Radiative corrections of the order a (Z a)® for rotational states of two-body systems
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The analytical calculation of the complete o (Z )® one-loop radiative correction to energies of
two-body systems with the angular momenta [ > 0, consisting of a pointlike particle and an extended-
size nucleus with arbitrary masses and spin 1/2, is presented. The obtained results apply to a wide
variety of two-body systems, such as hydrogen, muonium, positronium, and antiprotonic atoms.

I. INTRODUCTION

The hadronic two-body systems, such as antiprotonic
atoms in circular states [ ~ n, give the possibility to
probe the existence of the long-range interactions be-
tween hadrons, which is not possible by other means.
The emission spectroscopy of light antiprotonic atoms is
feasible at CERN [1], and from the theoretical side these
atoms can be very accurately calculated. In fact, in a
highly excited circular state the effective coupling Z a/n
is much smaller than one, and so the NRQED approach
can be used to obtain the energy levels even for high Z-
nuclei. Such calculations for an arbitrary mass ratio and
arbitrary state up to the order (Z a)® has recently been
performed in Refs. [2, 3], and here we extend this result
to the order o (Z a)® and Z2 a (Z a)S.

Another two-body systems, such as hydrogen and
hydrogen-like ions, serve for determination of the fun-
damental physical constants [4], because they can be
measured and calculated with high accuracy. Significant
progress has been achieved in recent years by the inclu-
sion of the nuclear charge radii obtained from muonic hy-
drogen and other light muonic atoms [5-10]. The current
value of the Rydberg constant, based mainly on the pre-
cisely measured 15 — 2S5 transition in H [11] and 25 — 2P
in pH [5, 6], has a relative accuracy of 1.1-10712, limited
by uncertainties in theoretical predictions for H and pH
[4]. These uncertainties mainly come from the two-loop
electron self-energy, the radiative recoil, and nuclear po-
larizability in the case of muonic atoms. The radiative
recoil correction is a topic of this work.

In this paper, we perform a calculation at the a (Z «)®
order for two-body systems with arbitrary masses, in-
cluding self-energy of an orbiting particle and with an ar-
bitrary nucleus. In the first step, we consider the states
with [ > 0. The lower-order terms have recently been
obtained for [ = 0 states in Ref. [12], and for I > 0 in
Refs. [2, 3]. The o7 corrections are currently known only
in the nonrecoil limit [13], and here we derive them for
an arbitrary mass ratio. The results obtained may also
find applications in more complicated few-electron sys-
tems like the helium atom, where discrepancies between
theoretical predictions and experimental values for the
ionization energies have been observed [14-16], and they
might come from a similar calculation of radiative o’ m
correction for triplet states of the He atom [17].

II. RADIATIVE o (Za)® CORRECTION

The radiative (electron self-energy) o (Z )% correction
to energy Er(gé of a two-body system can be expressed as

a combination of terms with various spin dependencies,
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where p is the reduced mass, Z a = —ej ea/(47), Z is the

charge number of the nucleus which is a particle number
2, §; is the spin of the i-th particle, and
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which is a symmetric traceless tensor. The calculation is

divided into three parts,

EQ) = Ep + Ey + En (3)

where the low-energy part Ej corresponds to the fre-
quency of the radiative photon w ~ m; o?, the middle-
energy part Ejs comes from the region of w ~ my «, and
the high-energy part Ey corresponds to w ~ mj.

III. LOW-ENERGY PART E;

The low-energy contribution of the order o (Za)® is
further divided into three parts,

E,=Ep1+E2+Ers. (4)

These parts will be evaluated in the subsequent sections
as corrections to the leading low-energy contribution Erg
of the order o (Za)*, namely to the Bethe logarithm.

A. FEpo

Let us consider the nonrelativistic Hamiltonian for a
two-body system in d dimensions,
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V() = 422 H (6)
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where 7= 7] — 75, and d = 3 — 2e. The leading nonrela-
tivistic (dipole) low-energy contribution is
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where H is the nonrelativistic Hamiltonian in d dimen-
sions from Eq. (5). The wave function ¢ denotes the non-
relativistic Schrodinger-Pauli wave function in the cen-
ter of mass frame (p; = —p> = p'). In the following, we
will denote the expectation value of an arbitrary operator
@, evaluated with the nonrelativistic Schréodinger—Pauli
wave function, by the shorthand notation (Q).
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After the d-dimensional integration with respect to k,
and the expansion in e, Ero becomes
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where we ignore terms of order € and higher. The factor
(4m)°T'(1 +¢) appears in all the terms, and thus we will
omit consistently in all matrix elements. The contribu-
tion Fr can thus be rewritten as
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where the last term is the so-called Bethe logarithm [18].

B. En

We consider now all possible relativistic corrections to
Eq. (10) and introduce the notation
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where () is an arbitrary operator. dg involves the first-
order perturbations to the Hamiltonian, to the energy,
and to the wave function. The correction Ep; is the
perturbation of Eyy by the relativistic Breit Hamiltonian
H®  which in d dimensions is (setting e; = —e, ey = Ze)

HW = g'® 4 g"®) (12)
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where §¢(r) is the Dirac é-function in d dimensions. In
d = 3 spatial dimensions, the matrices ¢/ reduce to 0% =
€75 g% and the Breit Hamiltonian in the center of mass
frame becomes
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We will use this d = 3 form of H® also later in the
calculation of the second-order correction. Additionaly,
we note that the first particle is point-like, so %, = 0
and g; = 2. The second particle will be considered with
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finite nuclear size, and we will calculate the radiative
corrections only for the first particle. However, in the
case of antiprotonic atoms we will drop these assumptions
for the first particle and include radiative corrections for



the second particle in Sec. VIII.
We now split Fr; by introducing an intermediate cut-

off A
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After the Z o expansion with A = X\ (Z a)?, one goes
subsequently to the limits € — 0 and A — co. Under the
assumption that [ # 0, we may perform an expansion in
1/k in the second part and obtain
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The second-order contribution in braces will vanish for
states with [ # 0. In the calculations, we keep g and
r2, arbitrary. After performing the k-integration and
with the help of commutator relations, it reads
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where the expectation value is expressed in the center of mass system. Here, 7 is a dimensionless quantity, defined
as a finite part of the k-integral with divergent terms proportional to A” (n = 1,2,...) and In(A/y) in the limit of

large A omitted,
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In all integrals with an upper limit A, to be discussed in
the following, the divergent terms in A\ will be subtracted.
In particular, the terms proportional to In(A/u) but not
In(2 A/pu) are subtracted, which leads to the presence of
factor 1 under the logarithm in Eq. (18).

