723) < —E(mﬂng + mimg + mams3)

If E > 0 then I and hence I for large times can only grow.
I>0+I(t—t)+ B(t—t,)?

It has to go to infinity at large times so the trajectory has to be open.

3.8 Noether’'s theorem

Let us start with the definition of the constant of motion G(g,, 4, t):

ﬁ_z<%-+ﬁn)+§_o
dt ~ 2« \8g, " " 8g,%) " et

when the EOM can be used.
We have two straightforward examples.
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Energy H
oL
H:= jo=—— — L 3.57
za:q 04a (357)
if I does not depend explicitly on ¢ since then

dH d 8L 8L
- _ - - i, =0 3.58
at Zi:(dtaqa aqa>‘-’ (3:58)

because of EOM.
If L does not depend on some g; (but may depend on ¢;) for some b then

py = 22 (3.59)
" 8g '
is the constant of motion. The proof is straightforward.
The Noether’s theorem is a generalization of these concepts.
If we have a one-parameter map
qa(t) - Qa(sit)i Qa(ott) = qa(t) (3'60)
such that 5
aL(Qa(sat)aQa(sat)at) =0 (361)

we say that this map is a (continuous) symmetry of the theory (if time also changes
under the map the argument has to be slightly generalized).
We have then

0 : (8L 8Q. 8L 8Q. B
0 - %L(Qa(s)t))Qa(s)t))t) 50 - <6qa, 65 + aqa 65 >s:0 -
_d 0L 8Q,
Cdt <8q'a Os )5—0 (3.62)
so that 5L 50
2 3.63
<B(ja 0s )5—0 ( )

is conserved along the trajectory.
Examples

e if the spatial translations are a symmetry

rq — g+ Sn (3.64)
then the conserved quantity is
oL
Xa:afa-n:%:pa-n:P-n (3.65)

i.e the total momentum in the direction n. If n is arbitrary then the total momen-
tum is conserved.
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e if the spatial rotations around the axis n are a symmetry

r, »Tro+snxr (3.66)
then the conserved quantity is
oL
ZBI" -(nxra):Zpa-(nxra):n-(raxpa):n-J (3.67)
a a a

i.e the total angular momentum in the direction n. If n is arbitrary then the total
angular momentum is conserved.

24



4 Lagrangian formalism with constraints

4.1 Types of constraints

In the previous lecture we have defined lagrangians and discussed their properties. It
is very often the case that the variables are subject to constraints and such a situation
requires special treatment.

There are several types of constraints

e holonomic
— equalities (or two-sided constraints)
fo(t,z?) =0, a=1,...,3N —n (4.1)

or inequalities (one-side constraints)

fo(t,z?) >0, a=1,...,3N —n (4.2)

— depending on time
fo(t,z?) =0, a=1,...,3N —n (4.3)

called reonomic or
fo(z?) =0, a=1,...,3N—n (4.4)

called scleronomic constraints

e non holonomic - all other like constraints that depend on velocities and cannot be
integrated to ones depending only on positions

We will deal mostly with holonomic, two-sided, scleronomic constraints.
In the presence of constraints we define the lagrangian as

Le = L(z*, %,t) + > Aafa(z?,t) (4.5)

where A\, are auxiliary additional coordinates called Lagrange multipliers.
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4. LAGRANGIAN FORMALISM WITH CONSTRAINTS

The EL equations wrt A give indeed the constraint equations
0L, A
—— = fo(z,t)=0 4.6
2 = fala*,) (46)
On the other hand the EL equations wrt to z# have additional terms:
i(@L)_ oL _ Ofa
dt \ 6z4 ozA % ozA

The RHS plays the role of additional forces coming from the presence of constraints.
If the potential U and f,'s are independent of time then the energy is conserved

dB _ d (§~;a0L 1) 5~y Ofa _ ), 00
E‘dt(%:w 824 L)‘%:q"‘zo;)‘“an_ 2 a7, (48)

(4.7)

where we used % =0.

4.1.1 2-dim pendulum of length d

1
L.= Em(z'2 + %)+ mgz + (2% + 22 — d?) (4.9)
One equation is of course the constraint equation
224+ -d>=0 (4.10)
The two other read
mzZ —mg =2\z, mZ=2\z (4.11)
Substituting
z =dsinf, 2z =dcosf (4.12)

we identically satisfy the constraint equation and for the other two we get (after multi-
plying by sin or cos and adding/subtracting)

—mdf — mgsingd = 0
—mdf? —mgcosf = 2Xd (4.13)

The first one is the usual equation along the constraints hypersurface, the second one
gives the reaction force perpendicular to constraints hypersurface.

4.2 Reduced lagrangians

It is very useful that if we are not interested in the reaction forces and want to solve
the equations only along the constraints we can do so in an ’easy’ way (this is the usual
physical approach while the reaction forces usually have to be calculated in technical
applications). Instead of z# let us introduce new coordinates

4 = qa, fa (4.14)
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If the constraints are all independent (at least in the vicinity of some point in the
configuration space) one can introduce n independent variables ¢i,...,q, and express
all z# in terms of g; by solving these constraint equations.

= z%q1,...,qn) (4.15)

and plug these solutions to the equations of motion.
As we have proven the EL eqgs. are independent of the choice of coordinates so we
can immediately write

d <6L) L _, 8fa (4.16)

dt \8da) 8¢a "“64a
But in these coordinates f, are coordinates by construction independent of g, so the RHS
vanishes. Therefore the lagrangian in terms of g, can be considered as self-contained and
the solutions will be automatically along the constraints hypersurfaces (but we cannot
calculate from it the reaction from constraints).

4.3 Lagrange points

Imagine two large bodies m; and ms circulating on a circular orbit around each other.
We describe the system in the rotating CM frame i.e.

G(mi+m
w? = % (4.17)

where d is the distance between the bodies. The bodies are

d d
=t = (4.18)
m1 mo
from the CM. The equation for w? comes from the equality
Gmam
miw’r; = % (4.19)

Now we add a third very small body ms, ms < mi, mo and ask about the points in
space where there is effectively no force from the two large bodies. We immediately
see that the small body has to lie in the plane orthogonal to the rotation (otherwise it
would be attracted by both large bodies). Introducing the rotating frame with z axis
joining large bodies and y orthogonal to it (but in the plane of rotation) we write the
lagrangian for the small body

L=-—"2 ((a’: —wy)? + (3 —I—w:c)2> +

Gm1 ms3 Gm2m3
5 +

4.20
T13 723 ( )

where

T3 = \/(a: +dp/mi)? +y2,  ro3 = \/(33 —dp/m»)? +y? (4.21)
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4. LAGRANGIAN FORMALISM WITH CONSTRAINTS

We write the EOM

28

Gmims(z +du/m1)  Gmams(z — dp/mo)

m3(Z —wy) = msw(y +we) — 3 3
713 723
. ) ) G G
ma(j+wi) = —maw(s — wy) — m13m3y — m23m3y (4.22)
T13 733

We are looking for points (z,y) for which and £ =y = 0 and 2 = § = 0 therefore

0 — Wiz Gmi(z +du/mi)  Gmao(z — du/m2)

713 735
G G
0 = Wiy —22¥ =M (4.23)
713 723
e If y = 0 the second equation is trivially satisfied and we are left with
e — Gmi(z +dpu/m1) Gma(z —du/me) (4.20)

|z + dp/mq[? |z — dp/mo?

There are 3 solutions to this equation in the intervals z < —du/my, —du/m; <
z < du/ms and = > dp/mo (in each one solution). They are called Lo, L; and L3
and one can show that they are unstable i.e. deviation from these points makes the
acceleration pointing away from these points. They are used for satellites orbiting
the Sun together with the Earth since being unstable they don't gather cosmic
dust.

For example if z > z3 (i.e. on the right of L3) we have from the first equation
Z > 0 since

ot Gml(:v*;du/ml) |, Gmal ;d#/m2) L (4.25)
713 23

so my is repelled from Lg.
e if y # 0 the second equation gives

Gm Gm
713 723

Multiplying it by z and adding to the first equation we get

T13 = To3 = d (427)
where the last equation comes from the equation for w?. So we have two points
forming equilateral triangle in the rotation plane. They are called L4, and Ly
and one can show that they are stable i.e. deviation from these points makes the
acceleration pointing back to these points. There are Kordylewski clouds (1961)
around L5 not yet fully confirmed.
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4.4 Orbits in the Schwarzschild metric

we start with the lagrangian in the Schwarzschild metric (for 8 = 7/2)

52 242
S:—mc2/dt\1 e r r’¢

— 4.28
rooc(l-2) (4.28)
where oG
rg="3 (4.29)
We calculate the momenta
o = mr
. =
) 2 42
(1- rr/r)\/l ~ I 62(17‘_%9) —
iy
s mr ¢ — (4.30)
1 Tg P2 ‘)"2¢2
7 2(1-2) e
Then the energy
1—
E=) gpi— L= me(1-re/m) (4.31)
i 1 _rg 72 _ 7.2¢2
r 52(1,%9) c2
Calculating ¢ from J
(1—7ry/r)Jc
¢ = 3 (4.32)
we get
? 2.2
2 r o\ (L—rg/T)J%c® 54
E _<1—7'g/'r+r> v =m-c (1 —ry/r) (4.33)

Writing

E=FE+mc (4.34)
we get

<E+ GMm) om | E* 2GM _ r?+r?

72 + T2c2 + r3c2 | ph (4.35)
Introducing w = 1/r and differentiating we get
GMm? 3GMw?
72 + 2 w+w

(4.36)
This equation is exact and leads to the rotation of the perihelion of planets (for Mercury
42’ per hundred years).
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4. LAGRANGIAN FORMALISM WITH CONSTRAINTS

Without the second term on the LHS we would get the Kepler orbits » = p/(1 +
ecos ¢). With the second term (very small) we substitute

w = A+ Bcos(ag) (4.37)

From the classical solution we have

(1 + ecos(ag)) J?

— —a(l —¢€? 4.
DR, b= G =01 — ) (438)

where the large and small axis
a=—L_ b=a/1-¢& (4.39)
— €

Plugging this solution into (4.35) we get the coefficient in front of cos(a¢)
, 6GM 3rs _ 2GM

l-a®= Py = 2= ) TS =3 (4.40)

Hence L O "
2a(1 — €2) )

so that . 37 we)
a1l —€?) '

For the Mercury T = 88 days (100 years ~ 415 rotations), a = 57.9 mln km, ¢ = 0.206
so it gives & ~ 43.5"” /100 years.
Using the same formula (4.35) we can derive the equation for the trajectory of light
(m =0).
E? 2GM  r?4r?
J2c2 T p3g2 | ph
where B = hv and J are measured far away from the Sun. We therefore have an exact
equation

(4.43)

3 2
W' +w = T;w (4.44)
Constant r is possible when
3
Toh = 5T (4.45)

but this trajectory is unstable: w = 2/(37;) + esinh ¢ + O(€2).
To derive the bending of light formula we start from r, = 0 i.e.
__cos¢

= 4.46
w=— (4.46)

Using this on the RHS we get to the first order in r;

_ 3rgcos?(¢)

w' +w= 4.47
272 (4.47)
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with a solution
+ —5(1 +sin® ¢) (4.48)
T

so that w = 0 for

™ Ts

g T8, 8= (4.49)

¢ = =£(

so that the bending is 27;/7¢. The exact solution is given in terms of the Weierstrass
function that will be discussed later.

