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I. INTRODUCTION

Let us consider a system of particles, like an atom, an ion,
a molecule, or a nucleus, which forms a bound state. We are
interested in the motion and global properties of this system
in an external electromagnetic field. When relativistic correc-
tions are included, the center of mass cannot be separated from
internal degrees of freedom and this may cause appearance of
additional corrections to electromagnetic moments. A typi-
cal problem is the magnetic moment of the system, for which
the first correct description was presented by Hegstrom in [1].
Here we aim to present an approach, on the basis of previously
obtained results, which allows one to obtain various electro-
magnetic moments including relativistic corrections, e.g. the
charge radius and the electric dipole polarizability. Although
we consider electromagnetic systems herein, the approach can
be extended to a nonrelativistic system of strongly interacting
particles, such as nuclei.

II. PERTURBATIVE APPROACH TO SEPARATION OF
THE CENTER OF MASS MOTION

We assume that the HamiltonianH for a system of particles
can be decomposed as

H = HS +HΠ + δH, (1)

where HS is the Hamiltonian that involves only internal de-
grees of freedom. HΠ is the Hamiltonian for the global dy-
namics of the system, which involves center of mass and elec-
tromagnetic moments. δH is the remainder, which couples
internal degrees of freedom to global motion. We will assume
that the binding energy is much larger than the characteris-
tic scale of energy in δH , so it makes sense to speak about a
bound system. We will also assume that global motion is non-
relativistic. We aim to find an effective equation for the global
motion that accounts for the coupling to internal degrees of
freedom. The Schrödinger equation for the total system is

i
∂ψ

∂t
= (H − ES)ψ, (2)

where the leading factor that comes from the binding energy
ES was subtracted from the time dependence. The Hamilto-

nians HS and HΠ involve different degrees of freedom of the
system, so they commute

[HS, HΠ] = 0. (3)

Moreover, it allows one to decompose the global wave func-
tion as follows

ψ = ψSψΠ + δψ, (4)

where ψS is the wave function of the ground state of internal
Hamiltonian HS with corresponding energy ES, namely

HSψS = ESψS. (5)

ψΠ in Eq. (4) is the wave function describing the global dy-
namics of the system, so it depends only on global degrees of
freedom. The last term in Eq. (4), δψ, is a small correction
that depends on all the variables, and results from the coupling
of internal and external degrees of freedom. We will assume
that

〈ψ|ψ〉 = 1 = 〈ψS|ψS〉S, (6)
〈ψS|δψ〉S = 0, (7)

〈ψS|δH|ψS〉S = 0, (8)

where 〈. . .〉S denotes the scalar product on internal degrees
of freedom only. If the last condition (8) is not satisfied, one
can always redefineHΠ to include 〈ψS|δH|ψS〉S , and subtract
this expectation value from δH . As a result, this condition
does not reduce generality. Let us now project the Schrödinger
equation (2) into ψS, then using assumptions in (6) - (8) one
obtains

i
∂ψΠ

∂t
= HΠψΠ + 〈ψS|δH|δψ〉S. (9)

Eq. (2) with the wave function (4) can be rewritten in the form(
ES −HS −HΠ + i

∂

∂t

)
δψ = ψS

(
HΠ − i

∂

∂t

)
ψΠ

+δH (ψSψΠ + δψ)(10)

and formally

δψ =
1

[(ES −HS)′ −HΠ + i ∂t]
δH
(
ψSψΠ + δψ

)
, (11)
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where prime denotes exclusion of the ground state from the
resolvent, which is defined by the following series:

δψ =

[
1

(ES −HS)′
+

HΠ − i ∂t
(ES −HS)′2

+ . . .

]
δH
(
ψSψΠ+δψ

)
.

(12)
δH is assumed to be a small correction, so we neglect δψ on
the right hand side of Eq. (12)

δψ =
1

[(ES −HS)′ −HΠ + i ∂t]
δH ψSψΠ. (13)

HΠ and the characteristic time scale of δH is much smaller
then the excitation energy of HS , so we use Eq. (12) and
neglect the higher order terms

δψ =
1

(ES −HS)′
δH ψSψΠ + . . . (14)

Finally, the equation for ψΠ becomes

i
∂ψΠ

∂t
= Heff ψΠ, (15)

Heff = HΠ + 〈ψS|δH
1

(ES −HS)′
δH|ψS〉S + . . .

which can be rewriten in the more convenient form

Heff = 〈ψS |H−ES |ψS〉S + 〈ψS|H
1

(ES −HS)′
H|ψS〉S + . . .