C. Ero

The second relativistic correction, Fp s, is the nonrela-
tivistic quadrupole contribution. Specifically, it comes
from the quadratic in k£ term from the expansion of
exp(ik - 7),
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In a similar way as for Ep1, we split the integration into
two parts, by introducing a cutoff A. In the first part,
with the k-integral from O to A, one can set d = 3 and
extract the logarithmic divergence. In the second part,
with the k-integral from A to oo, we perform a 1/k expan-
sion and employ commutator relations, with the intent of
moving the operator H — E to the far left or right where
it vanishes when acting on the Schrédinger—Pauli wave
function. In this second part it is advantageous, instead
of directly expanding the exponentials, at first to use the
identity
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Thus, after expanding the resolvent in 1/k, we get for the
expression in the expectation value
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We expand the bracket and take into account only terms
quadratic in k, contributing at the order a”. This leads
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We now pass to the center of mass system, and the re-
sulting expression, after performing k integration and ex-
pansion for small ¢, is
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Here, 32 = B33 is defined as the finite part of the integral
[see the discussion following Eq. (19)]
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D. Ei3

The third contribution, E3, originates from the rela-
tivistic corrections to the coupling of the electron to the

J

electromagnetic field. These corrections can be obtained
from the Hamiltonian in Eq. (5), and they have the form
of a correction to the current
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with H*) given in Eq. (12), and we keep g; arbitrary for
now. The corresponding correction Ep3 is
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We now perform an angular averaging of the matrix ele-
ment to bring the correction E3 into the form
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We again split this integral into two parts. In the first
part, where k < A, one can approach the limit d = 3.
In the second part, with k& > A, one performs a 1/k-
expansion and obtains
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The expectation value for states with angular momentum
[ > 0 can be written as
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where we used the identity
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which follows from evaluation of this expression in mo-
mentum representation in d dimensions, namely
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For E3 we finally obtain
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Now we make the transition g7 — 2, but in the case % Ajg
of antiprotonic atoms, discussed in Sec. VIII we would 7%;%/4 o 8
keep g1 arbitrary. This completes the treatment of the % 3 & 5
low-energy part in Eq. (4), and the complete Bethe-log- Y L $ o
like contributions are - :
FIG. 1: Time-ordered diagrams contributing to the
middle-energy contribution Fp;q.
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IV. MIDDLE-ENERGY PART
FIG. 2: Time-ordered diagrams contributing to the

In the middle-energy part, the momenta of both the
radiative and the exchanged photon are of the order mia.
This part consists of two diagrams: the triple seagull
contribution and a single seagull with retardation, see
Fig. 1 and Fig. 2. We follow the approach used in [17]
for the case of two electrons and extend it to two particles
with arbitrary masses.

middle-energy contribution Fpso.

A. Triple seagull contribution

The first middle-energy contribution is the triple seag-
ull diagram given by Fig. 1, which is expressed (with k3



being the radiative photon) as
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Neglecting F — H in comparison to photon energies, we express the triple seagul contribution as Epry = (Hpr1), where
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The integration over radiative photon ks is trivial. The
remaining integration is performed in spheroidal coordi-
nates, as explained in Appendix B of Ref. [17]. The result
for the triple seagull contribution is
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B. Single seagull with retardation

The second middle-energy contribution comes from the
diagram with a single seagull and retardation, as de-
picted in Fig. 2. Such diagram contains two photons,
one of which is a transverse photon exchanged between
the electrons, and the other is a radiative photon. The
corresponding contribution to the energy is expressed as

Faee = m;_ifW / (2::;5 | (2::;5 o, 1 (k)3T ()
(ol R g e e
i (ky) eiEI.FQ T 171[ — o i(Fi+k2)-7 o ]71[ — 7™ (k2) 61122 7
ﬂﬁhnﬁﬂﬁj%jzjmbn%“E_Hih_b —i(k1+FE2)-7
40 (ky) oiF17 — 131[ — ™ (k) oiFa T o j — o i(R1tE2)-
et ) T ()
etk 7 F_H _1 [ Ja (k1) eiF 7 o ]_1] o (k2) eifa ¢> ) (44)

where j!(k) is the current
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The a” contribution is obtained by expanding the inte-
grand up to the first order in E— H. Because [ d%kk* =
0 in the dimensional regularization, only the terms with
k1 + ko in the denominator do not vanish, and they can



be cast in the form
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Taking into account that only the spin-independent terms
survive the double commutator and performing the an-
gular average for the radiative photon, we arrive at
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We express this as the expectation value of an effective
operator Hyyo,
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Performing the remaining integrations in the same way
as in Ref. [17], we get the result
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C. Total result for the middle-energy contribution

The total result for the effective operator representing
the middle-energy contribution is
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This needs to be transformed into the coordinate repre-
sentation with the help of
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Specifically, in the limit € — 0
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leading to the middle-energy contribution
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V. HIGH-ENERGY PART

The high-energy part Ey comes from the momenta of
the radiative photon of the order of electron mass mq,
and is split into three parts

Eg = Em + Egs + Ens, (55)

where Fpp is due to slopes and higher derivatives
of electromagnetic form-factors, Fpgs is due to the
anomalous magnetic moment x; = a/(27), and Eps is
due to QED correction to the polarizability ag of the
first particle beyond 1.