We can derive the difference in time (with respect to the far-away observer) for the

Earth and for the GPS satellites. We have

L T 72 7.2(1',2
dt _dt\ll_7_c2(1—%’)_ - (4.50)
where r, = 8.75 mm. Assuming that we are on the Equator the time runs slower by

r=6.4-10°m, T =86400s = At =60 us/day (4.51)
For the GPS satellites (making full circle in 12 hours) the time runs slower by

r=26.6-10° m, T =43200s= At=22 us/day (4.52)

so the time runs slower on Earth than in satellites by 38 us/day where 45 ps/day comes
from general relativity (satellites are further away from the center of the Earth than the
surface) and -7 us/day from special relativity (satellites are faster than the surface of
the Earth)
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5 Oscillations

5.1 Many-body problem

Lagrangian can be written in general as
1 .
L = Maydads — U(q) (5.1)
where M is real, positive, symmetric, constant matrix. We can assume that M is di-
agonal. Let us assume that there exists an extremum of U i.e. at some point gg all
derivatives of U vanish. So we can write in the vicinity of ¢g

%a(t) = qoa + n(t) (5.2)
and expand the EOM up to O(n) (in matrix notation)
Mij=-Vyp=iH=—-M Vg (5.3)
where
= s (54)
99| _

We now look for eigenvalues of this equation. Let us first prove that they are real. We
assume that for some 7, we have

e = =Xk (5.5)
where A2 and 7 can be a priori real or complex. We rewrite it as
~M7 WV = =Xy (5.6)
so that after we multiply by 77 we get
e Vil = N M (5.7)

Since V and M are real symmetric matrices A has to be real as well. Therefore all
eigenvectors can also be chosen real.
Now we distinguish two situations

e all )\i positive - the system is stable
n(t) = > Aene cos(Ak(t — tr)) (5.8)
k
e one or more A2 is negative - the system is unstable in the direction of the eigen-

vector 7.

n(t) = Aene (exp(Ae(t — tr)) + exp(—Ae(t — tx))) + ... (5.9)
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5.2 Forced oscillations

We discuss here the problem of oscillations (with friction) under the external periodic
force
&+ 2v% + wiz = Acoswt (5.10)

As always the general solution is given by a sum of a special solution of the inhomoge-
neous eq. and a general solution of the homogeneous eq. It is more convenient to write
in the complex form

&+ 2y% + wiz = Aelt (5.11)
Substituting .
z,(t) = Bel“* (5.12)
we find the special solution:
A
B= (5.13)

—w? + w? + 2iyw
The real part of the solution solves the original problem i.e.

A

zs(t) = cos(wt + 0 5.14
S( ) \/(—WQ +w0)2 +4:’)’2w2 ( ) ( )
where
2
tans = — 1~ (5.15)
—w? + wj

5.3 Parametric resonance

Let us discuss the problem of solutions of a one-dimensional oscillator with variable
parameters (for example mass or the moment of inertia for the pendulum). We can

write
d

dt
If we introduce different time variable d7 = d¢/m(t) we have % + mkz = 0 so that we
don’t lose generality if we consider

(m(t)2) + k(t)z =0 (5.16)

i+ w(t)z =0 (5.17)
We assume that w(t) is periodic with some period T i.e.
wit+T)=uw(t) (5.18)

If we have two independent solutions of (5.17) then the property (5.18) requires that
each z;(t + T') has to be a linear combination of these two solutions. We can always
diagonalize this relation and choose these combinations in such a way that

:cl(t + T) = ,u,lzz:l(t), wg(t + T) = ,llgil)z(t) (5.19)
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where now in general u; and z; can be complex as a result of diagonalization (if they are
complex then necessarily u% = u; since w?(t) is assumed to be real). We assume that u;
are not simultaneously equal to 1. The procedure depends on the fact that any square
matrix B can be diagonalized by PBP~! with P possibly complex, the only exception
being when some eigenvalues have multiplicity > 1 — then it is possible that the resulting
matrix is of Jordan form. Here we assume that two eigenvalues are distinct (otherwise
they would have to be both equal to 1, see below)
There is a relation between p; and ps coming from the Wronskian of z; and z,:

d . . . .
a(mlmz — Toz1) = 0 = Z129 — Toz1 = const (5.20)

But the LHS for t — t + T gets multiplied by pius so we get

M1 = 1 (521)

Therefore

pi complex = |u;| =1, puo = pi

1
w; real = po = — (5.22)
M1

If u; are complex their norm is one so the solutions just rotate after £ — ¢+ T. However,
if they are real then one of them (say, 1) is bigger than 1. It means that after nT it
gets the factor u7 i.e. it grows exponentially with time - then such a phenomenon bears
the name ’parametric resonance’.

Let us discuss this phenomenon in a very well known example known from childhood
- the see-saw. We very well remember that to make the amplitude bigger one has to
make the leg movements with twice bigger frequency than the proper frequency of the
see-saw. Let us substitute

w?(t) = wi (1 + hcos(2wy + £)t) (5.23)
where h is small and € < wy. We substitute two independent solutions in the form
z = a(t) cos(wo + €/2)t + b(t) sin(wo + €/2)t (5.24)

where a(t and b(t) change slowly in time, much slower than wq. Substituting this form

and neglecting d, b and cos(3wot), sin(3wot) we get
R hwo . . th
—(2a + be + Tb)wo sin(wp + €/2)t + (2b — ae + Ta)wo cos(wp +€/2)t =0 (5.25)

The functions in front of both have to be simultaneously equal to 0. We assume that

(a(t), b(t)) ~ e(4, B) (5.26)
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and look for solution with s > 0 (and there also should be accompanying solution with

s < 0). We get
1 hwg \ 2
2 0 2
= |l—) — 2
s 2 [( 5 ) € ] (5.27)
And indeed for
——20 <eg< —20 (5.28)

we have real solutions and in that interval there exists the phenomenon of parametric
resonance.
If we include friction we can write

&+ 2% 4+ wi(t)z =0 (5.29)
We introduce
y(t) = e "tx(t) (5.30)
and we get
j+ (W (t) -7y =0 (5.31)

We can repeat the steps done before while replacing wy — w, = \/w? — 92 and then we
get

(s—AP =1

1 l(%)z - 52] (5.32)

therefore we have parametric resonance if

—1/<%>2—4)\2<s<\/<%)2—4)\2 (5.33)

There is also a possibility of the parametric resonance if w = 2wp/n but both the
exponent s and the allowed width shrink as A™ i.e. are then much smaller. We discuss
below the case n = 2:

w?(t) = wi(1 + hcos(wg + €)t) (5.34)
and we substitute (note the shift in z(¢)!)
T = a(t) cos(wp + €)t + b(t) sin(wo + €)t + c(t) (5.35)

Assuming a, b, ¢ ~ exp(st) and neglecting sin(cos)(2wp + 2¢) we get

_ha P

c= 5 , _2saw0 — 2bw0€ = 0, —20,0./06 + 28b0Jo - Oa' =0 (536)
what gives
45 + 4€® + h%wpe = 0 (5.37)
Hence 5
h
sER if — Z’°<e<0 (5.38)

so that indeed s, € ~ h2.
The same parametric resonance is responsible for Faraday waves.
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6 Rigid bodies

6.1 Inertia tensor

The kinetic term for a body rotating with the angular velocity w
1 2 1 2 1
T= 5 ;mara =5 ;ma(w X Irg) = EwiI w; (6.1)
where the inertia tensor is given by
I =" mg(r26Y — rirl) (6.2)
a
or for a continuous distribution
I = / drp(r)(r267 — rird) (6.3)
A symmetric real matrix can alway be diagonalized i.e. there exists an orthogonal
coordinate system in which I is real and diagonal, moreover all eigenvalues are in this
case non-negative (one can consider b;I*’b; what is obviously > 0 for arbitrary vector r

to see this).
The sum of the eigenvalues is given by

69 1; = 2/d37'p(r)7'2 (6.4)
For example we can get the eigenvalues for the ball of radius R
3,, 2 _ 8M 5 2 2
3, =2 [ d°rpr® = ?pR =1 = gMR (6.5)

For a disc and the axis perpendicular to the disk we have

R* MR?
I; = p/rdrd¢r2 _Tre_ (6.6)
2 2
while for the axis in the plane of the disc
MR?
I =1, = 2 (6.7)

since the sum has to be equal to 2 [ 27rrdrpr? = M R2.
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If we measure Iy wrt center of mass then wrt to any other axis there is a simple
formula - N - o
IV = I + M(c?6Y — c'c) (6.8)

where c is a vector connecting CM with the new axis.
The angular momentum is given by

J= Zmara X Tg = Zmara X (W Xxr,) = Zma(rgw — (w - rg)ry) (6.9)

a

hence
Ji = L;jw; (6.10)

Hence J does not have to coincide with w and it leads sometimes to a very ’strange’
motion.

6.2 Euler equations

Using a rotating coordinate frame and introducing the principal axes of the inertia tensor
e; in this frame with the eigenvalues I; we can write

J= Z Lw;e; (6.11)
i

Differentiating it wrt time we get

Z Luw;e; + Z Lw;(wx e;)) =N (6.12)
i i
where N is the moment of force.
We get in components
Iju)j + Z Lw;wg€ijr = N; (6.13)
k

i.e.

Iy + (I3 — I)wsws = Ny
Do + (I — I3)wiws
Izws + (I2 — I1)waw1 = N3 (6.14)

[
5

They are called Euler equations.

6.2.1 Free body

Let us analyze these equations for a free body (N = 0).
If we multiply each of them by the respective w; we get the conserved energy

Ilw% IQ(U% Igwg
2 2 2

= F = const (6.15)
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If we multiply each of them by the respective I;w; we get the square of the conserved
angular momentum
IPw? + IZw? + IZw? = J? = const (6.16)

so we have 2 conserved quantities and only one Euler equation is independent. Analysis
of such systems led to the theory of elliptic functions in the XIXth century. Let us note
that

2E=J w (6.17)

Since both F and J are constant it means that the projection of w on the direction of J
is constant.
We now consider 3 cases

e When Iy = I, = I3 i.e. spherical body we have all w; = const and w is in the
direction of J.

e when I; = I; then w3 = const and we arrive at the equation for w; >

w1 — wwy =0, Wy + wwy = 0, (6.18)
where
w= <1 - é) ws (6.19)
I
Therefore
w1 = wpsinwt, ws = wycoswt (6.20)

so that in the body frame w precesses around ez with angular frequency w in
different directions depending on whether I; < I3 or I; > I3

e when all of them are different I1 < Ir < Is we will discuss only the case when only
one of the initial w; is large and two other very small.

If wy = Q is large and two other small (d» and d3) then neglecting quadratic terms

we get
05 = Apsinét, 83 = Azcosét (6.21)
where
= U2~ L) —h)g (6.22)
I7)I3

so it is stable.

The same situation is when w3 = Q is large and two other small (§; and d2)

51 = Al COos ﬁt, 52 = AQ sin §t (6.23)
where
I I
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40

and
Ii(Is — I)
Ay =/ —————"A 2
TN L -n) (6.25)

so it is also stable.

We consider now the third case when w, = Q is large and two other small (§; and
53). Then

0 = Ajcoshét, 03 = Azsinh(t (6.26)
where
¢ = wfs — Ijzgf mELVR (6.27)
and
Ay = — %Al (6.28)

so it unstable. Numerical analysis shows that later the nonlinear terms take over
and finally the motion is it is periodic (with the period given approximately by
T ~ 1/¢ the precise value given by an elliptic integral) and ’jumps’ from Q to —
while two other are large at the jump.