(16)

In the actual calculations we perform additional canonical
transformations to avoid the higher order terms denoted by
dots in the above.

III. HAMILTONIAN FOR THE COMPOUND SYSTEM

We consider now a system of N charged particles placed
in the external electromagnetic field, including the leading
relativistic corrections. We assume that the magnetic field
is homogenous, and for the electric field we keep the first
derivatives to account for the charge radius. We would like to
separate the center-of-mass motion and obtain general formu-
lae for electromagnetic moments, such as the magnetic dipole
moment µ, the charge radius, and the electric dipole polariz-
abiliy. Our approach is based on Refs. [2, 3], where relativis-
tic effects are included perturbatively, while the wave function
is nonrelativistic and includes the spin. The initial Hamilto-
nian is a sum of one-particle terms Ha and two-particle in-
teractions Hab including relativistic corrections [4, 5] (using
natural units h̄ = c = 1)

H =
∑
a

Ha +
∑
a>b,b

Hab , (17)

with

Ha =
~π2
a

2ma
+ eaA

0
a −

ea
2ma

ga ~sa · ~Ba −
ea

4m2
a

(ga − 1)~sa ·
(
~Ea × ~πa − ~πa × ~Ea

)
− ~π4

a

8m3
a

− ea
6
r2
Ea∇ · ~Ea +

ea
8m3

a

[
4~π2

a ~sa · ~Ba + (ga − 2)
{
~πa · ~Ba , ~πa · ~sa

}]
, (18)

Hab =
ea eb
4π

{
1

rab
− 1

2mamb
πia

(
δij

rab
+
riab r

j
ab

r3
ab

)
πjb −

2π

3
(r2
Ea + r2

Eb) δ
3(rab)

+
1

2 r3
ab

[
ga

mamb
~sa · ~rab × ~πb −

gb
mamb

~sb · ~rab × ~πa +
(gb − 1)

m2
b

~sb · ~rab × ~πb (19)

− (ga − 1)

m2
a

~sa · ~rab × ~πa
]
− 2π ga gb

3mamb
δ3(rab)~sa · ~sb +

ga gb
4mamb

sia s
j
b

r3
ab

(
δij −

3 riab r
j
ab

r2
ab

)}
,

where ~π = ~p−eA(~r). r2
Ea is the mean square charge radius of

a particle a and it includes for convenience the Darwin term,
so for the point s = 1/2 particle r2

E = 3/(4m2). We now
introduce global variables, the center of mass ~R, and the total
momentum ~Π

~R =
∑
a

ma

M
~ra , (20)

~Π =
∑
a

[
~pa − ea ~A(~R)

]
= ~P − e ~A(~R) , (21)

where M =
∑
ama and e =

∑
a ea, and relative coordinates

~xa = ~ra − ~R , (22)

~qa = ~pa −
ma

M
~P , (23)
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such that [
xia , q

j
b

]
= i δij

(
δab −

mb

M

)
, (24)[

Ri , P j
]

= i δij , (25)[
xia , P

j
]

=
[
Ri , qja

]
= 0 . (26)

Next, we perform a canonical transformation φ

H ′ = e−i φH ei φ + ∂tφ , (27)

which assumes that the characteristic wavelength of the elec-
tromagnetic field is larger than the size of the system, as fol-
lows:

φ =
∑
a

ea

∫ 1

0

du~xa · ~A
(
~R+ u~xa

)
=
∑
a

ea

[
xiaA

i +
1

2!
xia x

j
aA

i
,j + . . .