A. Em

The first part of the high-energy contribution comes
from the derivatives Fy(0), F{(0), and F3(0) of elec-
tromagnetic form-factors of the first particle. For the
second particle, we assume s; = 1/2, and an arbitrary
02T %0, Th g9 Tare, and ags. As a starting point we will
use Ref. [3] and the effective Hamiltonian
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where we collected all the terms that contain form-factor
derivatives, given by expressions 0E; — 0 Eg in Egs. (36),
(38), (41), (43), (45), (47)-(48), (53), and (59) of Ref. [3].
The electromagnetic radii are
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For the case of two pointlike particles, we checked this
result also by a complementary method of calculation,
namely the scattering amplitude approach, as was done
for the Ey contribution in Ref. [17]. Generalizing the
derivation in Ref. [17] for arbitrary masses of both par-
ticles and considering also the spin-orbit terms, we get
the result in agreement with Eq. (63) for the pointlike
second particle.

B. FEu

FEys is the contribution due to the anomalous mag-
netic moment x of the pointlike first particle. It can be
obtained by collecting all the x-dependent parts of the
first-order operators dE; — dFy in Ref. [3], where & is
present in the g-factor ¢ = 2(1 + x) and in the electric
dipole polarizability
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The derivatives of form-factors are given by
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For the resulting expression Fp we get

R D S I O O Y L L
24 ¢ mime |16  12¢ mime |864  T2¢

1 ik gk (i i\ (2
245}01’60%1C (P 47T5d(7°)173)()

R R i R N B ) BT (63)
e | mymg |48 T2 | [P TP

(

We shall add a few comments at this point. If we con-
sider a point particle with the magnetic moment anomaly,
then the electric dipole polarizability includes the first
term in the above equation. The additional radiative
correction, which is not accounted for by the magnetic
moment anomaly, is the second term, which was calcu-
lated in Ref. [13]. Here, we account only for the first
term, and in the next subsection, we will separately ad-
dress the second term. This is because, for a non-point
particle such as antiproton, we will include the first term
in the definition of the electric dipole polarizability, and
the second term will be an additional correction with 1/
infrared singularity to be canceled with a similar term in
the low-energy part.

All these contributions due to the magnetic moments
are finite, and thus we may present them in three-
dimensional form as

Eps = Ky ( (0H;) + E) : (66)

i=1...9

where the individual §H; operators were derived in
Ref. [3] and are presented in Appendix A. FEg is a



second-order amm contribution VI. TOTAL ONE-LOOP RADIATIVE
CORRECTION
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ss LL (70 74Y(2) i o p[r (5J rz)}pj
Ebec < ’ > + Esec <(L L ) 51 82> (67) €
1 2 -
= Za<6 -5 5> PaT ot (r) g+ pu(VV)?, (69)
where Hémm is the part of H* in Eq. (15) which is linear
in k1, and H® (k; = 0) is the Breit Hamiltonian with #; all the singularities proportional to 1/e cancel out alge-
omitted. braically in the sum of all parts in Eq. (3). We may
therefore pass to three dimensions by setting ¢ — 0 and
replace
C. Eus pam8i(r) P — pan &3 (r) p (70)

o ptdr s(r)p — 25, - p><47r53(

)P
This is a correction due to the second term in the elec- -
olf odF plam 6% (r) p' — 45, x PAT 83 (r) § X }7 (72)

tric dipole polarizability in Eq. (65),

o (1 1 ) The final expression for E( ()j in Eq. (3) for the o radia-

Eps = 6 3: (VV)?, (68)  tive two-body correction to the energy is

3
T™mg

EY = Z(BExs+L-51Bsi+L-5Esy+5 -5 E
which is considered separately because it is infrared di- rad < NS LSt 2Hs2 oL o2 S

vergent. We will assume that it is common to all par- + (L) s s ELL> (73)
ticles, including all nuclei, and will exclude it from the
definition of the electric dipole polarizability. where individual coefficients are

Zoo [(31 1. [mi,_ ., 779 11 [mi, o1\
Exs= (22 (24w |z L | Mg
NS <m§m2[(288+6 n[zu( @) ]>m1m2+<7200+60 n[m( )| Jma
1 1

— (1 (5+61 Z*22*453*

[l -Stome)e (2 B )