7 Rigid bodies part |l

7.1 Euler angles

We introduce now the description in the space frame X,Y, Z (and not in the body frame
as before). The Euler angles are defined as subsequent rotation around z axis by ¢ then
around new z’ axis by 6 and then again around the new axis z"by 9 (see the picture).

To unwind the rotation we use the matrix (note the signs of angles, reverse to the
usual ones) wrt the Z axis, then X axis and again Z azis:

cosy siny O 1 0 0 cos¢ sing 0
R(y,6,¢) = | —siny cosyp 0 |-| O cosf sinf |-| —sing cos¢ O
0 0 1 0 —sinf cosé 0 0 1

Multiplying we get

cos 1 cos ¢ — sin 9 cos fsin ¢ cosysing +sinycosfcos¢p sinfsiny
R(¢,6,9) = | —sinycos¢p —cosypcosfsing —sinysing + cosycosfcos¢ sinbcosy
sin @ sin ¢ —sinfcos ¢ cos @

We can use this matrix to unwind the body frame unit vectors e1, es and es to the space
unit vectors (e, ey, e;). Therefore

R(’(ﬁ, 6, ¢)(91162)e3) =1 = (91)92)93) = R(’(ﬁ, 6, ¢)71 = R("/}) 0, ¢)T (71)

so we have
cos P cos ¢ — sin Y cos fsin ¢
e; = | cosysin¢ + sinp cosfcos ¢ (7.2)
sin fsin ¢

— sin 4 cos ¢ — cos 9 cos 6 sin ¢

e, = | —sinsin ¢ + cos P cos b cos ¢ (7.3)
sin 6 cos ¥
sin 8'sin ¢
e3=| —sinfcos¢ (7.4)
cos @
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y
Fig. Euler angles
In the body frame we have
W = wie; + wsey + wses (7.5)
To get the expression for w; we use the fact that
& =wxXe; (7.6)
so that for example
€3 = W X e3 = —Wies + whe; (7.7)
therefore
ey €3 = —w, e - €3 = Wy (7.8)

Calculating the above expressions we arrive at
w = (psin@siny + fcosp)e; + (¢psinfcosy — siny)es + (¥ + cosb)es (7.9)

We can also express J in the space frame (for simplicity only in the case I; = I)
using the previous expressions for ey, e, es. We get

I3t sin @ sin ¢ + 16 cos ¢ + (Is — Il)cﬁcos f sin @ sin ¢

J=| —Ispsinfcos ¢ + I1fsin ¢ + (I — Is)¢sin f cos f cos ¢ (7.10)
I3(¢ 4+ pcosB) + (Iy — I3)psin? @

7.2 Wobbling plate

If we apply the formulae to the wobbling plate with I; = I, = M R?/4 and I3 = M R2?/2
we know that the frequency (in the body frame) ws is constant and that w; and ws
rotate with frequency

Q= <1 - %) ws (7.11)
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with
w1 = wp sin Qt, Wy = Wy cos 2t (7.12)

We have
Wi+ wi = wd (7.13)

but on the other hand it is equal to
w? + w2 = $?sin? 0 + 62 (7.14)

If we choose J to lie in the Z axis then § =0, 6 = 6 (we can see it from the expression
for Jycos¢ + Jysing = L6 = 0). Then wy = ¢s1n 6o, ¢ is constant. From

wy = $sin b sinyP = wp sin Q¢ (7.15)

hence
Q=19 (7.16)

so ¥ is also constant. Hence

. . I .
w3:¢+¢cos€0:Q+¢0059:w3—I—3w3+¢00590 (7.17)
1
so that I )
3W3 w3
= = 7.18
Iicosfy cosfy ( )
For small 6y the plate wobbles with twice the frequency of rotation.
For the Earth I .
3— 11
RN —— 7.19
I3 300 ( )

so we would expect the period of wobbling 300 days. It is actually around 430 days with
the w precessing around the North pole with radius about 10 m (but rather irregularly).

7.3 Heavy top

We now consider a symmetric top spinning in the gravitational field on its tip. The
rotation is counted form the tip so both I; and I, are bigger by MI? from the usual
inertia coefficients calculated at CM. Let us write the lagrangian using w; but treating
Euler angles as the fundamental variables

1 1
L= EIl(w% + w3) + §I3w§ + Mgl(1 — cos 6) (7.20)
We use the expressions for w; to get

L= —I1(¢ sin? 6 + 62) + I3(¢+¢Cose) + Mgl(1 — cos8) (7.21)
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We see that there are 2 conserved momenta

oL .
J3 = % = Ig(’l/} + ¢COS 9) = I3ws = const (7.22)
and
oL o
J, = 6_¢ = I sin” 8¢ + Isw3 cos 8 = const (7.23)
We can solve for ¢
. J, = J )
e (7.24)
I sin” @

We also have the conserved energy
1 ; . 1
E = §I1(¢2 sin 8 + %) + 5[30/% — Mgl(1 — cosf) (7.25)
Let us rewrite this expression using the constants

. 1 . Y — 2
B=ltrey (J, — J3cosf)

1 .
— Mgl(l —cosf) = —I,6% + U.++(6 7.26
- Tanrg ~ Mol(l —cos6) = S0+ Uug(6)  (726)

where £ = E — 1303

If J3 # J, then U.s5(0) — oo for both § — 0 and 6§ — m. Therefore there must be a
minimum in between and 6 oscillates between some #; and 6, (so called nutation). The
behavior of ¢ (precession) depends on whether the sign of J, — J3 cos  changes between
61 and 6, or not.

The question of stability in the vertical position & = 0 (then J, = J3) can be answered
by expansion in 8. First we have

) Js
Q=¢p=— 2
b= 37 (7.27)
and then
2
M
Uess(8) ~ Sj—;lez - Tglez (7.28)
so that the motion is stable if ol Mol
Wi > = g (7.29)

3

7.4 Balancing car wheels
We assume that we want to keep the axis fixed and ask how large momentum of force

has to be exerted to arrive at this. We orient the axis of rotation along the z axis. Then
the angular momentum reads

J= Zra X (Mmgvy) = Zra X (Mew X 15) = Zma(w(rg) —1r4(w-1,)) (7.30)
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what in components reads

(Jzy Iy, J2) = (= Zmazaxa: - Zmazaya: Zma(mg + yg)) (7.31)

Assuming that
T, = Rcos(wt + @), Yo = Rsin(wt + ¢a) (7.32)

we get the moment of force needed to keep the axis unmoved

(Ng, Ny, N;) = () mazoRwsin(wt + ¢o), — Y Maza Rw cos(wt + @), 0) (7.33)
a a
Measuring N, Ny at time £ = 0 we get

Ny =) mez,Rwsin(¢a), Ny=—) mazaRwcos(¢a) (7.34)

To balance the wheel i.e. cancel the moment of force we have to add some mass M at
the point (2,¢) (¢ is defined wrt (N, Ny)) such that

—MzRwcos(¢) + Ny =0, —MzRwsin(¢) — N, =0 (7.35)

so that tan¢ = —N, /N, and M = /N2 + N2/(zRw).
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8 Hamiltonian formalism

8.1 Legendre transform and the Hamilton’s equations

For the lagrangian we have the EL equations

d <8L> oL _
dt \84.) 0Oga

Now we want to treat symmetrically g, and ¢,. We introduce momenta

8L
- 04a

Do :

(8.2)

It would not be correct to solve these equations and plug them back into the lagrangian.

What we have to do is to make the Legendre transform.

8.2 Legendre transform

If we have a function f(z) we introduce an additional variable s and we create a function

~

f(s,z) = sz — f(z)

Then af
df = zds + sdz — —-d
f(s,z) = zds + sdz 3292
The differential depends on two variables unless we impose
df
T

and then we can treat f as a function of only s
df(s) = z(s)ds

where z(s) is a solution of (8.5) and we have

df
a5 z(s)
The inverse transform is
flz)=zs—f

(8.3)

(8.4)

(8.5)
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The transform
As an example take

f(z) = e/ (8.9)
then )
s = Eez/“ = z =aln(as) (8.10)
Therefore 5
f(s) = asln(as) —as (8.11)

and indeed f’ = z(s). We see that the domain of f(z) i.e the whole real line R is different
from the domain of f(s) which is R.

8.3 Hamilton’s equations

We now apply the Legendre transform to the lagrangian replacing all g,’s by momenta.
We write the transformed function

H(a,Past) = ) Pada — L(da, G, ) (8.12)
a
where all ¢, are expressed as functions of p, and q,. Then
oL AL AL
dH = g¢,d dg, — | =—d —dg, + = 8.13
4aQPo + Palqq <aqa Qa+aq-a 4o + at) ( )
Using the definition of p, and the EL equations we get
. . oL
dH = ¢,dp, — Podq, — Edt (8.14)
and therefore we get the Hamilton’s equations
0H 80H 0L OH
Jo = D = — - = 8.15
QG apa ) pa aqa ) at at ( )
8.4 Examples
8.4.1 A particle in a potential
2
L= mTr — V() (8.16)
Then
p = mr (8.17)
and
p?
H=—+V 8.18
V() (8.18)
Then
i=2  p=-vv (8.19)
m
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8.4.2 Particle in rotating frame

We recall the lagrangian

m, . . )
L= 3((3: - wy)® + (§ + wz)?) (8.20)
Therefore
Pz = m(t—wy)
by = m(y + wm)
then
. . m,., . mw?(z® +y?)  pi+p3
H=ip, +ypy — L= —(2* +9%) — ( v) ==Y 4 pwy —pwz (8.21)
2 2 2m
The HE read
Pz = Wpy
py = —Wpg
therefore
P = mi— mwy = pw = mwy + mwz
Dy = mi+mwi=—pw=-—mwi+mwy

i.e. the expressions for the Coriolis and centrifugal forces.

8.4.3 Particle in an electromagnetic field

We start with the lagrangian

L:mTr—q(qS—f-A) (8.22)
Then A
p=mitgA = =21 (8.23)
m
and ( A)?
. P—¢
H=p.F— L — 8.24
p-r 5y T 99 (8.24)
Calculating the momentum HE we get (in components)
. i —qA;)0A;
pi = mis + gd; = 1 fnj) G (8.25)
Hence .
mr; = qu(aiAj — Bin) +q7;0;A; — q0;¢ — qr;0;A; — qA; (8.26)

what using B; = €;;:0; A and E; = —0;¢ — Ai is just the Lorentz force.
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8.4.4 Relativistic particle in de Sitter space
We start from the lagrangian (¢ = 1)

L = —m\1 — e?Haty? (8.27)

Then the momenta Het s
;  mesTAtyt
D = m = const (828)

_ ii T m _ 2 | m2a—2Hpt
H_Zp'u L_m_\/m + p2e—2Ha (8.29)
i

The Hamilton equations

Therefore

g aH _ pie—QHAt (8 30)
T oy T mi s pe e |
It can be integrated to give
, . i
qz = qé + pszA <\/m2 _|_p2 _ \/m2 +p2e2HAt) (8.31)

Therefore the range is finite even after infinite time. The range of photons (m = 0) is
equal to H, '

8.4.5 Relativistic particle in the Radiation Dominated Universe

We start from the lagrangian (¢ = 1)

t
L=-my/1——v? (8.32)
to

Then the momenta

p' = —2—— — const (8.33)
1 — tg2
to
Therefore
— m to
H=) pv'—-L=—=—==4/m?+p?>— (8.34)
; \J1— £ t
0
The Hamilton equations
;_ OH i3
f=r-=—tt (8.35)

Bp’ \/m

The trajectory of photons (m = 0) is given by ds? = 0 — the solution is given by
z(t) = 24/t (8.36)

so the range of photons is infinite.
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8.5 Conservation laws in the Hamiltonian formalism

We start with the conservation of energy. If H does not depend explicitly on time

dH—a_H' _|_6_H' +6_H—8_H
7 opPe "8t T Bt

& o (8.37)

If some coordinate is cyclic (i.e. H does not depend on this coordinate) then the
corresponding momentum is conserved

0H
S = 8.38
b= (8.38)
8.6 Principle of Least Action
For the lagrangian we had the principle that the action
to
S = dtL(qa, 4o, t) (8.39)

ty
is extremal when the variations dq, vanish at the ends. We now have a similar principle
tz . .
S = ; dt(paQa - H(Qm da, t)) (8'40)
1
where ¢,’s are functions of ¢, and p,. We have
t2 : : 0H 8H
0S8 = <5paqa + Padda — (—5pa - —5qa)> (8.41)
t1 apa GQa

Integrating by parts we get

b1/ OH . OH ta
[ (e ptpe) (-9 - Gy )] + pl (542

If the variations dq, vanish at the ends we get the Hamilton’s equations.
If we impose not only dg, vanishing at the ends but also dp, we can add to H a full
derivative dF(p, ¢)/dt.

