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Abstract

We present a method for calculating the relativistic correction in hydrogen molecules

that significantly exceeds the accuracy of all the previous literature results. This method

utilizes the explicitly correlated nonadiabatic exponential wave function, and thus treats

electrons and nuclei equivalently. The proposed method can be applied to any rovibra-

tional state, including highly excited ones. The numerical precision of the relativistic

correction reaches several kHz (∼ 10−7 cm−1), which is below the best experimental

accuracy.

1 Introduction

Since the dawn of quantum mechanics, the measurements of the hydrogen molecule spectra

have been used to verify the computational methods. Modern spectroscopic experiments

determine the dissociation energy of the H2 molecule with an accuracy of 10−5−10−4 cm−1.1–3

Measurements of transitions between rovibrational levels reach even higher accuracy, of the
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order of 10−7−10−6 cm−1.4–10 Achieving similar accuracy in theoretical calculations is a severe

challenge. Currently, it is possible to construct a non-relativistic wave function that fully

accounts for electronic correlation and the coupling of the motion of nuclei and electrons,11

allowing for an accuracy better than 10−7 cm−1 for non-relativistic energy.12–15 This study

aims to devise a method for achieving similar accuracy for the relativistic correction.

The significance of relativistic effects in the dissociation energy D0,0 of the hydrogen

molecule has been recognized long ago. In 1959, Ladik16 approached, although not very

successfully, this issue and estimated the relativistic correction as ≈ −30 cm−1. Fröman,17

using a simplistic model binding the relativistic correction with the non-relativistic energy,

arrived at +7 cm−1 as an estimated relativistic correction. An upper bound to this cor-

rection < −1.4 cm−1, was obtained by Kołos and Wolniewicz.18,19 The dispersion of these

results, found without the use of any computer, reveals the theoretical challenges faced by

the pioneering researchers in this field. Only in 1964, Kołos and Wolniewicz conducted

computer-assisted calculations of the relativistic correction to D0,0 in H2. They obtained

the first reliable estimate of this value as −0.5 cm−1,20,21 in disagreement with their previ-

ous upper bound. After a 30-year hiatus, Wolniewicz revisited this topic and, using more

accurate wave functions and new algorithms for calculating integrals, he obtained a value

of −0.533 0 cm−1, which confirmed the previous estimate.22 Advances in computing power,

wave function optimization, and techniques for accelerating the convergence of relativistic

expectation values23 have enabled systematic improvements in the accuracy of relativistic

corrections. Over time, the contribution of the finite mass of the nuclei has also been taken

into account, either perturbatively24 or variationally.25–27

2 Relativistic correction

Let us now introduce a formal theory of molecular levels. The total energy of a rovibrational

level of a light molecule with vibrational (v) and rotational (J) quantum numbers can be
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expressed as a series in powers of the fine structure constant α:

E(v,J) = α2E(v,J)
nr + α4E

(v,J)
rel + α5E

(v,J)
qed + . . . , (1)

where expansion coefficients may involve powers of lnα. The coefficients are commonly

interpreted as, respectively, the nonrelativistic, relativistic, quantum electrodynamic, etc.,

components of the energy and can be determined in the framework of the quantum electro-

dynamic (QED) theory.

The primary objective of this work is to accurately calculate E
(v,J)
rel – the relativistic

correction for rovibrational states of H2 and its isotopologues. This correction is given by
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the expectation value of the mass-dependent Breit-Pauli Hamiltonian

E
(v,J)
rel = ⟨Ψ |HBP|Ψ⟩

≡MV +Dee +Den +Bee +Ben +Bnn (2)

MV =

〈
Ψ

∣∣∣∣− p41
8m3

− p42
8m3

− p4A
8m3

A

− p4B
8m3

B

∣∣∣∣Ψ〉 (3)

Dee =
〈
Ψ
∣∣∣ π
m2

δ(3)(r12)
∣∣∣Ψ〉 (4)

Den =
〈
Ψ
∣∣∣π
2

(
1

m2
+
δIA
m2

A

)(
δ(3)(r1A) + δ(3)(r2A)

)
+
π

2

(
1

m2
+
δIB
m2

B

)(
δ(3)(r1B) + δ(3)(r2B)

)∣∣∣Ψ〉 (5)

Bee =

〈
Ψ

∣∣∣∣∣− 1

2m2
pi1

(
δij

r12
+
ri12 r

j
12

r312

)
pj2

∣∣∣∣∣Ψ
〉

(6)