3
317 4 B 2 2 6
+ mq ma <M4+3ln [Q;(Zoz) 2} ff(lnm17’+”y )] > ESI\S ?,) uﬂNS, (74)
(m2 —mimao+m3) EZa  (2m2 +myma +2m3) (Za)?
Eg1 = - 3,2 - D)
2m3 ms r3 4m3m3 A
YA 43 1 —ml _2- 2 23 1 mi —92 3
|2z 2 1y fm
mim3 [(144+3 n|g, %) _)m1m2+ 1ag T |3, F | ) ma
1 1 m3m3 . (Za)b
+Em%m2+3*2m1 (2—g2) + 112#2 TEz]p47T53( )p>+EsSelc+n36$17 (75)
Zo 5 1. [m 5] 31 1 my 5 3o
. Y A Y 1 2y im | ™My 46
Pe2 < m§m§[<36+6 " 2u ) _>(92 )m1+<2 G n[zu( a) 7| ) gama| pAmoi(r) P
Za)8
s ps2 g B0 K g2, (76)
((592 — 6)m1 4+ 5gams) (Za)? Za [(g2—2) o (g2—-1)
Fgg = — =
5 < 24 m2 m3 A T mdmd| a8 T T g ™M™
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T2 Lo g2 (Za)°
+ (gt o |5z ?| ) et + 2 mdmd | pim %) ) + B35+ EOH 555, )
B = Za 3(mi+mg—gamg) E | [(12+4 g2) mi + (12— Tg2) myma + g2m3] Za
LL (20 —1)(21+3) \ mim3(my+mg) 73 4m2m3 (my + mo) =
1 7(92—2) 5, 5(g2—1) 233 5 my -2 59 m2m2 r2
o\ T ) 294 29 7 092
mifmg[ 6 T mme (g gy () gam3 + S5 mimirin
- (Za)®
Xp471'63( ) >+E§‘e{;+n36LL (78)
The expecta.tion values of the first-order operat0r§ are £oy = Eé‘i) . ﬁ . ﬁ (1 1 10 12
evaluated with the help of formulas from Appendix D. n3 nt ns n3 n5 3 "2
The second-order contribution, which comes exclusively 203 (2 + 1) A
from the amm contribution, is evaluated in the same way + S T ) Iny ) + 73581 ) (86)
as in Ref. [2]. We will now present the final formula for 3 n
the radiative o contribution to energy. £® _ 10 + 191 5,835 | 550 P 133
st = Ty T e T g Ty ) TR gegd
(2 1 -
VII. RESULTS 92 m 7]2 288 m 320
Th . : 4 30 2 2 O 9
e general result can be cast in the form & = —m T 92 +95Mm N5 6 +m —= 3
25,5
aZaﬁ > - +771(_772 ) (88)
Eﬁzf&:i” (Za) <5NS+L'51581+L'52582 4 4
) £ _ 15 5 125 3 50
+5 - HEs+ L) sisjey,  (19) G =ml -y tmAuigg iy
where we pulled ou.t .the factor. A7l with A = 30. for — 77§<;g2 4 zgg) , (89)
[ =1, and for [ > 1 it is defined in Eq. (E1). We consider
separately the cases with [ = 1 and [ > 1, where for the gég) gé‘é) gég) A 2002 s
latter case the individual coefficients are lengthy and thus Eso = e + A + e + ) Bs2 — 3 (92 —m2)
we move their explicit results into Appendix E. Defining 1 1
X <3 — 5> 1111 5 (90)
= Ky —In | ——(Za) 2 80 o
M= = =l o (Za) (80) £® _ppy2(0 13 B\ o (559 133
s2. 7 R \Tg 32072 2T\ 288 T P 288 )
the results for [ = 1 are (91)
15 5 9
eB) e (5) 9 1 W _ 2 ( + ) +a2n2n2 2 992
SNS:an+an+ 71;153 +877f772 <3n5_n3> S2 g2 11 12 16 Up) 16 92771772327 (92)
229 7 50 3
BT i 100 420 &5 —92771772<72 +n28)—n?n§(9—895>,
60 e 2m Za 27 B2 (93)
1 1 ) 10
x| = +1Iny E3§ + ﬁNs , (81) @ g g A 0g, (1 1
<”3 n? Ess = —5 + 0 + =0 + = fss + 992(3_5)
£ 2(821 (G 16) YRS [P n nd
Ns — T\ 3 — Th—=5— 1 172 721
6 ” g 180% (u 712 T3z + 407 112 1n1> (94)
4 29 53 3
Ed=mt -5 +m= ) —mini g3, (83) AT ,170 137
2 4 16 £l 2 2,2 2
ss = g2mM1 M2 54+”71 57 1M 6092
£ 2( 12 21 46> (84) >
NS =Tl — (g T 52—
9 36 15 —mna== 7 (95)
1 1\ /34 4042 8
goe _ p21( =~ 4n? =1, 5 5
e 771[<n3 g <3 MG TE2)+3”5} £l = —ﬂ1772§92+77177§3 771775“12 (96)



5) 1,170 5
R =gm nz( 3 - 5 5= )t 05 3 (97)
&y &y 5(5) A 10g2 /1 1
5LL*?+ + = Jr*ﬁLL 3 por: Rl
X (MQ M M2 TR + 475 12 1ﬂ1) : (98)

: 3697 417
51(4? = 3771) ga2m 772< + 11—

L (1171
AT 720 40

BTN (227 121
T Mhggy ) T2 T gy T g )

(99)
51(44L)_7717732+92771772<781+7)22+77§i>
+g§n1n§< 2 mié) (100)
5&)_771772(—1;4'3771)4-92771772(12?—7712
— T;) +ng (402 — 1) %gg, (101)

where H,, = >_;" | i~! gives the n-th harmonic number.
The Bethe logarithmic terms will be calculated after com-
bining them with those from the exchange contribution

t (Za)” order. We now consider special cases of the
general results in Eq. (79).

A. Positronium

First, we will examine the case of a positronium atom,
i.e., the two-body system of bound electron and positron.
To achieve this, we treat the nucleus as pointlike by set-
ting go = 2, 7%, = r3;, = 0, m; = ma = m, and include
the corresponding result for the radiative correction of
the second particle, where we make the exchange (1 + 2).
For the | = 1 states we get the result

a(Za)m
Eé?b( Spy) = alZa)'m ﬂ) [5(7)("531)
1 1 n
) Hupr —m2 )|
+(3()713 45n5)( + DZQ)]
(102)
where
pos(1p,) 73 1 A7
cOmipy = B 1 _ _
(n"P1) nd 14077 20m1 360000
3 19
2 =7 VI [(Za)?
* (40n3 36On5> n[(Ze)™7],
(103)
pos (3 By 101 3 307
e m3py = BP0 CR) _
(n" ) n3 96013 100t T 2400715

29 79 L
* (120n3 N 360n5>1n [(2e)77].
(104)
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pos(3p) 181 73 877
D (3pP,) = pre(C Py _ _
£ h) n3 172803 960nt  21600m°
47 13 .
* (360n3 N 120n5>1n ().
(105)
, Pos(3P,) 491 41 67
D (3p,) = B CP N N
) n3 80003 1600n4 90075
3 19
2 7 \m[(Za)2
+<4On3 360n5)n[( )~
(106)
BPOS(*HP) = Bns(1) + F (Bs1(1) + Bsa(1))
2s(s+1)—3
+—( ( 1 ) )ﬁss(l)
1
+[3F(+2F) —4s(s+1)] ’ngLQ( ) ,
(107)
1
F= 5 GG +1)—s(s+1)—2], (108)
where we introduced notation f5;(z) = f§; with =z =
ml/mg.