8.7 Adiabatic invariants
It is sometimes possible to find a set of invariants of the motion i.e. entities satisfying
{I,,H} =0 (8.43)

If we introduce them as our coordinates it means that the conjugate variables 6; are
cyclic (the coordinates are then action-angle variables). If the number of such invariants
is equal to the number of variables we say that the system is integrable. One dimensional
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systems with conserved energy are therefore always integrable , in more dimensions it
is very rare.

Independently of the eqs of motion we can have objects that vary very little when
we change the hamiltonian. We introduce some parameter A(¢) that varies slowly (we
will define what means slowly) and we ask what does not change to the first order in
derivatives of A(%).

If we have a bounded motion with period T" that changes slowly under the change
of A(t) we can define the change as slow if

dA
T 8.44
dt < (8.44)

over a period T. Since the parameters change with time the energy is not conserved
(but very little). We can write the hamiltonian as H(g,p; ). Then

dE _ 8H dA

Averaging over one period we can take the ) outside of the averaging and we get

dE _d\BH

—_— = — 8.46
dt dt 8 (8.46)
so that we can write L
dE dx1 (ToH
= - A4
dt dt T Jo OX dé (8.47)
Using Hamilton’s eqs we get
d
dt = 5o (8.48)
Bp
so that
%4
aE_ant i (5.9
dt  dt 5 '
‘op
Now we know from the triple product formula that
8H
2= o (8.50)
oH o)\
Op
We therefore get
dpdE 0OpdX _
f (ﬁa + aa> dq =0 (8.51)
Introducing
1
I=— «dqa .52
o j{ zﬂ:p dg (8.52)
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we finally get L
dI
— =0 8.53
i (8.53)
We also notice that
or T (8.54)
8E 2« )
We can also write )
I=— [/ dpAd 8.55
2T / p 1 ( )
For example for the oscillator
2 2 2
F  mva (8.56)

H=—
2m 2
so that for a fixed energy F we have an ellipse with semiaxis v/2m£E and /2E/mw? so

that the area mab divided by 27 is equal to
(8.57)

I==
w

Einstein noticed it during Solvay conference 1911 that later led to the Bohr-Sommerfeld
quantization rule. It is related to adiabatic invariants and the same concerns the equation

(8.58)

E =nhw
We now apply this to a very slowly varying length of a pendulum. We have
E(t) = Tw(t) (8.59)
where I is an adiabatic invariant. On the other hand
_ ml?z, mgl
B="4 2g g (8.60)
where we have taken slowly varying [ out of the averaging sign. Averaging gives
povt p % (8.61)
2
so we have _ mg.,
E = 7l90 (8.62)
Dividing by w = 1/g/l we get an adiabatic invariant i.e. constant
(8.63)

13262 = const = 13/%6, = const

Therefore when we slowly make the pendulum longer the angle 6, decreases and the

linear amplitude 16y increases.
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9 Hamiltonian formalism 1l

0.1 Liouville theorem

Imagine the flow of (g,,p,) i.e. a tube of close trajectories (in the phase space). Its
volume is
V =dgq;...dg,dp;...dp, (9.1)

We ask what will be this infinitesimal volume after time d¢. Then

o G =Gt g0t o fampa gt (9.2)
The jacobian from V to V reads
0Gs  Bda
= < A ) (9.3)
gy Opp
We now use the formula
exp(Trin M) = detM (9.4)

for an arbitrary matrix M with positive eigenvalues. It can be proven using the fact
that any matrix can be brought to the diagonal (or Jordan) form by some (complex)
matrix A. Indeed, writing

M=1+9§¢ (9.5)

we have (M’ is in the diagonal or Jordan form)

M' = AMA™! :>Tr1nM:Tr(6—|—%62+...> :'I‘r(é'—i—%é'Q—i—...) => Inx
(9.6)

and we see that both sides of the equation (9.4) are equal to the product of the eigen-
values. In our case

M=1+4+6 =  detM =1+Tré+ 0O(?) (9.7)
but ) )
0°H 8°H
Tré = — = :
’ za: <3qa3pa Bpaé?qa> =0 ©8)
so that

V=V (9.9)

It says that ’squeezing’ the trajectories in g requires 'expanding’ them in p — it resembles
quantum uncertainty relation but it is very different being purely classical.
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9.2 Poincaré recurrence theorem

We now prove one of the most striking theorems in classical mechanics.

We assume that the phase space is of finite phase volume (for example of finite energy
and in finite spatial volume). We consider finite time steps 0,7, 2T,.... The theorem
says that for any point Py and for any neighborhood Dg of Py in the phase space there
exists such n that

D,NDy#0 (9.10)

where D,, is Dy transformed by H after time nT.
The proof consists in showing that since for all n regions D,, have the same volume
then there must exist such n' and n” (different from each other) for which

Dn/ N Dn// # @ (911)

since otherwise the volume of the phase space would be infinite. Taking for example
n' < n' then acting with H backwards n times (action of the hamiltonian is reversible)
we get

Do N Dyt # 0 (9.12)

what finishes the proof.

9.3 Liouville's equation

For a system of N bodies we can introduce a density (probability) on the phase space
p(q,p) such that

/p(q,p)dql ...dgndp; ...dp, = N (9.13)
Since the volume of the phase space is constant we get
dp _ 8p Op .  Op . )
7~ Az 5. Ya A Pa | = 0 9.14
it ot +Xa: (aqaq T o (9.14)

what gives the Liouville equation

Op O0p 8H Op BH)
9P _ _ _ = _{p H 1
ot za: (Efqa Opa  0pa 0qa {o H}rs (9.15)

We have introduced here the notion of a Poisson Bracket defined as

. of dg Of 09g
{f,9}pe = Xa: 0904 0pa  0Da 044

(9.16)

We will discuss its role in great detail later.
An important role is played by time independent (equilibrium or stationary) densities
for which % = 0. An example of such stationary distributions is given by

p = p(H(g,p)) (9.17)
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where H does not depend on time. Then indeed

6p 8p ( OHOH OH 6H> _ (0.18)

o6t OH <_6qa Opa * 8pa 890

The most famous example of such a distribution is the Boltzmann factor in the
canonical ensemble

p(H(q,p)) = exp <— H%p)) (9.19)

which in classical statistical physics for free particles is proven to describe the equilibrium
distribution for a small sytem in contact with a large reservoir of temperature T' (if H.
If H(q,p) describes free particles, H = . p?/(2m), the distribution is called Maxwell-
Boltzmann distribution.

It is interesting to note that in the case of a magnetic field described by the vector
potential A the Boltzmann factor gives

(p—gA)° mi?
— = — 9.20
exp ( omkT P\ TokT (9:20)
and it is the same distribution in velocities with or without the magnetic field! This is
the paradox that in classical physics bodies should not react to a magnetic field while
obviously such a reaction exists - this is solved in quantum mechanics where there are

quantized levels (Landau levels) and quantized spin degrees of freedom and the classical
Boltzmann factor does not describe the real reaction of the bodies to the magnetic field.

9.4 Classical statistical physics

In classical statistical physics we are interested in the classical partition function for N
particles. One distinguishes different ensembles: microcanonical, canonical and macro-
canonical.

9.4.1 Microcanonical ensemble

The microcanonical ensemble is described by the number of particles N, volume of the
phase space (assuming that it is finite) and finite energy U (within a small interval AU).
The number of 'states’ in classical physics is formally infinite so to make it well defined
we need to appeal to quantum physics where there is a heuristic rule that a new state
is possible when AgAp differs by h (the Planck constant). Using this heuristic rule we
calculate the number of states in an interval AU around

dSN dSN
Pe 95— Ty — Vi) (9.21)

1/N!is the Gibbs factor, yet another factor that can be justified only in quantum physics
(indistinguishability of identical particles). Zy(V,U) is then the number of states around
U in the interval AU.
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According to the famous Boltzmann formula logarithm of the number of states, i.e.
logarithm of Zy, is equal to the entropy (modulo a constant)

S =klogW (9.22)

This formula is on Boltzmann’s grave in Vienna — it required an incredible ingenuity
of Boltzmann to write it down in 1875, 25 years before the Planck’s assumption of
quantization of photon emissions and absorptions.

It can be justified by the formula (also given by Boltzmann in 1866)

S=-> PP (9.23)
and using equal (maximal) probability P = 1/Zy for all states (3. P =1).
In the following we put the Boltzmann’s constant k equal to 1 (it can always be

reinstated if need arises). Knowing S(U,V,N) we can recover all thermodynamical
functions in this ensemble by (we keep N fixed)

1 D
dS = —dU + =4V 9.24

), 3-(®),

They are definitions of 1/T" and p/T. If we have two subsystems with

1.e.

dS]_ = a]_dU]_, ng = aszz, (926)

then in equilibrium the total system should have maximal entropy under a change of U
and Uz:
d(Sl + Sz) =0 when dU; = —dU, (9.27)

what gives a1 = as and we identify it with the inverse temperature.
As an example let us discuss free non-relativistic particles. Then

AUVNQ(BN-1) p2
In(V,U,AU) = ———— [ dpp®N 16 (U - —— 9.28
where Q¥ 1) ig the volume of 3N — 1-dimensional unit sphere
3N/2
QBN-1) —o T 9.29
I'(3N/2) ( )

and 6(f(z)) = > d(z — z;)/|f'(z;)| where z; are zeroes of f(z). Hence

VNQ(BNfl)
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and (using In(N!) = NIn(N) — N + $In(27N) + O(1/N))

3N
§ = NC + Nn(V/N) + =~ In(U/N) + const (9.31)

We see that without the N! factor in the denominator S would not be proportional to
N but there would be logarithmic corrections to S/N growing like In N. The result is
the so called Sackur-Tetrode equation.

Hence
E (9.32)
v .