]
. (28)

The scalar potential is transformed to∑
a

eaA
0
a + ∂tφ = eA0 −DiEi − 1

2!
Dij Ei,j , (29)

where

Di =
∑
a

ea x
i
a , (30)

Dij =
∑
a

ea x
i
a x

j
a , (31)

and A0 ≡ A0(~R), ~E ≡ ~E(~R), similarly ~B ≡ ~B(~R). The
kinetic momentum is transformed to

e−i φ πja e
i φ = π̃ja +

ma

M
Πj , (32)

where

π̃a = ~qa +
1

2

(
ea ~xa +

ma

M
~D
)
× ~B, (33)

and the kinetic energy is

e−i φ
∑
a

π2
a

2ma
ei φ =

Π2

2M
+
~Π

M
· ~D× ~B+

∑
a

π̃2
a

2ma
. (34)

Finally, the transformed Hamiltonian takes the form

H ′ = HBP +H∂E +HΠ, (35)

where

HBP =
∑
a

{
π̃2
a

2ma
− π̃4

a

8m3
a

− ea
2ma

ga ~sa · ~B +
ea

8m3
a

[
4 π̃2

a ~sa · ~B + (ga − 2)
{
π̃a · ~B , π̃a · ~sa

}]
−ea (ga − 1)

2m2
a

~sa × ~E · π̃a
}

+
∑
a>b,b

ea eb
4π

{
1

rab
− 1

2mamb
π̃ia

(
δij

rab
+
riab r

j
ab

r3
ab

)
π̃jb

−2π

3
(r2
Ea + r2

Eb) δ
3(rab)−

2π ga gb
3mamb

~sa · ~sb δ3(rab) +
ga gb

4mamb

sia s
j
b

r3
ab

(
δij − 3

riab r
j
ab

r2
ab

)
+

1

2 r3
ab

[
ga

mamb
~sa · ~rab × π̃b −

gb
mamb

~sb · ~rab × π̃a +
(gb − 1)

m2
b

~sb · ~rab × π̃b

− (ga − 1)

m2
a

~sa · ~rab × π̃a
)]}

, (36)

H∂E = −
∑
a

ea
6
r2
Ea∇ ~E −

1

2!
Dij Ei,j −

∑
a

ea (ga − 1)

4m2
a

εikl
{
siaE

k
,j x

j
a , π̃

l
a

}
, (37)

HΠ =
~Π2

2M
+ eA0 − ~D · ~E + ~D · ~B ×

~Π

M
− 1

8M3
Π4 − 1

2M3
Π2 ~Π · ~D × ~B

+ΠiQij Πj +
1

2
{Πi , Qi}, (38)
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Qij = − δij

2M2

(∑
a

π̃2
a

2ma
+
∑
a>b,b

ea eb
4π rab

)
− 1

2M2

(∑
a

π̃ia π̃
j
a

ma
+
∑
a>b,b

ea eb
4π

riab r
j
ab

r3
ab

)
+
∑
a

ea
4M2ma

[
2 δij ~sa · ~B + (ga − 2)Bi sja

]
, (39)

Qi =
∑
a

ea
4Mm2

a

[
4 π̃ia ~sa · ~B + (ga − 2)Bi π̃a · ~sa + (ga − 2) sia π̃a · ~B

]
+
∑
a 6=b,b

ea eb
4π

[
1

2Mma r3
ab

(~sa × ~rab)i −
1

2Mmb

(
δij

rab
+
riab r

j
ab

r3
ab

)
π̃jb

]

−
∑
a

ea (ga − 1)

2maM
(~sa × ~E)i −

∑
a

1

4Mm2
a

{π̃2
a , π̃

i
a}. (40)

In order to simplify the derivation of the effective Hamiltonian
Heff in Eq. (16), we perform the next canonical transforma-
tion φ. In this case it should be noted that the Qi0 operator

Qi0 = Qi
∣∣∣∣
~E= ~B=0

=
1

2M

∑
a6=b,b

ea eb
4π

[
1

ma r3
ab

(~sa × ~rab)i (41)

− 1

mb

(
δij

rab
+
riab r

j
ab

r3
ab

)
qjb

]
−
∑
a

1

2Mm2
a

~q 2
a q

i
a

can be expressed as a commutator

~Q0 = i [HS , ~T ], (42)

where

~T =
1

2M

∑
a

~sa × ~qa
ma

− qja ~xa q
j
a

ma
−
∑
b 6=a

ea eb
4π

~xa
rab


(43)

andHS is the nonrelativistic Hamiltonian of the bound system

HS =
∑
a

~q 2
a

2ma
+
∑
a>b,b

ea eb
4π rab

. (44)

Consequently, we assume that

φ = −~T · ~Π (45)

and obtain a new Hamiltonian H ′′

H ′′ = e−i φH ′ ei φ + ∂tφ (46)
= H ′ + δH,

where

δH = −i
[
HS +

Π2

2M
+ eA0 − ~D ·

(
~E +

~Π

M
× ~B

)