B. Hydrogenlike atoms

For hydrogenlike atoms, we begin with the nonrecoil
limit, assuming the nuclear mass mso to be infinitely
heavy. We consider the case of | = 1 while the [ > 1
case is presented in Appendix E. We obtain the result

Za)® ?
E(7,0)(nP) — M<E§TS’O) +L-5 5§1)0)> , (109)

hydr T
£70) _ 1319 1 1687
NS 3600n3 24nt  5400n°
BO
( > 13, + NS
In[3(Za) -
+1n[3(Z) [45713 45n5
4
1 5 23
8(7»0): —
St 8078 T 240t 13500
(0)
1/1 1
5 (7~ ) i
2 /1 1 .
S(o)utioors
where
Bi(z) = B9 + 2 M + 22 8P + (112)

This result is in agreement with the one from Ref. [13] for
a pointlike nucleus. For the leading recoil contribution



we get
(7,1 mia(Za)®, (71 (.
Ehydr (nP) = 7_(_7%<5 + L S1 253
+5 - HEEY + (LiLj)<2> si ) 5&1>> :
(113)
£ _ G- B8 4913 19 1243
NS n3 5400m3  60nt ' 13507m5
4 8 n
— — — ) (Hyy —In——
+(15n3 45n5>( + nQZa)
3871 1\ 5, 23 9
TR\ T )T 55 T 5 s
0 ,, (1 1 -
~ 57 MITE (n?’ — n5>} In[3(Za)™?],
(114)
pon _ B -8 2 5 28
S1 n3 1080n3 12 n4 45 nd
401 1Y\ 5, 1
+§ B mj Tge + _n5
x In [§(Za)7?], (115)
(7,1) Bﬁ 559 229
by = +92( 8640n° | 32 n4 216015
2/1 1 ) -
£ _ 8% . 203 1 367
S8 3 1620n3  18n4 162015

2 /1 1Y\ o,
+92?7 3 s ) M2

+ 0 2% (1 _ 1) In [1(Za)~2],

n3  nd
(117)
5(7,1):£+g2 _ 5069 B 71
LL n3 21600n3 240 n4

649 1/1 1\ o,
T 5200m5 ) TR\ E s ) M2

(il o

VIII. ANTIPROTONIC ATOMS

We may apply the results of our calculation also to
highly excited rotational states of antiprotonic atoms. In
the case of a two-body system consisting of two hadronic
particles, one has to include the strong interaction effects.
However, for highly excited rotational states, these effects
are negligible due to their short range. We may also
omit all the other local interaction terms, but we have
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to keep the g factor of the first particle in the general
form, and include also the radiative contribution for the

(7,1) second (heavy) particle. As a result, only the low-energy,

middle-energy, and Ep3 contrlbutlons have to be taken
into account.
For antiprotonic atoms, the low-energy contribution

ELliS
« 1 5 my _9
—_— 1 Z
3rm? {25+6+n[2u( @) ]}
Za . (69 ripd .
m1 Mo T T €
a (Za)s
Lo za)
)

Er =

phi(x) +Z%(1 < 2, < 2 1).

(119)

In the Bethe log contribution the perturbation of the
expectation value by the Breit Hamiltonian H®) has to
include g-factors of both particles.

The low-energy contribution Ejo is for antiprotonic

atoms of the form
_afigye | L (L0 mi, -2
Em—ﬂ<wv>[3(%+6+mbﬂww

(et )

mi \ 6 45 3
Z
—l—g%,uﬂg(x)—i—Z%l &2 ah).
T n
(120)
The final low-energy contribution is given by
Erp= -2 (2424 20 |™ (20)
Bmn\3:"9 "3 |24
) o \2 a (Za)°
- (mil m%m2) <(VV) >+ T n3 s ()
+ 72212,z h). (121)

The middle-energy contribution for antiprotonic sys-
tems is obtained in a straightforward way as

—

o 17 2 4
Eyvy= ———— | — — — (1 2
M 27rm%m2{9 3¢ 3(nmlr+7)}(VV)
+722(12). (122)

The only high-energy part that will contribute is given
by Eps,

a1l 72 1
[P (I N e
H3 7r<m§+m§)(6 3€>(VV)

The other terms go to polarizability of both particles,
and they are already included in the o y contribution in
Ref. [2].

After summing all the contributions, the singularities
exactly cancel each other, which leads to

(123)



m  pa(Za)? /1
B = pAZa)

40,2

90 mm7}m3 4 (105 m% + 170my mo + 68 m% —60m1(my 4+ ma) (1n(m1 )+ ,y)

13

Evaluating the expectation values, we obtain

+60 (my +my)? Iny )> + %w“(m +L-5 8% () + L- 5 p%(x)
+ 5815 B%(@) + (L'L)P st 5] B (2)) + 22 (1 > 2,0 v 27 1). (124)
Eg) = %ZAO[)G o {2 72 (l(l;, D _ :3> (szz + Hay3 — Hpq1 +1In 2Z7;771>
+;5<l(l+1)<—6+771298—7ﬁl25 +n2§)] +%§f)6<ﬁ“(x)+i-§1531(@
+ L5 %% (x) + 515 B55(@) + (LL) P st s) Bl x)) + 22 (1 & 2,2 > 27 1), (125)

The final result for antiprotonic atoms is thus very sim-
ple and compact.