Bnn =

〈
Ψ

∣∣∣∣∣− 1

2mAmB

piA

(
δij

rAB

+
riAB r

j
AB

r3AB

)
pjB

∣∣∣∣∣Ψ
〉

(7)

Ben =
〈
Ψ
∣∣∣ 1

2mmA

pi1

(
δij

r1A
+
ri1A r

j
1A

r31A

)
pjA

+
1

2mmB

pi1

(
δij

r1B
+
ri1B r

j
1B

r31B

)
pjB

+
1

2mmA

pi2

(
δij

r2A
+
ri2A r

j
2A

r32A

)
pjA

+
1

2mmB

pi2

(
δij

r2B
+
ri2B r

j
2B

r32B

)
pjB

∣∣∣Ψ〉 (8)

with the nonrelativistic wave function Ψ. This wave function is obtained by solving the

Schrödinger equation with the nonrelativistic Hamiltonian H

H =
p21
2m

+
p22
2m

+
p2A

2mA

+
p2B

2mB

+
1

r12
+

1

rAB

− 1

r1A
− 1

r2A
− 1

r1B
− 1

r2B
. (9)

In the above equations, the subscripts A and B that appear alongside the symbols of mass

(m), momentum (p), and coordinate (r) are associated with the nuclei, while the subscripts
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1 and 2 are associated with the electrons. The nuclear-spin factor δI , present in Den, depends

on the nucleus’ spin I: δI equals 1 when I = 1/2, and 0 otherwise. It comes from the so-called

Darwin term for the spin 1/2 particles. In ⟨Ψ |HBP|Ψ⟩ we have omitted all the electron spin-

dependent terms because they vanish for the ground electronic state of 1Σ+
g symmetry. We

have also omitted the nuclear-spin-dependent terms because we do not consider the fine and

hyperfine structure in the present paper. Lastly, the term proportional to the nucleus-nucleus

Dirac delta, involving strong interactions, is left out due to its negligible value.

3 Wave function

We utilize the direct nonadiabatic (DNA) approach,11 with the wave function Ψ expanded

in the basis of the nonadiabatic James-Coolidge (naJC) functions that are introduced in

this section. Formally, the nonadiabatic wave function ΨJ of a rotational level J contains

terms depending also on the quantum number M , which represents the projection of the

total angular momentum J⃗ on the axis Z of the laboratory frame. We shall use expectation

values averaged over M

〈
ΨJ
∣∣∣Ô∣∣∣ΨJ

〉
=

1

2 J + 1

J∑
M=−J

〈
ΨJ,M

∣∣∣Ô∣∣∣ΨJ,M
〉
, (10)

which is equivalent to neglecting the fine and hyperfine structure. When the rotational

angular momentum of nuclei couples to the electronic angular momentum L⃗, it forms the

total angular momentum J⃗ of the molecule. Therefore, the wave function should reflect this

coupling by involving components relevant to appropriate electronic states. To distinguish

between such states, we use the quantum number Λ, which is the eigenvalue of n⃗ · L⃗ (n⃗ is

defined below Eq. (15)), and the inversion symmetry symbol g or u (for gerade or unger-

ade). These states include Σg,u, Πg,u, ∆g,u, etc., and they correspond to |Λ| = 0, 1, 2, . . . ,

respectively. The general wave function is thus represented as a sum of components with
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increasing Λ

ΨJ,M = ΨJ,M
Σg

+ΨJ,M
Σu

+ΨJ,M
Πg

+ΨJ,M
Πu

+ΨJ,M
∆g

+ΨJ,M
∆u

+ . . . . (11)

In the evaluation of expectation values of HBP, we limit the expansion (11) to Σ and Π terms.

It is fully justified because each Λ-component of the wave function enters with a power of

electron-to-reduced-nuclear-mass ratio, (m/µAB)
|Λ|, thus we neglect terms with factors of

(m/µAB)
4 ≈ 10−12, which are much smaller than our target numerical uncertainty for the

relativistic correction.