SV P
T U’ T
9.4.2 Canonical ensemble

In the canonical ensemble we do not assume that the energy is constant but that the
system is in contact with a very large system of temperature 7. The large system has a
number of states exp(S(Ep)) and if we extract energy E to the small system the number
of states is equal to

S(Bo—E) _, S(Bo)=5p, B+ S(Bo)-E/T (9.33)

where we applied the definition of the temperature to the large system. Therefore we
see that a probability of a given state of energy E of the small system is given by

P =eflF-E) (9.34)

the famous Gibbs-Boltzmann factor, where § = 1/T" and F is a normalizing factor. Sum
of probabilities must be equal to 1 so

dSdiSNq
—-BF(V,T) _ —BH(p,
e ( ) —/We (r.g) (935)

where 1/N! is again the Gibbs factor. We know that the entropy S is given by

S=->PlnP=-> B(F-E)FE =_pF+pU (9.36)
Hence
F=U-TS (9.37)
and it can be identified with the free energy.
Therefore
- ()
oV )rp
OF
s = (==
<3T) v

(9.38)
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As a first example we consider again free non-relativistic particles. Then

3 d3di3Nq 802 /(3m
e~ BE(V/T) :/ e Bp?/(2m) (9.39)
We have No(EN-_1)
_ |78 Ve _1.— m
e PEVT) = L [P e Cmlap (9.40)

The integral is straightforward and we get

VNQBN-1) I'(3N/2)
—BF(V,T) _ 3N/2
e PF( )_7N!h3N om)3N/ g (9.41)
Hence 3N
—BF = NC' + NIn(V/N) — - In(B) (9.42)

and we recover the known formulae.
As a second example we discuss a gas of photons. If the are closed in a box then the
force on a wall is given by

_ 2hvv, /[ hvv, 1U

F = = =_—— 4
2L /v, Lc¢2 3L (9.43)
Hence . )
pV=-U=p=—-p (9.44)
3 3
Assuming that nothing depends on the number of photons we substitute
S=aT™V, p=pTN, =U=38T"V (9.45)
Using
dU =TdS — pdV (9.46)
we get
3BnT" VAT + 38T"dAV = amT™VdT + oT™1dV — BT"dV (9.47)
Comparing the expressions we get
a=48, m=3, n=4 (9.48)
so that
U=23pT*V, p=pT* §=4BTV (9.49)
It turns out (from the Planck black body distribution) that
w2 k* w2kt 4?3
=———=U=—=T%, S= TV 9.50
h T 15¢3h3 ' 45¢3 13 (9.50)
the number of photons is given by
2 2 4

m2c3h3 27
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9.4.3 Grand canonical ensemble

In the classical setting the we assume that the system is immersed in a bath of tem-
perature T' but can also exchange particles with the reservoir. We denote the energy
associated to the exchange of one particle by x and call it the chemical potential p. We
assign a probability for N particles having energy Ey as

pn(Ey) = PN En) (9.52)

and the normalizing factor 2 defined as

1 _
3 meﬁ(m“” En) — 1 (9.53)

We define entropy as

1
S=-> pilnp;=->" mﬂ(QJrMN—EN)eﬁ(“*“N*EN) = BQ-Bu<N>+B<E>
' (9.54)
and hence

Q=U-TS+uN =—-pV (9.55)

(we know from thermodynamics that U —T'S +pV +uN = 0) Therefore the fundamental
object in the grand canonical ensemble is

oo

_ 1 _
e P2 — Nz_:ome#"’/dr,ve BN (9.56)

Using the grand canonical ensemble in quantum statistical physics one can derive the
distribution of the number of particles at a given energy level E;:

1

S ALl (9:57)

nj

where — is for bosons (Bose-Einstein distribution) and + for fermions (Fermi-Dirac
distribution).

The discussion of all three ensembles (microcanonical, canonical and grand canonical)
belongs to the course on Statistical Physics and is outside of the scope of lectures on
Classical Mechanics where it serves only as an illustration of the Liouville equation.

9.5 Debye theory of specific heat of solids

We will apply the derived distributions for phonons to derive the formula for the specific
heat of solids (not including the electronic heat capacity).
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9.5.1 classical computation

If we have a 1D string of atoms with harmonic potential and equilibrium distance a we
have
miy = K(Tpi1 — Tpn) + K(Tn—1 — T4) (9.58)

To solve this equation we substitute

z, = na + e“*sin(kna), —g <k< g (9.59)
to get
4K
w? = ——sin?(ka/2) (9.60)
m
We write
4K
W= wmsin(ka/2), wm= e (9.61)
The group velocity
8 Ka?
Vg = a—a’: = # cos(ka/2) = Wa cos(ka/2) = vgo cos(ka/2) (9.62)

Density of states in 3D (k = 2 arcsin(w/w/m); there are 2 transverse and 1 longitudinal
polarizations)

_ 3V4rk*dk  Vwildw 1+w?/(3w)+...

dw = =
9(w)dw (2m)3 27r2v20 V1 —w?/wz,

Einstein has used the formula for density for one specific frequency g(w) = 3Nd(w —
wg) — it explained the Dulong-Petit law that the heat capacity tends to 3R for large
temperatures but was not very good in explaining low temperature behavior of heat
capacity.

Debye assumed that all frequencies are present and wrote the formula (without any
corrections ~ w?/w?,) to use measured vy) and defined wp by

(9.63)

wD wp 3Vw?d Vw?
3N :/ 9(w)dw :/ d Bw = wg (9.64)
0 0 27[-21)90 27!'21190
hence .
Wp = Vgo (6p7r2>g , pP=N/V (9.65)
and 2
9N
g(w)dw = 2= (9.66)
Wp

If transverse and longitudinal speeds are different one may use the averaging

3 2 1
— = =+ —= 9.67
PR (9.67)
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Phonons are bosons so that the energy stored in phonons in temperature 7' is given
by

wp 1
E = dwy(w)hw————— (9.68)
0 exT — 1

The heat capacity
OE (v  ONRw*  eir

= = 9.69
PTor ~ Jo YuBkT (eZ—# _ 1)2 (5:69)
It can be rewritten as
T 3 9D/T 4
¢p = ONK (—) / dz—2° (9.70)
6p/) Jo (e® — 1)
where
th
Op = — (9.71)
For T < 6p we have ;
T 4t
ONkE | — ) -— 9.72
M <9D> 15 (5.72)

while for T' >> 6p we recover the Dulong-Petit law ¢, — 3R.

This formula is in much better agreement with experimentally measured values than
Einstein’s but is not exact either. To have better description one has to take into account
the presence of (quantum) characteristic frequencies of a given crystal or dependence
of p on temperature. The Debye temperatures of some of the elements (they decrease
with the temperature to match the experimental values!): aluminum 433 K, beryllium
1481 K, copper 347 K, lead 105 K, gold 227 K, diamond 2200 K (in room temperature
1840 K).
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10 Canonical transformations

We discuss here a very important formulation of classical mechanics that led Paul Dirac
to formulate quantum mechanics in a very analogous way.

10.1 Poisson brackets

For any two functions on the phase space f(g,p) and g(g,p) we define a Poisson bracket
as
8f 89 8g Of
{f’ g}P = Z -
o 09.0p.  94a Op,

Poisson brackets have features that are analogous to commutators in the operator
language of QM.

(10.1)

e antisymmetry

{f,9}=—{9,f} (10.2)
e linearity
{af +Bf' 9} = a{f, g} + B{f'. 9} (10.3)
e Jacobi identity
Hr b hy +{{h, f1 9} +{{9,h}, f} =0 (10.4)
It is important to note that in analogy to QM we have
{90,%} =0, {pa,pe} =0, {ga,16} = dar, (10.5)
Its introduction is motivated by the appearance in the Hamilton’s equations
do = {40, H}p,  Pa={pa,H}pr (10.6)

Therefore also for any function f(¢,q,p) we have

df _ o1

3% = ¢ T HYP (10.7)

where we used the Hamilton’s egs.
If we have a function I(g,p) that commutes with H

{I,H}=0 = I=const (10.8)
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i.e. it is a constant of motion. One example is a momentum p. conjugate to a cyclic
coordinate g.since then
{p,H} =0 = p. = const (10.9)

as expected.
The PB of two constants of motion is again a constant of motion.

{{1, 2}, H}Y = —{{H, L}, b} —{{2, H}, 1} =0 (10.10)

10.2 Canonical transformations

We noticed earlier that in the lagrangian formulation one can arbitrarily change coor-
dinates ¢ — ¢’ and the EL eqs were invariant wrt this change. We now discuss what
possible transformations can be applied to the pair (g,,p,) that lead again to the Hamil-
ton equations (the previous ¢ — ¢’ constitute a small subset of these).

The canonical transformations are defined as a pair

da - Qa(t)Q)p)) DPa — ‘Pa(t’q’p) (1011)

that has canonical Poisson brackets i.e.

{Qa, Qb} =0, {Pa; Pb} =0, {an Pb} = ‘sab) (10'12)

If they are satisfied then the Hamilton’s equations have the usual form (with possibly
some new Hamilton’s function).

To prove it let us introduce the symplectic structure that is present in the Hamilton’s
formulation. We introduce a vector

xT = (q1,--,@n,P1,- - Pn) (10.13)
that has 2n components. We also introduce a 2n x 2n matrix J
0 1
J = ( 1 0 > (10.14)
It is crucial that J?> = —1. Then we can rewrite the Poisson brackets as
of ... 0g
and the Hamilton’s egs as
: - OH
= JY — 10.16
z 57 (10.16)

Let us now transform x — y(x) where we temporarily assume that the transforma-
tion does not depend explicitly on time. Then the eqs of motion for y read

i_ Oy [xOH 0y

( . OH
Y~ B oyl dzk

Ty 2= 10.1
GJ'G)ayJ (10.17)
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Therefore we recover the Hamilton’s equations in the new coordinates if
GJGT =7 (10.18)

where H is the same but expressed in new coordinates.

Matrices satisfying such a condition belong to the symplectic group Sp(n) - it is
easy to show that they form a group of dimension n(2n + 1) — for example we show that
the inverse element belongs to the group by the following argument (analogous to the
uniqueness of the inverse matrix)

GIGT=T=JGTTIGT =-1=JGTT =-(JGT) T =
=JGUG T =-1=61U6 T =7 (10.19)

One should specify over which field one defines the group and whether we allow for

only component connected to the identity. In 2 dimensions any matrix of determinant 1

belongs to Sp(1,R) so Sp(1,R) = SL(2,R), in 4 dimensions the algebra sp(2) = so(5).
For a 2 x 2 matrix

(a2 o)sa)-(5e) 1020

gives ad—bc = 1i.e. indeed the determinant should be equal to 1. We can impose further
that both eigenvalues should be positive i.e. allow only for transformations connected
to the identity.

The Poisson brackets for the new coordinates

of ;09  Of Tvij 99
= _—J9 L = < (GJG" )" = 10.21
{f’g} amz azj ayz( ) ay] ( )

so the requirement of conserving the PBs gives the same condition.

10.3 Examples of canonical transformations

e exchanging positions and momenta

0 1
Py = —qa, Qo = Pa =G = ( 10 > (10.22)
it is obviously canonical
e 'point transformations’
Qa = Qa(Q) (10'23)
Then
9Q.
G= ( 5% op, ) (10.24)
O Oy
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The matrix
G = ( 22 ) (10.25)
belongs to the symplectic group if
cT=41 BA'=BAY (10.26)
e linear transformation
Go — Babqb, Do — Bb_alpa (10.27)

with 6 constant.