IX. SUMMARY

We have derived a complete o (Z )% and Z%a (Z a)®
one-loop self-energy correction to the energy levels of a
two-body system with angular momentum [ > 0. The
obtained results are valid for constituent particles of ar-
bitrary masses and spin 1/2, with the nucleus being ei-
ther point-like or extended-size. For [ = 1, the results
are presented in Egs. (81-101), while for [ > 1 in Egs.
(E2-E21). For the case of positronium, the results for
I =1 are presented in Eq. (102-108), and for rotational
states of antiprotonic atoms in Eq. (125). For hydrogen-
like atoms in the nonrecoil limit, our results agree with

(

the former calculation in the literature [13] in the case of
a point nucleus. We present also the first-order recoil cor-
rection in Eq. (113) for { = 1 and in Eq. (E27) for I > 1,
which has not yet been considered in the literature.

What is yet unknown is the pure exchange contribution
of order (Z «)7. Once it is completed, we aim to perform
numerical calculation of relativistic Bethe logarithms and
the electron (muon) vacuum polarization contributions.
This will eventually allow for very accurate results for
l > 0 states of arbitrary two-body systems, including
muonic and antiprotonic atoms.

Finally, we note that using the operator form of
a(Z )b correction in Eq. (73) we found a small mis-
take in the previous calculation of a similar correction
to He ionization energies, which we describe in detail in
Appendix B.
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Appendix A: Operators contributing to Ex2

Individual first-order operators that come from the anomalous magnetic moment of the first particle are

Za - 1 1
0H, = —— L -5 (p*P=+ =7 Al
1 4’[7’1/411 S1 (p 7"3+7“3p>’ ( )
Za . e ripd 5 3 S ; Za [, 3 9 o3
6H2:W(gg 1)(2)(]3’)2(7&3—37154—347'('6 (’I"))(S] Xm]+m(7"E2+rTn%)47Tv (5(7")
Lo [3(g2—1) 2 3 - 3
—HGm:{[ pps 2+<7'E2+4m§)51 P x 4Awd(r) p, (A2)
yAo" =3 41 X T §1 X T 1 = -
0Hy = ———— 2. 5 x Vs - — <Pt P -V AL, p- 5
3 Ty ({P » 52X Vo —3 } {p P } + 4m§,{p 1 X et Ay, p- 81}
Za(gp—2) [, = &S X7 _ Za L 3\ o L. 3y
8mymd P X Vs 3 yD - 52 _W(Zsl'pX4775 (r)p'— g2 82 x pdmd°(r) 5 Xp)
Zo 2)\ .
S (92 Ty + (ZQ 2 )> Fy x pamd3(r) 5L x 7, (A3)
Z 5 81 X
OHy = —— ey Ay 22T (A4)
mq Mo T
1 (Za)?
OH; = Sm3 4 (A5)
1
(Za)? (g2 — 1) o x 7 & x7 Za_, 7
0Hg = - — — X el Ay, A6
6 2mym3 r3 rd m3 ST e (A6)
Za 7\’ p? ] iZart p? 7\’ p? ,
H = — S — 2 o i
! 4m1m2<{[<slxr>’2m1]’ 3 }+{{2m2’ ) 2mg |
Zags | o |9 o o 2 ;1 ripd  §4
- —s3 -89 — + 8y s5— - — AT
Sm%m% |:p ) p , S1 823T+81822T T2 3 ( )
Zo 7 - i - (Za)? (g2 —1) Sa xT 8§ X7
0Hs = — — 51— — 7% 5}, p?
s m? 51 3 x er A + imd [{€1A17 px5i},p } + 2my m2 73 r3
iZOl(gg 71) §1 X T - - 9
C 8myimd NSO R (A8)
Za 2 3(2—2)\ .. - 30\ = Z o Lo o 30\ = =2 53
Oy = s (e = gz ) 18 PX AT B )4 o (i o P An P07+ 20 V30°() . (A9)
[
where Appendix B: Comparison with helium o radiative
‘ ‘ corrections
i Za (. I\ py  Zags (52 x 1)
k= 50 (04 T ) 2 - LR .
2 2 We can compare our results with electron-electron
(A10) operators derived for helium centroid triplet states in
; Zo (i ripd p{ Z o (5 % F)Z Ref. [17], given by the expression EE, in Eq. (156) of
eg Ay = — 5 0 + 2 ) g + 13 that work. It can be transformed into the form
(A11)

are static vector potentials.

7
p o/ (1039 49 oy o0\ L g
Edp = - < (1350 + T In (a2 | pans®(r)p



403 1 42 1
2 o om[la? —Clnr— oy —Zn2)= ).
+(90“L o] —gr—37 3n>r4>
(B1)

This result can be checked against our two-body first-

order operators derived here. We obtain it from the gen-

eral result E(é in Eq. (73) by setting go = 2, 7%, =

TM2 = 0, m; = mo = 1, adding the corresponding re-
sult for the second particle where we make the exchange
(1 +» 2), setting 87 - 5§ = 1/4, omitting fine structure and
hyperfine structure tensor terms, and transforming into
atomic units by r — r/a. We obtain

7
— 1039 49 o o) o s
ESE—W<_ (13504-451n Ba ] pamw6°(r)p

85 4 42 1
O om[la?—-lnr—oy—2n2)= ).
+(180+ o] —gr—37 3n>r4>
(B2)

We observe a discrepancy between these results. It can
be traced to the contribution E; in Ref. [17], given by
Egs. (102), (103), and (104). There is a missing over-
all factor of two in this term, which would lead to an
additional contribution in helium results equal to

a’

oF = T (B3)
Correcting for this mistake, we would get a perfect agree-
ment between the two results. The numerical change
from this correction amounts only to 2 kHz for the 239
state and 3 kHz for the 23P state, and thus does not
explain discrepancies for ionization energies [14, 15].