The functions ΨJ,M
Λ are represented as linear expansions

ΨJ,M
Λ =

∑
{k}

c{k}A12 ψ
J,M
{k},Λ (12)

in the following four-particle nonadiabatic James-Coolidge (naJC) basis functions

ψJ,M
{k},Λ = QΛ e

−αR−β (ζ1+ζ2)Rk0 rk112 η
k2
1 ηk32 ζk41 ζk52 (13)

with ζ1 = r1A + r1B, η1 = r1A − r1B, ζ2 = r2A + r2B, η2 = r2A − r2B, and R⃗ = r⃗AB. α and β

denote nonlinear variational parameters, and ki are non-negative integers collectively denoted

as {k}. The inversion symmetry of the state is encoded in the sum of the two exponents

k2+ k3. The basis function is symmetric with respect to the inversion when this sum is even

and antisymmetric when it is odd. The preexponential factor QΛ depends explicitly on the

quantum numbers J and M , and determines the electronic angular momentum to which the

basis function pertains

QΣ = YM
J (n⃗) for J ≥ 0, (14)

QΠ =

√
2

J(J + 1)
Rρi ∇i

RYM
J (n⃗) for J ≥ 1, (15)
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where ρ⃗ ≡ ρ⃗1 or ρ⃗2, ρia = (δij − ninj) rjaA, and ni ≡ Ri/R, and where the Einstein sum-

mation convention was assumed. The solid harmonic YM
J , which carries the angular part

of the nuclear variables, is related to the spherical harmonic by YM
J (n⃗) = RJ Y M

J (n⃗). The

remaining, ‘electronic’ part of the basis function will be denoted ϕ{k}, so that in short

ψJ,M
{k},Λ = QΛ ϕ{k}. (16)

In Eq. (12), the antisymmetry projector A12 = 1
2
(1± P12), where the symbol P12 denotes

the electron permutation operator and the internal sign is adapted to the electronic spin

of the state. Finally, the linear coefficients c{k} are determined variationally by solving the

eigenvalue problem in the matrix form.

Details on the wave function properties, on evaluation of the nonrelativistic matrix ele-

ments, and on solving the general symmetric eigenvalue problem, were described in11–14 and

will not be repeated here.

4 Matrix elements

In the following sections, we are going to discuss evaluation of the matrix elements

4π

2 J + 1

J∑
M=−J

〈
ψJ,M
{k},Λ

∣∣∣Ô∣∣∣ψJ,M
{l},Λ′

〉
(17)

of subsequent operators Ô that compose the Breit-Pauli Hamiltonian. To reduce the com-

putational cost, we consider such an operator Ô, which commutes with A12. The factor 4 π

in Eq. (17) comes from an implicit integration over angles of R⃗, which from now on is pulled

out in front of all matrix elements.
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4.1 Reduction of the angular dependence

Summation over M makes use of an addition theorem for spherical harmonics, which in our

notation reads

4 π

2 J + 1

J∑
M=−J

[
YM

J (n⃗′)
]∗ YM

J (n⃗) = R′J RJ PJ(n⃗
′ · n⃗)

≡ PJ(R⃗
′, R⃗) , (18)

where PJ is the Legendre polynomial expressible in terms of the hypergeometric function

2F1

PJ(R⃗
′, R⃗) = R′JRJ PJ(n⃗

′ · n⃗) (19)

= R′JRJ
2F1

(
−J, J + 1, 1,

1

2
(n⃗′ · n⃗− 1)

)

suitable for symbolic differentiation at R⃗′ = R⃗. Such a differentiation, ∇i
R′∇j

R . . .PJ(R⃗
′, R⃗)

∣∣
R⃗′=R⃗

,

yields factors that explicitly depend on J . A list of such factors is placed in Appendix A.

For example, for an operator Ôel, which contains no nuclear derivative, the reduction is

as follows

4 π

2 J + 1

J∑
M=−J

〈
ψJM
k,Σ (R)

∣∣∣Ôel

∣∣∣ψJM
l,Σ (R)

〉
=

4 π

2 J + 1

J∑
M=−J

〈
YM

J (n⃗′)ϕk(R
′)
∣∣∣Ôel

∣∣∣YM
J (n⃗)ϕl(R)

〉
R⃗′=R⃗

(18)
=
〈
ϕk(R)

∣∣∣PJ(R⃗
′, R⃗)

∣∣
R⃗′=R⃗

Ôel

∣∣∣ϕl(R)
〉

(36)
=
〈
ϕk(R)

∣∣∣R2J Ôel

∣∣∣ϕl(R)
〉
. (20)
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For −∇2
R we get

4π

2 J + 1

J∑
M=−J

〈
∇i

Rψ
JM
k,Σ (R)