10.4 Harmonic oscillators on a line

We write the hamiltonian for n atoms (we assume that n is odd) bound by harmonic
forces on a circle

2 2
_ p; mwy ) , 2
H=>" 2;n + zi:(a:z+1 —z; —d) (10.28)

We now introduce the canonical transformation (z,p) — (g, P)

1 .
T, = kd+—= e¥Miak/ng, (10.29)
VAl
1 —2riak/n
= —E P 10.30
Pk \/’ﬁ - € a ( )

with the inverse transformation

1 —2miak/n
e = —=_e (zk — kd) (10.31)
\/1_1 a
1 .
P, = 7 > ePmiek/ng, (10.32)
a
SInce z; are real we have
I = Pl=py, gql= Pl =P 10.33
=49, FB=FR, 9%=0h-a PF=PFPra (10.33)
We check )
{aa B} = Y e 29/ /g, 1} = 6(a - 1) (10.34)
5l
Then
1 1 mw? 2mia/ny2mTiaj/n —2mib/ny\ . —27ibj/n T
H:%ZPGPG—FWZZ(l—e )e qaZ(l—e )e %
a 7 a b
(10.35)
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Therefore we have a diagonalized hamiltonian

1 mw?
H=_——Y PPl +—>2
a

— 2:4sinQ('/ra./'rz)qa(fr (10.36)
2m 2 4 .

that can be written in terms of independent variables as

(n—1)/2
1 .
H = %Poz + ; (EPGPJ + mw3d s1n2(7ra,/n)qaql> (10.37)

where Py corresponds to global translations and can be discarded. Dividing into real
and imaginary parts

. 1 . 1
o — E (Qa+ql> y Do = E (Pa‘i‘PaT) (10'38)
. i . i
Te = E (qa — ql) , Sqg = E (-Pa, — PJ) (1039)
we get the reduced hamiltonian
(n-1)/2 /4 muw?
H= Z <%(ﬁaﬁa + 8,8,) + 5 94 5in%(ra/n)(§oda + 7'2%) (10.40)
a=1

10.5 Some identities for partial derivatives

Assume that we have 3-dim manifold with a hypersurface defined by f(z,y,z) = 0
and we would like to derive some identities between the partial derivatives wrt to dif-
ferent pairs of variables (since only 2 are independent) — they are extensively used in

thermodynamics.
We start with
oz Oz
dz = (=— ) d — ) d
o= (&), (5),

9y 9y
dy = — ] d — ) d 10.41
v (32)2 z+<32>z ‘ ( )
Plugging dy from the second equation into the first we get
6:0) 1
=) = 10.42
(By . (%) (10.42)

and the triple product formula

5,25,

69



10. CANONICAL TRANSFORMATIONS

Similarly we can write

Oz oz
dz = (a—y>zdy+<§)ydz

dz = (g—;)wdy + (Z—z)ydw (10.44)
Writing
dw = (%)z dy + (g—f)y dz (10.45)
and plugging into the previous equation we get
(50). (&), * (), (55). (04
and oz oz ow
(52), = (), (32), e

10.6 Generating functions of canonical transformations

We will now show how to generate the canonical transformations with the use of a gener-
ating function. The argument of the function can be any pair (g, @), (¢, P), (p, Q), (p, P)
for definiteness we choose ¢, @ pair.

We choose a function F'(g, Q) such that the equation

OF
. = 10.48
Pe = 5 (10.48)
is invertible i.e. one can get Q = Q(g,p) out of this equation. Then we define
oF
P, =- 10.49
50 (10:49)

and we will now show that the pair (Q, P) satisfies the correct Poisson brackets. To
avoid proliferation of indices we show it for 1 dof. Then

@n=(5), (&), (5), (%), (050

Now we use the manipulations for the partial derivatives
oQ opP oQ oQ opP opP oQ
# = (&),3), (), @), (5, G), (%)
{@ P} 0q/),\0Q/)4\8p/, op/, 09 /¢ 0Q/)4\0q/,

- (9),(22)-(9),(2),-
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The definitions for the 3 remaining pairs ((g, P), (p, @) and (p, P)) are analogous.
If the canonical transformation depends explicitly on time we have

: OP, o’F 0H  8°F
pP,={P,H ={P,,H} — =— — 10.52
{ bt ot { } 0Q,0t 0Q., 0Q.0t ( )
so to keep the usual Hamilton’s eqs we have to modify the hamiltonian
F
H_)HI:H-'_(Z_t (10.53)

We will use these formulae in the Hamilton-Jacobi equation in the next lecture
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11 Hamilton-Jacobi equation

We recall that for the lagrangian we had the principle that the action

to
S= [ dtL(ga,da,t) (11.1)
ty

is extremal when the variations dq, vanish at the ends. We now have a similar principle

to

S = . dt(pa‘ja - H(deaxt)) (11'2)
1

where ¢,’s are functions of ¢, and p,. We have
t2 H H
05 = de <6pa‘ja +pa6‘ia - <a—5pa - 8—6QG)> (11'3)
t1 apa. BQa
Integrating by parts we get
t2 0H 80H ‘
0S = dt |{ go — =— D4 —Po — =— 04, 00|’ 11.4
Kq Bpap)+<p Bqaq)}ﬂq“ (1L4)

t1
If the variations dq, vanish at the ends we get the Hamilton’s equations.

If we impose not only dg, vanishing at the ends but also dp, we can add to H a full
derivative dF(p, ¢)/dt.

11.1 Hamilton-Jacobi equation

We now treat the action S as a function of final time ¢ and final positions g,(¢) assuming
initial time ¢; and initial positions g,(¢1) as fixed. We assume that it is possible to find
initial velocities ¢,(¢1) such that the final positions along the allowed trajectories are
¢a(t). Then

¢

S5(tga(t)) = | d7L(ga(r), da(7),7) (11.5)

1

Performing the same steps as before we have

68 = padgalf, (11.6)

Hence 55
. = 11.7
Pe = 5 (11.7)
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We have ds
— =17 11.8
g7 (11.8)
but on the other hand we have
ds &S os
lo = ada 11.
at at+za 1 t+za:pq (11.9)
The LHS is equal to L and therefore
oS BS
— 4+ H —t) =0 11.10

This is the Hamilton-Jacobi equation. It is the most efficient tool of finding conserved
quantities in classical mechanics as we will see.
We can therefore write the differential of S as

dS = —Hdt + ) pedg, (11.11)

what for one particle is equal to the 4-dimensional expression
dS =p,dz" (11.12)
i.e. the phase differential in the quantum mechanical language. We will discuss solving

the mechanical problems by the Hamilton-Jacobi equation later.

11.2 Canonical transformations and the Hamilton-Jacobi
equation

We recall that for a function F(g, @) such that the equation

oF
= 11.13
pa. aqa ( )
is invertible i.e. one can get Q = Q(g,p) out of this equation. Then we define
OF
P, =— 11.14
"~ ", (11:14)

and we have shown that the pair (Q, P) satisfies the correct Poisson brackets. To keep
the usual Hamilton's egs we have to modify the hamiltonian

F
H— H = H+aa—t (11.15)

It can also be seen from the fact that the two expressions can differ by a full differential

—P,dQ® + H'dt — (—p,dg® + Hdt) = dF (11.16)
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We now use this formula to arrive at the HJ equation again to explain the role of
constants. If we choose F' to be equal to the HJ function S then
S
H+—=0=H =0 (11.17)
ot
Therefore we know that @), and P, have to be constant. Then expressing S as a function
of positions and constants of integration (identified with Q,)

S =5(t,qa, ) (11.18)

we know that also 85
=B, 11.19
5o =P (11.19)

are constant. Therefore we have the solution given by 2s + 1 constants as it should be.

11.3 Jacobi (Maupertuis) principle

If the energy F in a given system is conserved we can write

S=-Et+) p.dg. = —Et+Sp (11.20)

We can now formulate the principle of least action in the form
0Sp =0 (11.21)

where the variations are along such trajectories that keep the energy E constant. One
usually applies this pronciple to find the trajectories and not their dependence on time.
Therefore we find dt as a function of positions g, and differentials dg, and plug it to Sp.

We illustrate the procedure by applying it to the usual lagrangian with generalized
kinetic term:

Z Mapdads — U(q) (11.22)
a,b
The momenta are given by
Pa =Y Mauygy (11.23)
b
and the energy
Z Masdags + U(q) (11.24)
a,b
Hence
dg.d
\/Zab ab Qa v (11.25)
so that

Sy = / \/ (E—U) ZMabdqadqb (11.26)
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For one particle we get

5/\/2m(E —U)di =0 (11.27)

In QM it is analogous to the Fermat principle in optics since
h dl
= = §/ —=0 11.28
p=3 /5 (11.28)

i.e. the number of crests or troughs along a trajectory should by extremal.

11.4 Derivation of the Hamilton-Jacobi equation from
guantum mechanics

It is very instructive to 'derive’ classical mechanics from quantum mechanics (of course
the historical path was reverse as is till today the order of teaching...).

We start with the non-relativistic Schrodinger equation for a particle in the scalar
potential U

. oY h?
h— =—-——A U 11.29
i sy DY+ UY (11.29)
what comes from an operator analogy for the equality
p?
E=—+U 11.30
2m + ( )
when we identify
pY = —ihVYy (11.31)
and .
P =e Bty (11.32)
We now write .
¥ = Re'S/h (11.33)
where both R and S are real. The real part of the SE reads
S 1 h? AR
—— = (VS +U - —— 11.34
ot 2m( )y 2m R ( )
and the momentum
p=VS+O(h) (11.35)

and neglecting 7 corrections we recover the Hamilton-Jacobi equation. The full equation
is used in the pilot wave (de Broglie-Bohm) interpretation of quantum mechanics as the
classical trajectory with 'quantum potential’ (i.e. the last part) added.
The imaginary part reads
18R 1 OR? 1

1 2
5 = pVRVS -5 -AS= —- = ——V(RVS) (11.36)

Hence the probability [ R2d3z is conserved in time.
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12.1 Solving HJ equation

We now discuss the equivalence of HJ equations to the lagrangian or hamiltonian for-
mulations.
H~I—6—S:0:>H’:0 (12.1)
ot
We know that with a trivial hamiltonian both @, and P, have to be constant. Then
expressing S as a function of positions and constants of integration (identified with Q,)

S =5(t,qa, ) (12.2)

we know that also 55
= Pa, 12.3
o =P (123)

being momenta P,, are also constant. Therefore we have the solution given by 2N + 1
constants as it should be. It solves the apparent paradox since S naively depends on
only N + 1 constants being an equation with first order derivatives wrt g, only with no
dqS Or pos — the derivatives wrt these constants are also constant supplying the missing
set.

Let us discuss the method of separation of variables. Let us assume that ¢; and p;
appear in the hamiltonian only as a combination o(g1,p:) (without any dependence on
time). Then we can try

S = 5'(ga,t) + S1(q1) (12.4)
where a denotes all variables except ¢;. Then the HJ equation reads
88’ s’ ol
— 4+ H (¢t qs, —, ,=— ] =0 12.5
v+ (b0 g7 (203 125)

The solution can be solved only when o is equal to a constant

oo
o <Q1, a—ql) = (12.6)

and then we are left with the HJ equation with one smaller number of variables

as’ as'
Bt +H (tiqm a:O‘l) =0 (12.7)
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The obvious example is a cyclical coordinate — then
S = S'(qa,t) +o1q1 (12.8)

and the reduced HJ equation reads

as’ s’
E + H (t,qa, a,ﬂl) =0 (129)

If H does not depend on time then we have

S =—-Et+ So0(q.) (12.10)
and the HJ equation reads
H < %> -F (12.11)
a, 50.) .

12.2 Hamilton’s evolution as a canonical transformation

We will now prove that the Hamilton’s evolution is also a canonical transformation.
We consider an infinitesimal transformation (parametrized by o) which by assump-
tion is canonical

fa > Qa = go+aoa(g,p)
Pa— Pa = pa+ata(q,p)
(12.12)
We require the transformation to be canonical (to first order in )
GJGT =7 (12.13)
where 0 0
Oab + 00722 are
G= @ [okr o2 6pbar (1214)
g dap + a5l
Therefore multiplying
0 0
9o _ _Ta (12.15)
oy Opy
The solution to this is 5R R
= = — 12.16
7. T b (12.16)

for some R(g,p) which is called the generator of the transformation.