Appendix C: Derivation of identities

To derive Eq. (69), we start with the identity

P [V, )
=P Vp'+ %pi ', V.l p' — %{pQ,ﬁVﬁ}
= LV 50 VP - g 5 VAT
(1)

For states with [ > 0 the third term in the last equality
vanishes. With the help of the expectation value identity
[, [V,p%]] = 4u(VV)?, (C2)

and relation

X . Za rtrd 5
7 — ] d
', [V, ] [7‘ (5 2 >L+d Zadm §(r),
(C3)
with d =3 — 2¢, we arrive at Eq. (69).
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We will also present the evaluation for the expectation
value of the operator in the first term of Eq. (A2),

1] J 1]
(G2 (‘53 + 2 ans ) Gux)

(C4)

Firstly, we need to isolate the traceless part of this oper-

ator, which is contracted with spin vectors. The expec-

tation value of the traceless part will be proportional to

(L) 3132> while the trace part will result in terms

involving (8 - §2). For the non-local term we get

<(§2 xﬁ)i( % — 3T;Zj>(§1 xﬁ)j>
= ((A(L'L)? + B§)sisl).  (C5)

Coefficients A and B are obtained by projecting the ex-
pression on both sides of the equation, which is con-
tracted with spin operators, either to (L'L7)?) or 6%,
After lengthy angular momentum algebra, this leads to

B 1 10 4 8%(r) f— 122pFE
T @-n@+3\3"” r3
16 pZa
T4 >’ (C6)
(g B2
B= 3(6p47r5 p+ " > (Cn

For the local interaction part we would proceed in a sim-
ilar way, leading to

<<sf2 < 7) 4 8% (r) (31 mi> — (pan 8°(r) )
X <(LiLﬂ')<2> sish + %51 . §2> . (C8)

Appendix D: Expectation values of first-order
operators

We employ the following identities to evaluate the ex-
pectation values with hydrogenic wave functions [18, 19]:

1 2(pnZa)?
<7‘3>: I(I+1) 2 +1)n3

1 4(pZa)* (3n? —1(1+1))
<7‘4> T+ (2 +3) 08’

(D2)
<1nm;4r+’y> _

X [4 (3n® =1l +1)) (szz + Hojp3 — Hpgg

(D1)

(nZa)!
1(+1) (2 —1) 20+ 1) (2 +3)n°

+1n2”M”;1a ;) 2(1-3@Q2l+1)n+4n )} :
(D3)
a 5
R e I L
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Appendix E: General results for states with [ > 1 we obtain the following results for the coefficients in
Eq. (79):
In this section, we will present the results for arbitrary
angular momentum [ > 1. Defining

A=1(1+1)2—1)2+1)(20+3),  (E1)
J
51&2 A A 8(a+D - 3n?) n A
Ens = i ey i e T 35 (Hy—2 4+ Hajy3 — Hpqg +1n 2771704) t3 BNs (E2)
EY) =n?(8In +13+i— SR Y (L N R —
Ns = (8 = o 20+1) " @+12 M\ 76 T4 T a1 (2+1)2
2 3 3 3 3 3
2 < 2,2 v _ _ 2
+m 5) RURE ( 160 T 601D 6@ =1  8@+1)Z 1602 +3)> 92 (E3)
o _ 3(20+1) 3 19(20+ 1) 3 ., 9 )
Ex { 1 T @ayn ™ I T@en)] TR @) ®o (E4)
&) _ 2 S, 44 28 4 4 22 B
Exs 771(+)< 3 2+3l 3(l+1)+?71 9 3l+3(l+1) USTYE (E5)
The following coefficient is
5(3) 5(4) 5(5) A
5s1=%+%+%+ﬁﬁm, (E6)
@ [. 3, 3 8 - NAVEREE 3 13
€ =m {6 T Ury @ mmt (’71("1 2) + 3 >(2l2 2 o012 201
6 N, pp[3 1, 3 1 . 3 1 3
@ +1)2)| TR 62 T 161 T 160+ 1)2 T 160+ 1) 420—1) 202 +1)%  4(20+3)
(o9 2@ 9 o 3 9 3 (7
P\ 7162 T160 160+ 1)2 16+ 1) 4(21— ) 20@+1)2 " a2i+3))]’
(4) _g 9 12 2(4 9 9 _ 24
51_”1[3 o sy T T )5+ s 2 +1) @+
FEIEY I I B B _ﬂ_ 2 2 (E8)
M 93 | g 160+1) 420+ P\ 716 160+ T a@rn))”
(5) _ gy 2 __ 9 303 N2 9 83 (o _ o2
&s1 7711(1+1){ 8+21 2(l+1)+772(6 Z+(l+1) + 13 6+2l 20+ 1) +7717728(92 93) -
(E9)
For coefficient £g9 we obtain
5(3) 8(4) 5(5 A
5822%4-%4- 52 + 5 Ps2, (E10)
n n
3) _ 3 13 3 13 4
€2 = "2(3+772)92( SR TSI S+ D) @t 1e
9 27 9 27 3 9 3
222 o 2L - - Ell
I 92 <16z2 160 TT6(+12 T T6(+ 1) A@—1) 20412 42 +3)> (E11)
o) _ w2 18 (09 9 6
s2 SRR T TR0y T @) P\ 8 8+l (241
27 27 27
2.2 2
il - 1
o 92(1& S 1)> ’ (E12)