−i ∂t , ~T · ~Π
]
. (47)

We will limit the effective Hamiltonian to terms that are
independent, linear in electromagnetic field strength, and
quadratic in electric field, thus neglecting the higher order
terms in Eq. (16), so

Heff = 〈ψS |H ′′ −HBP

∣∣∣
~E= ~B=0

|ψS〉 (48)

+ 〈ψS |H ′′
1

(ES −HS)′
H ′′|ψS〉

The expectation value of δH on ψS is

〈δH〉 = i

〈[
~D ·
(
~E +

~Π

M
× ~B

)
, ~T · ~Π

]〉
= − ε

ijk

4M

{(
~E +

~Π

M
× ~B

)i
, Πj

}
×
∑
a

〈(
ea
ma
− e

M

)
(ska + lka)

〉
−1

6
〈 ~D · ~T + ~T · ~D〉~∇ · ~E (49)

The resulting effective Hamiltonian from Eq. (48), after re-
arrangement, details of which are presented in the following
sections, becomes

Heff = eA0 +
Π2

2M

(
1− ES

M

)
− Π4

8M3
− e

6
R2∇ · ~E (50)

− e

2M
(g + δg) ~S · ~B +

e

2M2
(g − 1) ~S · ~Π× ~E

+
e

2M3

[
Π2 ~S · ~B +

(g − 2)

2
~S · ~Π ~B · ~Π

]
− αE

2
~E2

where ~S is a global spin operator, and formulas for R2, g, δg,
and αE are presented in the following sections.
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A. Mean square charge radius

The mean square charge radius is defined as a coefficient at
∇ ~E, see Eq. (50). It is present in H∂E

H∂E = −
∑
a

ea
6
∇ ~E

[
r2
Ea + x2

a +
(ga − 1)

m2
a

~xa × ~qa · ~sa
]

(51)
and also in δH

〈δH〉 = −1

6
∇ ~E 〈~T · ~D + ~D · ~T 〉. (52)

For the total mean square charge radius R2 of the system, we
obtain

eR2 =
∑
a

ea

[
r2
Ea+〈x2

a〉+
(ga − 1)

m2
a

〈~xa×~qa·~sa〉+2 〈~xa·~T 〉
]
.

(53)
The first two terms are widely known, the third one was re-
cently discovered by Flambaum et al. [6], and the last term
is new. It would be interesting to calculate them for deuteron,
for which the the charge radius is well known from atomic
isotope shift measurements [7]. However, in the presence of
strong interactions the formula for R2 may change, and this
should be verified using the effective chiral perturbation the-
ory.

B. Electric dipole polarizability

The energy shift Eqs. (48) due to the electric dipole polar-
izability Eq. (50) is

−αE
2

~E2 = 〈ψS |( ~D + δ ~D) · ~E 1

ES −HS
( ~D + δ ~D) · ~E|ψS〉

(54)
so one obtains for αE

αE =
2

3
〈ψS |( ~D + δ ~D)

1

HS − ES
( ~D + δ ~D)|ψS〉. (55)

The relativistic correction to the electric dipole operator δ ~D
comes from Eq. (47)

−δ ~D · ~E = −i
[
eA0 − i ∂t , ~T · ~Π

]
, (56)

so

δ ~D = e ~T , (57)

and ~T is defined in Eq. (43). In all the previous calculations
of the electric dipole polarizability of nuclei, the contribution
coming from δD was missing. This correction is particularly
important for muonic atoms, where nuclear polarizability ef-
fects are large.

C. Kinetic energy

When the electromagnetic field is neglected, the expecta-
tion value of H ′′ − ES is

Heff =
Π2

2M
− Π4

8M3
+ Πi Πj 〈Qij0 〉, (58)

where

Qij0 = Qij
∣∣∣
~E= ~B=0

= − δij

2M2

(∑
a

~q 2
a

2ma
+
∑
a>b,b

ea eb
4π rab

)

− 1

2M2

(∑
a

qia q
j
a

ma
+
∑
a>b,b

ea eb
4π

riab r
j
ab

r3
ab

)
.(59)

The expectation value of the second term vanishes, while that
of the first term is ES , so

Heff =
Π2

2M

(
1− ES

M

)
− Π4

8M3

≈ Π2

2 (M + ES)
− Π4

8 (M + ES)3
. (60)

Heff is a kinetic energy with the total mass being the sum of
individual masses and the binding energy, as it should be. This
is in agreement with Eq. (50).