∣∣∣∇i
Rψ

JM
l,Σ (R)

〉
=

4π

2 J + 1

J∑
M=−J

〈
∇i

R′YM
J (n⃗′)ϕk(R

′)
∣∣∣∇i

RYM
J (n⃗)ϕl(R)

〉
R⃗′=R⃗

(18)
=
〈
∇i

R′∇i
R

[
ϕk(R

′)
∣∣∣PJ(R⃗

′, R⃗)
∣∣∣ϕl(R)

]〉
R⃗′=R⃗

=
〈
∇i

Rϕk(R)
∣∣∣∇i

RPJ(R⃗
′, R⃗)

∣∣
R⃗′=R⃗

∣∣∣ϕl(R)
〉

+
〈
∇i

Rϕk(R)
∣∣∣PJ(R⃗

′, R⃗)
∣∣
R⃗′=R⃗

∣∣∣∇i
Rϕl(R)

〉
+
〈
ϕk(R)

∣∣∣∇i
R′∇i

RPJ(R⃗
′, R⃗)

∣∣
R⃗′=R⃗

∣∣∣ϕl(R)
〉

+
〈
ϕk(R)

∣∣∣∇i
R′PJ(R⃗

′, R⃗)
∣∣
R⃗′=R⃗

∣∣∣∇i
Rϕl(R)

〉
A
=
〈
∇i

Rϕk(R)
∣∣R2J

∣∣∇i
Rϕl(R)

〉
, (21)

and similarly for a Π state

4π

2 J + 1

J∑
M=−J

〈
∇i

Rψ
JM
k,Π (R)

∣∣∣∇i
Rψ

JM
l,Π (R)

〉
=
〈
∇i

Rϕk

∣∣ρ′j R2Jρj
∣∣∇i

Rϕl

〉
. (22)

The elementary matrix elements
〈
ϕk

∣∣∣Ôϕl

〉
were evaluated using symbolic algebra soft-

ware Wolfram Mathematica28 and coded in Fortran 95. In general, such matrix elements may

contain thousands of terms, which prevents its explicit presentation. The simplest example
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of such a matrix element is the overlap integral

〈
ϕk

∣∣ϕl

〉
(23)

=
1

16

(
G (t, u; {n0 + 1, n1 + 1, n2, n3, n4 + 2, n5 + 2})

−G (t, u; {n0 + 1, n1 + 1, n2, n3 + 2, n4 + 2, n5})

−G (t, u; {n0 + 1, n1 + 1, n2 + 2, n3, n4, n5 + 2})

+G (t, u; {n0 + 1, n1 + 1, n2 + 2, n3 + 2, n4, n5})
)

expressed by the basic integrals G defined below.

4.2 Integrals in the nonadiabatic James-Coolidge basis

Matrix elements of the nonrelativistic Hamiltonian in the naJC basis are expressible by

integrals of the form

G(t, u; {ni}) =
∫
dV

e−tR e−u (ζ1+ζ2)

Rr12 r1A r1B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 . (24)

Techniques developed by one of the authors to find such integrals were described in Refs.

29,30. However, calculating the matrix elements of the Breit-Pauli Hamiltonian requires a
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more extensive set of integrals, including those with a square of a variable in the denominator

GAB(t, u; {ni}) =
∫
dV

e−tR e−u (ζ1+ζ2)

R2 r12 r1A r1B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 , (25)

G12(t, u; {ni}) =
∫
dV

e−tR e−u (ζ1+ζ2)

Rr212 r1A r1B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 , (26)

G1B(t, u; {ni}) =
∫
dV

e−tR e−u (ζ1+ζ2)

Rr12 r1A r21B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 . (27)

The remaining integrals (G1A, G2A, and G2B) can be obtained by permuting variables. A

method for determining all such extended integrals has recently been invented,31 enabling

the evaluation of the relativistic correction within the framework of the DNA approach using

the naJC wave function.

In the following sections we shall describe methods of regularization of the relativistic

operators contained in HBP: the mass velocity, the Dirac delta, and the orbit-orbit (Breit)

interaction.