If a is a short interval of time then we know that R = H — therefore hamiltonian
generates time translations

If for example R = ), Byps then

Qo — qa + a,Ba) Da — Da (1217)
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i.e. momenta generate translations.
Another example is

R(g,p) = ) _ 4.0""ps (12.18)
a,b
Then we recover linear point transformations

Qo — aB“bqa, Do — Da — aé?“bpb (12.19)

12.3 Example

We consider 1-dim harmonic oscillator
as N 1 (33)2 N mw?
ot  2m \ Oz

Since the energy is conserved we write

2 =0 (12.20)

05y
S=—-FEt+ S — 12.21
+ 55 (2,52 (12:21)
so that R )
1 [0Sy mw?®
— | — =F 12.22
2m ( oz > + 2 :z: ( )
Then
T E mwe
Sp = /dzx/2mE — m2w?z? = Z/2mE — m2w?z2 + — arctan ( )
0 2 m V2mE — m2w2z?
(12.23)

Our constant of integration is E so we differentiate S over F and equate it to a constant

1 mwe
—t 4+ — arctan ( ) = —t 12.24
w V2mE — m2w2z? 0 ( )

what gives us the trajectory of the oscillator

2(t) = ,/;—5”2 cos(w(t — to)) (12.25)

12.4 Relativistic Hamilton-Jacobi equation

The relativistic analog of the HJ equation in the presence of gravity reads

85 88
W = —mPct 12.26
Oz Ozv me ( )

We will illustrate this equation by the example of the Schwarzschild metric. We recall
the action for a particle in the Schwarzschild metric (for 8 = 7/2)

"2 242
S:—mcz/dtJhE— ¢ (12.27)

rcA(1-1T)  c?
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where the Schwarzschild radius

2GM
=" (12.28)
We calculate the momenta
mr
Pr = " >
(1 —rs/r)¢1 — I — #’%) _ rc<2j>
2
Py = mr¢ _—J (12.29)

Then the energy

E=) q¢pi— L= . : (12.30)
;

We make the assignments

8S os 88

- = = = 12.31
ot oy P By T Pe (12:31)
and indeed we have
8s a8s B? r c®pj
v o~ - _ _Tsyo, 2 “F¢ 24
32 B 1_%%-(1 r)cp,,-i- 2 = me (12.32)
For m = 0 we have
E? re. o (8S\? ¢*pj
— 1—-—= — —— =0 12.33
1—’”79+( r)c (87‘) e ( )
and hence
E2 J?
S=+/d — —Et+J 12.34
/ " c2(l—ry/r)2  12(1l—14/7) +J¢ ( )
and we can recover the photon trajectory by
5 const = ¢ ¢:F/dr ¢j:/d'w 1
_ = = 0 —
oJ r2 chz 1 :25/" \/ B w?(l - row)
(12.35)
We recall the equation for the photon trajectory that we derived earlier
3rw? 1
" == == 12.36
w" + w 5 W= (12.36)
and
E2
w? 4+ w? —rawd=—— (12.37)
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so we recover the expression (12.35).
If we change the variable

4z +1
Ts
then we have
*® dz 1 2/27 — a?r?
B = ) = 75 =X 12.39
¢¢0/m921293 6 (1239)
and the solution is the Weierstrass (elliptic) function
z ="B(¢ — bo; 92, 93) (12.40)
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13 Fluid mechanics

13.1 Navier-Stokes equation

Fluid is described by several parameters — density, pressure, velocity, temperature etc.
We divide the volume into very small domains — in each domain number of molecules
is large but these parameters can be treated as constant and the whole distribution as
continuous.

We have a convective time derivative (moving with the fluid)

p(r + vot,t +0t) — p(r,t)  Op

i, 5 g (Ve 12
We will write this derivative as
Dp 06p
The continuity equation can be written as

op
—+ V. =0 13.3
2+ (V) (133)

The Navier-Stokes equation reads

ov 1

p E—l—(v-V)v =-V(p—(V-v)—Vp+v Av+§V(V-v) (13.4)

where v (shear) viscosity, sometimes written as up and ¢ volume viscosity (often ne-
glected); ¢ is the external potential. It is an unsolved problem to prove under what
conditions the solutions exist...

For an incompressible fluid p = const we have

V-v=0 (13.5)
Then the NS equation reads
ov 1 P
— -V)v=--V¢-—-V= A 13.6
5 TV VIV= VeV v (13.6)

If on top ¥ = 0 ('dry water’) we have

5t +(v:-V)v=-V (% + %) (13.7)
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We can write it in a different form using the equality

1
(V- V)v=Qxv+ EVUZ (13.8)
where
Q=Vxv (13.9)
Then 5 s 1
M p
— =vxQ -V (T4 P 13.10
5 =V~ (p + 5? + p) ( )
If we have a stationary flow (8v /8t = 0) then multiplying by v we get
1
V-V<£+—v2+£) =0 (13.11)
p 2 p

which is a Bernoulli equation (the quantity inside the brackets is constant along the
flow).

13.2 Propagation of sound

We now discuss the propagation of sound in the fluid (compressible, of course). We
assume that the fluid is at rest and we write

p=po+dp, p=po+3dp, v=0v (13.12)
We expand the continuity equation to first order in perturbations
8o
PP | gV bv =0 (13.13)
ot
and we differentiate wrt time:
8%6p ov 5%p
— + V- — | === —-Adép=0 13.14
a2 (p‘) at) oz~ ~°P (13.14)
We can write this equation as
8%p
where 5
2= (13.16)
0P lp—po,o=p0
For adiabatic processes (compression for the sound wave is very fast) we have
o)
pV* = const = p = constp” = op — P (13.17)
9P | p=po,0=p0 Po
what gives for air (k = 1.4, p = 10° Pa, p = 1.3 kg/m?)
co = 330 m/s (13.18)

at T =0° C.
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13.3 Viscous fluid

Taking rotation of (13.7) we get
N

— +FVXx(Qxv)=0 (13.19)
ot
and in the case of the viscous fluid (13.6) it reads
o0

For dimensionless quantities (given by some characteristic length D and velocity U)
we can rescale time and lengths (z = D%, v = U9, t = D7/U) to arrive at

oy . . 1. .

— QO xv)=—=AQN 13.21

a7 +V x (2 xV) = (13.21)
where UD

is the so called Reynolds number (it is the principle of aerodynamic tunnels). For small
Reynolds numbers the flow is laminar for larger turbulent.

13.4 Poiseuille flow

We have an incompressible fluid of viscosity u in a pipe of radius R and length [ with a
laminar stationary flow. On the side at a radius » we have a force

dv
F = —v2rri— 13.23
vanr I ( )

It has to be equal to the pressure difference inside the disc

F = 7r¥(p; — p2) (13.24)

Hence du )
3= gy PP (13.25)

so that B
v(r) = %(Rz —r?) (13.26)

where the constant of integration was chosen to give v(R) = 0. The total volume per
unit time that flows is given by

dv PL—D2,_5 o  T(D1—p2)R*
at / dramr= (B =) 8ul (13.27)

It is important to note the fourth power - if a vein has slightly smaller diameter because
of for example thrombosis it can result in vastly smaller flow through the blood vessel.
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13.5 Stokes’ law

We now discuss the force acting on a ball with a laminar stationary flow. We start with

o

(13.28)

We neglect the LHS (because of stationarity and the low Reynolds number) and we have

to solve
Vx(VxQ)=0

Far away we have
v, =Ucosf, wvg=-Usinf=0=0

where we used rotation in spherical coordinates

(V% A)s =7 (5-0rde) - 2

We assume the solution as

Q¢:U@sin9, Q =Q=0

and we calculate the rotation

/!
v % Q, :2U%cose, V X Qp = —U%sine, Q=0

and again

U 2
V x(VxQ)y= —?)(9" - 7g)sin€

Equating this to 0 we get the solution

o)==

Now we have to find velocity. To solve the V - v = 0 we assume
v=VXxw

and we have to solve c
Vx(Vxw)= -
The solution is

C Cs, .
Wy = U(—C1T'+5 + r—;)sm9

Imposing the conditions at infinity and on r = R we get

3R R? . 3R R
— + —),’Ug = —U51n9(1 — E — 4—7'3

= Ucosf(1 —
v =UeosBl =5+ o

)
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Then we find pressure as

Vp =vV x (V xv) (13.40)
Hence 3 0
cos
and the total force
F, =6mvUR (13.42)

It should be compared with the turbulent flow

CypSU?
F, = 7”2 (13.43)
Therefore for small Reynolds number R, = p2RU/v:
24
Cp = — 13.44
R (13.44)

The assumption Qg = U @ sin f stops to be valid at R, ~ 10 - a better approximation
up to R, < 10% is
24 3.7
Co=—+——— 13.45

* R, + In(2 + 4R,) ( )
At ~ 3-10° there is a sudden drop below 0.1 (drag crisis). If the sphere is rough the
crisis appears earlier and therefore for example golf balls are made in the form of smooth
polyhedrons and not round balls.
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14 Deterministic chaos

14.1 Dissipative terms in the Hamilton’s evolution

Up to now we discussed the equations without dissipative terms in the lagrangian or

hamiltonian formulations.

We will now include in the description phenomenological method od ’damping the

momentum’ i.e.
O0H

- Ra )
34, (¢,p)

with some functions R, describing the dissipation.
We can calculate the dissipation introduced by these additional terms

dt_za da + pa— ZR 4,p)q

For example for the friction force proportional to the velocity we have

pa:

R, =pi
and the the 'leakage’ of energy is equal to
i __1p
dt m
while for the 'aerodynamic’ drag force proportional to v? we have

C.pS

Ri= 2m2

i
and the the 'leakage’ of energy is equal to

dH _ _CopS s
dt 2

14.2 Attractors

(14.1)

(14.2)

(14.3)

(14.4)

(14.5)

(14.6)

It may happen that the dynamics forces the trajectories in the phase space to be ’at-
tracted’ either to a point (fixed point) or to a higher dimensional hypersurface. The
domain from which trajectories are 'attracted’ is called the basin of attraction. We give

below an example of such a behavior with the loop in the phase space
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The model we consider is a so called Van der Pol’s equation

mi + 2my(t)y + mw?y =0 (14.7)
where
2(t
At =70 (gg) “1], >0 (148)
0

The 'damping term’ damps the oscillations for large amplitudes but enhances them for
small ones.

The equation is highly non-linear and does not have analytic solution so we will
analyze it numerically. We first introduce dimensionless variables — then the equations
read

g =p
) = —g+(e—¢*)p (14.9)
It corresponds to
1
H=3("+p"), R(9,p)=—(c—q")p (14.10)

There is one parameter ¢ in this equation and the solution depends on the initial
conditions (go,po) and e.

The point (0,0) is a saddle point but it is unstable. The trajectory 'around q ~ +/€’
is stable (a limit cycle) but it is not exactly a circle (the bigger € is the more deformed it
is). The question how to determine the shape of the attractor (the ultimate trajectory)
is a global one and cannot be answered locally.