D. Spin in the external homogenous electric field

Hereinafter we assume that the electric and the magnetic
fields are homogenous. The magnetic moment µ of the com-
pound system is defined as

~µ =

〈∑
a

ea
2ma

(~la + ga ~sa)

〉
≡ e

2M
g ~S, (61)

where the last equation defines the g-factor, and ~la = ~xa × ~qa
and ~S =

∑
a(~la + ~sa). The coupling of the static magnetic

moment to the magnetic field is

Heff = −~µ · ~B . (62)

When the system moves, the magnetic moment couples to the
electric field as follows

Heff =
~Π× ~E

2M
·
∑
a

〈
ea (ga − 1)

ma
~sa

〉
+ δH, (63)

where

δH =
~Π× ~E

2M
·
∑
a

〈(
ea
ma
− e

M

)
(~sa +~la)

〉
. (64)
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After combining both terms

Heff =
~Π× ~E

2M
·
∑
a

〈
ea
ma

(ga ~sa +~la)− e

M
(~la + ~sa)

〉
=

e

2M2
(g − 1) ~S · ~Π× ~E (65)

the coupling of the moving spin to the electric field coincides
with that in Eq. (50).

E. Spin in the external homogenous magnetic field

Corrections of order O(~Π2) to the coupling of the spin to
the magnetic field are

Heff = Πi 〈QijB〉Π
j + δH, (66)

where the part of Qij that is linear in ~B is

〈QijB〉 =
1

2M2

∑
a

ea
2ma

〈
δij ~xa × ~qa · ~B − (~xa × ~B)i qja

−qia (~xa × ~B)j +
(

2δij ~sa · ~B + (ga − 2)Bi sja

)〉
=

1

2M2

∑
a

ea
2ma

〈
2 δij (~la + ~sa) · ~B −Bi lja

+(ga − 2)Bi sja
〉
, (67)

where we used the expectation value identity

〈xia qja〉 =
1

2
〈xia qja − xja qia〉. (68)

The contribution from the additional canonical transformation
Eq. (49) is

δH = −
~Π× ~B

2M2

∑
a

〈(
ea
ma
− e

M

)
~Π× (~sa +~la)

〉
.(69)

The total O(~Π2) interaction takes the form

Heff =
e

2M3

[
Π2 ~S · ~B +

(g − 2)

2
~S · ~Π ~B · ~Π

]
(70)

and coincides with that in Eq. (50).

IV. MAGNETIC MOMENT

The relativistic corrections to the magnetic moment of
bound states with arbitrary particle masses have already been
considered in the literature [1, 3, 8] and very recently in
[10]. Here we rederive the general formula for the arbitrary
state, obtain the known result for the magnetic moment of
hydrogen-like ions in the S state, and confirm and obtain a
more accurate result for positronium ion Ps− in the ground
state. Consider the relativistic interaction with the magnetic
field resulting from HBP in Eq. (36), and neglect the terms
quadratic in ~B.

δH = −
∑
a

ea
2ma

ga ~sa · ~B +
∑
a

1

4m3
a

[
q2
a
~Da × ~qa · ~B + 2 ea q

2
a ~sa · ~B + ea (ga − 2) ~qa · ~sa ~qa · ~B

]
+
∑
a 6=b,b

ea eb
4π

[
− 1

4mamb
qia

(
δij

rab
+
riab r

j
ab

r3
ab

)
( ~Db × ~B) j

+
1

4 r3
ab

ga
mamb

(~sa × ~rab) · ( ~Db × ~B)− 1

4 r3
ab

(ga − 1)

m2
a

(~sa × ~rab) · ( ~Da × ~B)

]
, (71)

where

~Da = ea ~xa +
ma

M
~D. (72)

Eq. (71) agrees with the former result of Hegstrom [1], and is
essentially the same as that in Ref. [3]. For S-states, only the

spin dependent terms in (71) contribute, so

δH = −
∑
a

ea
2ma

~sa · ~B
{
ga −

~q 2
a

m2
a

(
2

3
+
ga
6

)
+

1

3

∑
b6=a

eb
4π

~rab
r3
ab

·
[
ga
mb

~Db −
ga − 1

ma

~Da

]}
. (73)