5 Mass velocity MV

The first expectation value we are going to consider consists of four p4 operators, each

pertinent to one particle, see Eq. (3). First, we will subject it to a transformation that aims

to avoid intractable integrals and speed up its numerical convergence with the increasing

basis set size. For this purpose, we will add to the formula (3) a null term of the form

〈
Ψ
∣∣∣Q̂(E − Ĥ) + (E − Ĥ)Q̂

∣∣∣Ψ〉 = 0 . (28)
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In the above equation, Ĥ is the nonrelativistic Hamiltonian (9) with the eigenvalue E and

the eigenfunction Ψ, while Q̂ is an arbitrary operator. Assuming

Q̂ = − 1

8m2
p21 −

1

8m2
p22 −

1

8m2
A

p2A − 1

8m2
B

p2B

+
1

4m
(E − V̂ ), (29)

we eliminate all p4 terms and the slowly convergent p2a(E − V̂ ) terms. As a result, the

expectation value (3) can be expressed as a sum of five terms

MV =
1

4m3

〈
p21Ψ | p22Ψ

〉
+

1

8m

〈
(p21 + p22)Ψ

∣∣∣∣ ( p2A
µAmA

+
p2B

µBmB

)
Ψ

〉
+

1

8µABmAmB

〈
p2AΨ | p2BΨ

〉
− 1

8

(〈[
λA p

2
A + λB p

2
B

]
Ψ

∣∣∣∣∣ (E − V̂
)
Ψ

〉
+

〈(
E − V̂

)
Ψ

∣∣∣∣∣ [λA p2A + λB p
2
B

]
Ψ

〉)

− 1

2m

〈(
E − V̂

)
Ψ
∣∣∣ (E − V̂

)
Ψ
〉
≡

5∑
i=1

MVi, (30)

where the following mass factors were used: µAB =
mAmB

mA +mB

, µX =
mX m

mX +m
, and λX =

1

mX

(
1

mX

− 1

m

)
. All these expectation values can be calculated using the extended set of

integrals mentioned in Sec. 4.2. Because their matrix elements are calculated with basis

functions ψJ,M
k,Λ of both Λ = Σ and Λ = Π, three kinds of such matrix elements have to be

considered: Σ−Σ, Π−Π, and Π−Σ. For each kind, the reduction of the angular variables

yields a different combination of elementary matrix elements in the ϕk basis. Examples of

such matrix elements are presented in Appendix B.

The numerical convergence of the five terms composing the regularized formula (30) is

presented in Table 1. As can be inferred from this table, at least eight significant figures

can be achieved for these components, and the extrapolated total MV is converged up to

nine significant figures. The absolute accuracy of this expectation value is limited by the

uncertainty of the ⟨p21Ψ | p22Ψ⟩ term.
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Table 1: Convergence of the five terms of Eq. (30) composing the expectation value
MV , Eq. (3). Calculations performed (in a.u.) using the nonadiabatic James-Coolidge
(naJC) wave function for the ground rovibrational level of H2 with the nuclear mass
M/m = 1836.152 673 43(11).32 K is the size of the naJC basis set employed, governed by Ω
– the largest shell enabled.

Ω K MV1 MV2 · 103 MV3 · 108 MV4 · 103 MV5 MV
11 61 152 0.324 991 868 26 3.843 967 596 1.082 552 031 65 3.880 833 262 −1.958 628 773 53 −1.625 912 093 58
12 85 904 0.324 991 895 48 3.843 967 558 1.082 552 031 21 3.880 833 241 −1.958 628 767 62 −1.625 912 060 51
13 117 936 0.324 991 905 85 3.843 967 592 1.082 552 031 06 3.880 833 259 −1.958 628 767 61 −1.625 912 050 09
14 159 120 0.324 991 910 53 3.843 967 568 1.082 552 031 89 3.880 833 246 −1.958 628 766 49 −1.625 912 044 33

∞ 0.324 991 916 (5) 3.843 967 6(1) 1.082 552 032 (1) 3.880 833 25(3) −1.958 628 767 (1) −1.625 912 039 (5)
Rel. uncert. 2. · 10−8 3. · 10−8 9. · 10−10 8. · 10−9 5. · 10−10 3. · 10−9

6 Dirac delta, Dαβ

The expectation value of the Dirac delta operator for two particles α and β, see Eqs. (4)

and (5), can be evaluated directly as a numerical value of the probability density |Ψ|2 at

rαβ = 0. However, experience shows that such calculations have relatively poor convergence.