9 3 3
gsz —7]177292(—8—7728)‘*‘77%773895' (E13)
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The scalar spin-spin coefficient is

3 4 5
O

5SS:F+ . +n75s+ﬁﬁss, (E14)
: 1 1 1 1
s =m i (2_ (ARSI 3(21i1)2) +77“72g2(_ g AR 3(21i1)2)
i 3 gg( - % R 1+ 0 4(211_ 0~ 2 i e 4(211+ 3)) ) (E15)
Séé) =mnz (N2 — g2) (21 +1-— (2/11)> - nﬁﬁ 93, (E16)
£ = mm ellr]) (E17)

6

Finally, for the tensor spin-spin coefficient we obtain

g8 gl &S A

gLL:%‘F%-FF"‘?ﬂLLy (E18)
s of 3 153 13 9 329 (9 2
LL”””( ETTTUrE G+ T@on fare (21+3)>+"1"292[”2<2z2+2(1+1)
9 9 9 36 27 9 a7 18 18
+2z-1_2z+3+2(1+1)2_(21+1)2_2z)+”2<2z2+2(1+1)+2z—1_2z+3
9 36 27 15 17 17 24 24 15 16
+2(z+1)2_(2z+1)2_m)_4z2+41_4(1+1)_211*21+3_4(z+1)2+(21+1)2}
, o[3 1 1 1 1 3 3 6 3
+”1"292{2z2‘_21+2(z+1)+2(21_1)_2(2z+3)+2(z+1)2_(2z_1)2_(2z+1)2_(21+3)2
15 29 29 29 15 3 24 3 29
+7’2(4124(z+1>4(21_1)+4(21+3)4(z+1)2+(21_1)2*(2z+1)2+(2z+3)2+41”’
(E19)
£0) _ 45 45 24 ) 27 21 54
w=mme| -y gy Taey YT iy T @y
, L[ 21 o1 27 45 45 9 36 9
+””725’2{_41_4(z+1)+(21+1)+771<41+4(z+1)_2(2z—1)_(zz+1)_2(2z+3)>]

of 9 9 48
+"“72(_z_(z+1)+(2z+1))’ (E20)

el = 2 GO —— N S [ R
LL = M9\ qop 3y T 42— 1) "\ +3) 20 -1) 20—1 20+3 4

9 9 9 9
2 _ 2 _ 2 _9_
o (e = 1) g, (16(21 —1) 1620+ 3)) T ( " de—n Tam 3)> ‘ (E21)

Further, for the positronium atom [ > 1 states we obtain

ma(Za)b

Bl =—— A (& + L G+ R) &S+ 5 RS + (L) sish€177) (E22)
where
gro_ L(7T 15 1 8 A 3 1(_2_ 2l _ 6
NS T3\ 80 641 64(1+1) 64(20—1)  32(20+1)2 ' 64(20 +3) n4 32 16 64(20+1)
1 /1 17911+ 1) (3n% —1(1+1)) _ n A
to5 <6 ~ 180 ) + 35 2n [(Za)™?] = Hy—2 — Hyy3+ Hyqy — In Za) T8 Brs(1),
(E23)

gros _ L (93 17 3 17 3. .19 3
LS 738 812" 160 8(1+1)2 16(1+1)  16(20—1)  8(20+1)2  16(21 + 3)
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A3 9 39 5T (5T 18D A O
ni\14 8 2 8(l+1) 16(2+1))  n>\64 8 pd TSV

gpos_i _1+i_ 5 _ 1 + 7 + 1 _i_i _§_3il+L
S8 T p3 160 16(1+1) 16(20—1)  8(2A+1)2  16(20 +3) n4 8 4  16(20+1)

+1) A
135+ Pss(l), (E24)
pos 1 3 1 3 1 3 109 3 3 109
S TR T 2~ - 2 + 2~ 7T
W\ AT 0T A0 4l+1) 4@ 12 16(2—1)  22+1)2 42 +3)2 " 16(20+3)

1 9 9 9 9 9 L/, 51 51
+n4<_41_ 41+1)  8(20—1) * 420+1) 8(2l+3)> +n5< + 32020—1) 32(2z+3)>
+%5LL(1)' (E25)

For hydrogenlike atoms with [ > 1, in the limit of an infinitely heavy nucleus, we get the result

Lo mia(Za)°[1 (91 3 3 2 1/ 3 3 3 2271(1 + 1)
hydr = T A {(15 41_4(1+1)+(21+1)2) n4(_4_2+(2z+1))_ 90 0
8(3n% — (1 +1)) B A 3 7 3 7 8
* g n@e) (LA <n3<6_2l2+2l_2(1+1)2_2(l+1)+(21+1)2>
1 9 9 12 1 /9 1 -
+n4(3_2z+6l_2(1+1)+(2z+1)>+rﬁ<2_81(l+1)>)+m(BNS(O)HL'“WSI(O))}’ (E26)

and for the leading recoil correction we get

2 6
7,1 m OZ(ZOO 7,1 7 o (7,1 7, 1 i (7,1
E}(lydl? —m<51(\18 ) + L - S1 Sél ) + L 5é2 + 51 52 S( ) + (L L‘])(2 J E ) s (E27)
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ey 1 37, 7 16 1 9 9 24
- (-84 2" - “ -6+ 12 -
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3
+
1
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£ _ 19 39 9 12 N, /o2 20 18 \_ 9
TR\ T2 T s+ 1) T80+ T @+nz) T at\ T8 81+ (@2+1)) 8w
A
=T (E29)
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g =g|=(-2+>- —(—1-2 = gl E30
R 1 N T A () I TO TR R Tarn) e | Twlss (B0
) 1/ 15 17 15 17 24 16 24 1/ 45 45
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24 1 (47 6 6 A
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