First we will consider the hydrogen-like ion. It is a system
consisting of one electron of mass m and charge −e, and the
nucleus of charge Ze and mass mN . We neglect the spin of
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the nucleus, so the Hamiltonian is

δH =
e

2m
~s · ~B

{
ge −

~q 2

m2

(
2

3
+
ge
6

)
+

Zα

3M reN

×
[
ge

(
−Z M

mN
+ (Z − 1)

mN

M

)
+(ge − 1)

(
M

m
+ (Z − 1)

m

M

)]}
. (74)

The correction δg is given by the expectation value of the
Hamiltonian on the hydrogen-like system state φ = φnlml

,
where n, l,ml are respective quantum numbers

〈δH〉 =
e

2m
~s · ~B(ge + δg), (75)

where

δg = − (Z α)2

3n2 (1 + x)2

[
−ge

2
+ 4− 1

1 + x

+Z x2

(
ge +

1

1 + x

)]
(76)

and x = m/mN , in agreement with Refs. [3, 8].
In the case of the positronium ion Ps− in the ground state,

the spin comes only from the positron, since two electrons
are in the singlet state. Hence from the beginning we neglect
terms proportional to electron spin, and assume that indices
1, 2 refer to electrons, while index 3 refers to the positron.

δH = − e

2m
~s3 · ~B

{
ge −

~q 2
3

m2

(
2

3
+
ge
6

)
(77)

− α

9m

[
5

3

(
1

r13
+
~r13 · ~r23

r3
13

)
+ ge

~r13 · (~r12 − ~r23)

r3
13

+
5

3

(
1

r23
+
~r13 · ~r23

r3
23

)
− ge

~r23 · (~r12 + ~r13)

r3
23

]}
As previously, we find a correction to the magnetic moment
of Ps− from the expectation value of the Hamiltonian (77).

〈δH〉 = − e

2m
~s3 · ~B gPs− . (78)

Of note, gPs− is defined differently from the g-factor in Eq.
(61). Following this definition and Eq. (77) gPs− is

gPs− = ge + α2 δg, (79)

δg = −
〈
~p 2

3

(
2

3
+
ge
6

)
+

1

r13

(
10

27
+

2

9
ge

)
+
~r13 · ~r23

r3
13

(
10

27
− 4

9
ge

)〉
, (80)

where for convenience we used in the last equation atomic
units, so above matrix elements are dimensionless. Table I

presents expectation value of operators in the ground state of
Ps− calculated numerically, where the uncertainty for our to-
tal g-factor gPs− is estimated by 2α4 δg. Our value for δg
is in agreement with the one obtained in [10] −0.51(1), but
is significantly more accurate and includes the leading QED
effects. Surprisingly we do not agree with the correspond-
ing formula obtained in [10], which is much different and not
equivalent to that of ours in Eq. (80), and also we disagree
with their total g-factor gPs− = 2.004 61(1).

TABLE I: Expectation values of operators in (80) on the ground state
of Ps− in atomic units, fundamental constants are from Ref. [9]

Energy −0.262 005 070
〈~p 2

3 〉 0.257 532 962
〈 1
r13
〉 0.339 821 023

〈~r13·~r23
r 3
13
〉 0.046 478 421

δg −0.510 551 028(1)
ge 2.002 319 304
gPs− 2.002 292 117(3)

V. SUMMARY

We have presented an approach to derive an effective
Hamiltonian that governs the dynamics of the whole bound
system from individual Hamiltonians of its ingredients, in-
cluding leading relativistic corrections. This approach is
based on our two former works [2, 3], and in comparison to
them it is much simpler. We derived a formula for the charge
radius, which can be used for systems such as nuclei. Be-
sides the known terms, it includes new terms which until now
have not been taken into account in the calculation of nuclear
charge radii. Similarly, the electric dipole polarizability in-
cludes corrections to the electric dipole moment δD that have
been omitted in all previous calculations of the nuclear polar-
izability. The obtained formula for the magnetic moment is
in agreement with that obtained previously [1, 3, 8] and we
improve the result published recently for the positronium ion
[10]. The presented approach can also be used for nuclei, to
calculate their electromagnetic moment, but this requires in-
corporation of strong interactions via the chiral perturbation
theory. It is especially important in view of very accurate
results for nuclear charge radii differences between isotopes
obtained from atomic spectroscopy [7, 11].
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