A significantly higher rate of convergence can be achieved when the expectation value is

evaluated using its regularized form23,33 which, for particles of the reduced mass µαβ =

mαmβ

mα +mβ

, reads

〈
Ψ
∣∣δ(3)(rαβ)∣∣Ψ〉 = µαβ

π

(
E

〈
Ψ

∣∣∣∣ 1

rαβ

∣∣∣∣Ψ〉−
〈
Ψ

∣∣∣∣ 1

rαβ
V̂

∣∣∣∣Ψ〉− 1

2

∑
a

1

ma

〈
∇⃗aΨ

∣∣∣∣ 1

rαβ

∣∣∣∣ ∇⃗aΨ

〉)
.

(31)

The right-hand-side integrals have to be evaluated in a similar manner as in the previous

sections. For each, out of three kinds of matrix elements, the angular variables must be

integrated out using the formulas given in Appendix A, and then matrix elements in the

elementary basis ϕk can be derived using symbolic algebra software.28 At the expense of the

evaluation of three new expectation values on the right hand side of Eq. (31), we can obtain

results orders of magnitude more accurate than in direct calculation of
〈
Ψ
∣∣δ(3)(rαβ)∣∣Ψ〉. This

is exemplified in Table 2, in which the convergence of both the direct and the regularized

methods, applied to the interelectron Dirac delta expectation value, Dee, is compared. It
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can be concluded in this case that the regularization enables three orders of magnitude

higher accuracy to be achieved. The convergence of the regularized expectation value of the

nuclear-mass-dependent electron-nucleus Dirac delta Den enables 10 significant figures in the

extrapolated value, as shown in Table 3.

Table 2: Comparison of the convergence of Dee calculated (in a.u.) using the direct and
regularized [Eq. (31)] methods. The naJC wave function Ψ of the ground rovibrational level
of H2 was used. K is the size of the naJC basis set employed, and Ω is the largest shell
enabled.

Ω K Direct Regularized
10 42 588 0.050 707 696 496 0.050 707 579 154
11 61 152 0.050 707 626 769 0.050 707 579 440
12 85 904 0.050 707 599 520 0.050 707 579 525
13 117 936 0.050 707 589 148 0.050 707 579 548
14 159 120 0.050 707 584 473 0.050 707 579 551

∞ 0.050 707 579(5) 0.050 707 579 554(3)
Rel. uncert. 1. · 10−7 6. · 10−11

7 Breit interaction, Bαβ

The expectation value of the Breit interaction between two particles, α and β, cannot be

directly evaluated from the formulas (6)-(8), as they require access to integrals beyond those

discussed in Sec. 4.2. To address this issue, we have rearranged the original formulas to

equivalent forms

Bαβ = −2

〈
∇i

αΨ

∣∣∣∣ 1

rαβ

∣∣∣∣∇i
βΨ

〉
(32)

−

〈
∇i

α∇i
αΨ

∣∣∣∣∣r
j
αβ

rαβ

∣∣∣∣∣∇j
βΨ

〉
−

〈
∇i

αΨ

∣∣∣∣∣r
j
αβ

rαβ

∣∣∣∣∣∇i
α∇

j
βΨ

〉

that are suitable for the available set of integrals. The expression (32) was applied to the

electron-electron, Bee, electron-nucleus, Ben, and the nucleus-nucleus Bnn interactions. After
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necessary reduction of the angular variables it was represented in the form of elementary

expectation values in the ϕk basis. The obtained numerical convergence with the increasing

size of the basis set is shown in Table 3, from which it is evident that nine significant figures

can be achieved.

Table 3: Convergence of the operators composing the expectation value of the Breit-Pauli
Hamiltonian calculated (in a.u.) using the nonadiabatic James-Coolidge (naJC) wave func-
tion for the ground rovibrational level of H2. K is the size of the naJC basis set employed,
governed by Ω – the largest shell enabled. Calculations were performed using the nuclear
mass M/m = 1836.152 673 43(11).32

Ω K Den Bee Ben Bnn · 106 Erel

11 61 152 1.418 309 983 439 −0.046 296 300 064 6 −0.001 358 468 834 24 1.832 600 007 36 −0.204 547 467 00
12 85 904 1.418 309 982 287 −0.046 296 299 353 9 −0.001 358 468 828 22 1.832 600 007 27 −0.204 547 434 28
13 117 936 1.418 309 982 844 −0.046 296 299 124 3 −0.001 358 468 828 36 1.832 600 007 25 −0.204 547 423 05
14 159 120 1.418 309 982 463 −0.046 296 299 047 1 −0.001 358 468 827 19 1.832 600 007 29 −0.204 547 417 59