We can determine some properties of the attractor by some tricks for example we
can use the fact that the attractor returns to its original values in the phase space after
the whole turn. Therefore if we find some full derivative of any quantity then its average
value shoud be zero for the attractor trajectory. We have then for example

<(e—g)p*>=0 (14.11)

For small € the trajectory (as we can check numerically) is almost a circle. Plugging

q¢ = Rcost, p= Rsint (14.12)
we get
6%2—%4:0:3:2\& (14.13)
For arbitrary € we could use the fact that the trajectory is periodic and write
7= g™, p=3 pnet (14.14)

and get a nonlinear algebraic equation for g, and p,.
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14.3 Catastrophe theory of Thom - bifurcation of points
If we have a dynamical system given (in the matrix notation)
z = F(u,z) (14.15)

where u = (1, ..., 4r) are parameters and z is an n-dimensional vector. If k£ < 4 then
we have 7 types of possible bifurcation points i.e. the points where the character of the
evolution can change. For £k = 5 we have 11 types and for £ > 5 there is an infinite
number of possible types.

At k < 4 the bifurcation points can be described by the special points in polynomials
in 1 (4 types) or 2 variables (3 types). The former are called cuspoidal the latter umbillic.
The cuspoidal are given by (F = V')

e fold
V=2%4+az (14.16)
e cusp
V=z'4+az®+0bz (14.17)
e swallowtail
V =2° 4 az® + b2? +cz (14.18)
e butterfly
V =1z°% + az* + bz® + cz? + dz (14.19)
The umbilic are given by
e hyperbolic
V=zd+y +azy+bdz+cy (14.20)
o elliptic
V=2%-3zy® +a(z® + %) + bz +cy (14.21)
e parabolic
V=z?y+vy*+az® +by> +cz+dy (14.22)

For k = 5 we have one more cuspoidal (wigwam) and 3 more umbilic (second hyperbolic,
second elliptic and symbolic).

We analyze below in some detail only a cusp.

The bifurcation can only happen at points only at points zo where F(u,zo) = 0.
Such a point can be stable or unstable. Then the behavior of the system depends on
the matrix of second derivatives at the point zy. If this matrix has one (or more) zero
eigenvalues then such a point (or curve) is called a bifurcation point. We write the
characteristic polynomial in a slightly different way

V' =23 —3az® +2b (14.23)
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We have 3 roots of this equation and the bifurcation point is when the character of the
roots changes from 1 real and 2 complex to 3 real. If we want to check when it happens
we write

V' = (z —c)*(z + 2¢) (14.24)

and plugging into the original equation we have
a=c?, b=c (14.25)

or
a® b2 =0 (14.26)

and it is a condition for a bifurcation point.

14.4 Poincaré mapping

To visualize the flow it is convenient to use the notion of a Poincaré mapping. We denote
a closed orbit in the phase space (the attractor) by I" and we ask about the behavior of
trajectories closed to it. We introduce the hypersurface S in some sense 'perpendicular’
to I' at some point zg on I" and we choose this point to have 7 = 0. The neighborhood
of o we call Sy.Then the hypersurface will be punched in exactly the same point after
T, 2T and so on where T is the period of the closed orbit. If we go away from the orbit
I" the other trajectories cross the hypersurface at some other time. The mapping

z — ¥(z) (14.27)
such that zo — z( after time T is for all points from Sy called the Poincaré mapping 7
So — m(Sp) = S1 (14.28)

Then we ask about a sequence
So—= 81— ...5, (14.29)

It may happen that the sequence disperses or (as we expect for the limit cycle) it shrinks
to smaller and smaller neighborhood of zy. In order to answer the question whether the
periodic orbit I" is stable we ask about the so called characteristic multipliers of the
linearized map

art

o (14.30)

z=x9

if all characteristic multipliers (eigenvalues of this equation) lie strictly inside the unit
circle then the orbit « is stable; if one or more lies outside then the orbit is unstable.
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14.5 Bifurcation of periodic orbits

For periodic orbits there is a qualitatively new feature namely a possibility of period
doubling. We now assume that the flow depends on some parameter v. If we have a
Poincaré mapping the matrix of first derivatives then if for a given v the characteristic
multipliers have all absolute value less than 1 then the orbit is stable. The interesting
thing happens if for some value of v one of the multipliers reaches -1. Then we return
to the previous position in the direction of this multiplier after 2 turns and the orbit
has twice bigger period (while the other directions shrink like the matrix of multipliers
squared). Then we consider the Poincaré mapping after 27" and not T' around the
new ’'fixed’ trajectory with v = 1. It may turn out that changing v from this new
value around the new trajectory the situation repeats itself — one of the characteristic
multipliers reaches -1 and we have yet another trajectory with the basic period 47. It
may happen that the phenomenon repeats itself for smaller and smaller changes of v
and for a finite v we reach infinite number of possible periodic orbits.

14.6 Deterministic chaos

We will describe below such a possibility for a Poincaré flow in one dimension on the
most famous example of the logistic equation.

We start with some general remarks. If we measure some real valuez;, t = 1,...,n at
the consecutive times 7" then the predictive power is large if there is a strong correlation
between z; and any later z; even for large :. On the other hand if the correletaion is
weaker and weaker then it is more and more difficult to predict the value of z; for
consecutive ¢'s.

We can introduce a measure of this correlation by means of the following construc-
tion. For a sequence of real numbers

(Z1,...,2Zn) (14.31)

where 7 denotes the time of measurement 7" we assign the discrete Fourier transform
numbers Z,

= 1 —i2mka/n
= — e ) =1,..., 14.32
Zo Tn Ek a n ( )

so that o correspond to the discrete frequency. They are complex numbers but they
satisfy £} = £,_,. They also have the same norm

doazp =) |Eal (14.33)
k a

and there is an inverse transform

1
n

Ty 1= =y e2The/n (14.34)
o

B
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We ask about the correlation in time namely about the quantity
1
C, = ~ > TkTrsr (14.35)
k

Plugging the expressions for z; and 5, and using the fact that £} = Z,_, we get

1

Cr==Y |&a|2e 27/ = Z N |z /% cos(2 14.36
T n2a2|$a| n2a2|$a| (2mat/n) ( )
The inverse transform gives
1
|Z4|? = - Z C, cos(2mat/n) (14.37)
T

If C, goes to 0 for large 7 then |#,|? has a continuous spectrum (and vice versa). If on
the contrary C, does not decrease at large 7 then |%,|? has sharp peaks around some
frequencies. In the previous case we expect chaotic behavior in the latter a regular one.

14.7 Logistic equation
The logistic equation has one parameter v
T+ = vep(l — z) = Fi(v, 2x) (14.38)

where
zr €[0,1], 1<v<4 (14.39)

where v < 4 to avoid moving out of the interval [0, 1]. The fixed point of this transfor-

mation is for
v—1

i = (14.40)

v
Hence v > 1.
The derivative
Fl(8)=v(1l-2%8)=2-v (14.41)

so that if ¥ < 3 then the fixed point is stable since |F{| < 1. When 14 = 3 we have a
period doubling point so we start to analyze the new orbit (Fy ® Fy)

Trpr1 = V22r(1 — z2) (1 — var(l — z1)) = Fa(v, z1) (14.42)

The previous fixed point £ = (v — 1)/v is unstable for v > 3 but there are new stable

points
1+ — 1
v+ \/(;/V 3)(v+1) (14.43)

=
and then the new bifurcation point is

Fy(#)= -1 +2w+4=-1 = 1p=1++/6=~3.449.. (14.44)
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Going further the new bifurcation points turn out to be denser and denser and at the
point (discovered numerically by Feigenbaum in 1975)

Voo = 3.569945672... (14.45)

at the ultimate rate
Vg — V-1
= 1 — 4669201 (14.46)

there is a deterministic chaos - one cannot predict how the evolution will proceed.
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Mathematical introduction
In the notation used in these lectures indices 7,7,k ... will denote 1, 2,3 i.e spatial
dimensions (Greek indices p,v... =0,1,2,3 will denote 4-dimensional quantities). The
summation over repeated indices will always be implicitly assumed. The derivative with
respect to time will be denoted by a dot and with respect to (cartesian) spatial directions
by
7]
Vii= oz’
This operator has well defined properties under rotations and transforms tensors into
tensors.
Vectors will be often denoted by boldface for example r.
We introduce a scalar product of two vectors

8; (14.47)

A-B:=AB (14.48)
with a number as a result and a vector product
(A X B)i = SijkAjBk (14.49)

with a vector (in 3 dimensions) as a result — ¢;;; is a fully antisymmetric tensor with
€103 = 1 (in 4 dimensions we choose the convention %123 = 1).
We have cyclic identity easy to prove by cyclicity of €;;

A (BxC)=C-(AxB)=B-(CxA) (14.50)

We will often use the identity

€ijk€itm = 0j10km — 0jmOp (14.51)
Therefore, for example
Ax(BxC)=B(A-C)-C(A-B) (14.52)
In cylindrical coordinates
€, €y, € r = pe, + ze, (14.53)
we have _ _
€, = ey, €4=—¢e, €, =0 (14.54)
so that the velocity
vV = pe, + pe, + ze, = pe, + pq5e¢ + ze, (14.55)
and
v2 = % + p?¢? + 22 (14.56)
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The laplacian on a scalar function f reads

19 of 1 6%f 08%f
Af=-9 (00 Lo, o 14.57
f pOp <p3p> ML (1457)
The laplacian on a vector function A reads
A 2 A
AA = e (AA ——P———¢)
PATTP 2 p? B9
Ay 2 0A
+e (AA -2 ——P)
P\TH T2 T o
+e,AA, (14.58)
In spherical coordinates
e, €, €4, r =re, (14.59)
we have
&, = Oep+ psinbey,
& = —éer + (]SCOS 9e¢
€ = —c;.Ssin fe, — chos feg (14.60)
so that the velocity
v = 7e, + ré, = fe, + rfeg + rqS sin fey (14.61)
and _ .
v? = 72 4 262 + r?5in? ¢° (14.62)
The laplacian on a scalar function f reads
16%(rf) 1 9 of 1 8%f
Af = - — [ sinf— —_—— 14.63
f r Or2 + 72 sin 6 66 (sm 89) + r2sin® 6 O¢2 ( )
The laplacian on a vector function A reads
24, 2  9(Apsinb) 6A¢>
AA = e.|AA — — - — -
¢ ( r2 72 8in o0 r2sinf O¢
Ap 2 OA, 2cos @ 8A¢,>
+ AAg — — —
0 ( T [25in29 12 86  r’sin’6 0p
Ay 2 0OA, 2cosf OAg
AAy — 14.64
e < ® " 125in29 ' rZsing 0p = r’sinZ0 99 ) (14.64)
We define the action S as a functional
ty
(14.65)

S = /L(t,:cA,a':A)dt
t;
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so it depends upon the path between ¢; and ¢;.

We want to find such a trajectory that is the extremum of S.

We consider the actual path z#(¢). If it is an extremum of S it means that any
deviation from the trajectory does not change S up to terms linear in the deviation. We
add the deviation

zA(t) — zA(t) + oz (¢) (14.66)

and we calculate the change of the action for the perturbed trajectory (keeping the
initial and final times and the end points of the trajectory unchanged)

ty

ty
65:5/L(t,wA,:bA)dt:/<:L6 A+63—6 ) (14.67)

t;

We integrate by parts and we get up to linear terms in dz4

oL 4 oL A]tf
58 = /<8$A (a A))a dt+[aiA6w , (14.68)

According to our assumption the endpoints of the trajectory are kept fixed so the last
term vanishes. Since dz“(¢) is arbitrary we conclude that for each A

d (8L\ &L
< (am—A> - =0 (14.69)

These equations are called Euler-Lagrange equations.
We see that adding a full time derivative to L does not change the equations of
motion so we treat such lagrangians as equivalent:
df

L=L+-> 14.70
+ 3 (14.70)
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