∞ 1.418 309 982 5(5) −0.046 296 298 98(7) −0.001 358 468 828(2) 1.832 600 007 3(1) −0.204 547 412(5)
Rel. uncert. 4. · 10−10 2. · 10−9 2. · 10−9 6. · 10−11 2. · 10−8

8 Numerical results

The convergence of the final relativistic correction for the ground energy level of H2 is shown

in the last column of Table 3. It is apparent that it is only the ninth significant digit in

the extrapolated value that is burdened with an uncertainty. We have performed analogous

convergence analysis for HD and D2 isotopologues, obtaining (in a.u.)

Erel =


−0.204 547 412(5) for H2

−0.204 660 995(5) for HD

−0.204 805 040(5) for D2

. (33)

The relativistic contribution to the dissociation energy can be obtained by subtracting

the relativistic correction of a given rovibrational level Ev,J
rel from the sum of the atomic

15



relativistic corrections34 given by

Erel(X) = −mX(m
2
X + 3mX + 5− 4 δX)

8(mX + 1)3
(34)

with δH/T = 1 and δD = 0. In terms of the dissociation energy of the rovibrational levels

Drel
v,J , the achieved accuracy is of the order of 10−7 − 10−6 cm−1 ≈ 0.003 − 0.03MHz, which

makes the contribution from the relativistic correction α4Ev,J
rel to the overall error budget of

Eq. (1) negligible. This result follows a similar achievement reported for the nonrelativistic

component α2Ev,J
nr ,12–15 so that from now on the quantum electrodynamic terms O(α5) limit

the overall accuracy of the theoretical predictions. For low-lying rotational levels of H2 such

a contribution to the total uncertainty is of the order of 2 · 10−4 cm−1 ≈ 7MHz. The only

exception is the ground rovibrational level, where the leading QED correction was calculated

using the DNA method35,36 with the accuracy of 10−7 cm−1 ≈ 0.003MHz. The α6 and α7

terms of the α-expansion (1) contribute the uncertainty of about 7 · 10−6 cm−1 ≈ 0.2MHz

and 3 · 10−5 cm−1 ≈ 0.8MHz, respectively. Figure 1 provides a comprehensive view of the

error budget’s components, enabling assessment of their importance.

α7

α6

α5

α4

α2

0.001 0.01 0.1 1 10
MHz

Uncertainty

Figure 1: The error budget of the dissociation energy for the low-lying rotational levels of
H2. The α2 and α4 contributions come from DNA calculation, while the remaining ones are
from NAPT. Note the logarithmic scale.
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8.1 Comparison with NAPT

Previous estimates of the relativistic correction for all the isotopologues of H2 were ob-

tained in the nonadiabatic perturbation theory (NAPT) framework,37–39 which relies on the

Born-Oppenheimer (BO) approximation. Within that approach, Erel was represented as an

expansion in powers of the m/µAB mass ratio around the BO value E(0)
rel

Erel = E
(0)
rel +

m

µAB

E
(1)
rel +O

[(
m

µAB

)2
]
. (35)

Till now, the higher-order terms remain unknown and are the source of the uncertainty of

this correction. The missing contribution was estimated using simple scaling of the first-

order term by the mass factor m/µAB,40 i.e. O
[
(m/µAB)

2] ≈ (m/µAB)
2 E

(1)
rel . So far, there

have been no means to check the reliability of such an assessment. The DNA results reported

in this work correspond to the expansion (35) summed up to infinity and provide a reliable

tool to verify previous estimations of both the correction itself and its uncertainty. The

numerical values of Erel obtained from DNA and NAPT methods for several of the lowest

rotational levels of H2 are compared in Table 4. In the fourth column of the table and in

Fig. 2, these differences are confronted with the uncertainties assigned within NAPT, while

the last column of the table reveals the factor by which the uncertainty was underestimated.

On the basis of these results, we can conclude that for the individual energy levels the simple

scaling of the leading known term by the mass ratio does not account for the J-dependence

of the missing terms and provides only a crude estimation. A very similar picture was found

for HD and D2.

9 Conclusions

Recently developed integral formulas31 have been used to calculate expectation values of

the relativistic operators included in the Breit-Pauli Hamiltonian. Both the Hamiltonian
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Table 4: Comparison of the relativistic correction to dissociation energy Drel
0,J (in MHz)

obtained from direct nonadiabatic (DNA) and nonadiabatic perturbation theory (NAPT)
methods for the lowest rotational levels of H2.

J DNA NAPT Difference Diff./σNAPT

0 −15925.493(2) −15925.34(7) 0.16(7) 2.3
1 −16002.87(1) −16002.79(7) 0.08(7) 1.2
2 −16155.90(1) −16155.96(7) −0.06(7) −0.9
3 −16381.19(1) −16381.48(7) −0.29(7) −4.2
4 −16673.89(1) −16674.49(7) −0.60(7) −8.6

1 2 3 4
J

-0.6

-0.4

-0.2

0.2

ΔD0,J
rel [MHz]

δErel ≈ Erel
(1)
m/μAB

∼ a J(J+1) + b

r = 0.9999

Figure 2: Plot of the difference between the dissociation energy of a level (0, J) obtained from
DNA and NAPT calculations, ∆Drel

0,J (red dots), against the NAPT uncertainty (blue band)
for several of the lowest rotational levels of H2. The ∆Drel

0,J values fit to the a J(J + 1) + b
model with the correlation coefficient r = 0.9999.

and the wave function account fully for the finite nuclear masses, significantly reducing

the uncertainty of the relativistic correction. The achieved numerical convergence of the

individual operators enabled stabilization of at least nine significant digits, resulting in the

final accuracy of the relativistic correction of the order of 10−9 a.u. or 10−8 relative. The

DNA/naJC method, applied to rovibrational levels of molecular hydrogen isotopologues,

yields the relativistic correction to dissociation energy with the absolute accuracy of the

order of 10−7 − 10−6 cm−1 ≈ 0.003 − 0.03MHz. Most importantly, the uncertainty of the

relativistic and nonrelativistic contributions has been practically eliminated from the error

budget of total energy. Therefore, future efforts to improve the accuracy of theoretical
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predictions will focus on the QED and higher-order corrections.
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A Reduction of the rotational factors

PJ(n⃗
′ · n⃗)

∣∣∣
R′=R

= R2J (36)

∇i
R′ PJ(n⃗

′ · n⃗)
∣∣∣
R′=R

= JR2J−2Rm (37)

∇i
R′∇n

R PJ(n⃗
′ · n⃗)

∣∣∣
R′=R

=
1

2
J(J + 1)R2J−2δmn +

1

2
J(J − 1)R2J−4RmRn (38)

∇i
R∇n

R PJ(n⃗
′ · n⃗)

∣∣∣
R′=R

= −1

2
J(J − 1)R2J−2δmn +

3

2
J(J − 1)R2J−4RmRn (39)

∇i
R′∇i

R PJ(n⃗
′ · n⃗)

∣∣∣
R′=R

= J(2J + 1)R2J−2 (40)

∇i
R∇i

R PJ(n⃗
′ · n⃗)

∣∣∣
R′=R

= 0 (41)

∇i
R′∇n

R∇n
R PJ(n⃗

′ · n⃗)
∣∣∣
R′=R

= 0 (42)

∇i
R′∇n

R∇i
R PJ(R⃗

′, R⃗)
∣∣∣
R′=R

= (J − 1)J(2J + 1)R2J−4Rn (43)

∇i
R′∇n

R∇i
R∇i

R PJ(n⃗
′ · n⃗)

∣∣∣
R′=R

= 0 (44)

∇n
R′∇n

R′∇i
R∇i

R PJ(R⃗
′, R⃗)

∣∣∣
R′=R

= 0 (45)

∇n
R′∇i

R′∇n
R∇i

R PJ(R⃗
′, R⃗)

∣∣∣
R′=R

= (J − 1)J(2J − 1)(2J + 1)R2J−4 (46)
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B Examples of Σ− Σ, Π− Π, and Π− Σ matrix elements

4π

2 J + 1

J∑
M=−J

〈
p2Aψ

J,M
k,Σ

∣∣∣p2BψJ,M
l,Σ

〉
(47)

=
〈
∇i

A∇i
Aϕk

∣∣R2J
∣∣∇j

B∇
j
Bϕl

〉
+ 2J

[〈
∇i

Aϕk

∣∣R2J−2Ri
∣∣∇j

B∇
j
Bϕl

〉
−
〈
∇i

A∇i
Aϕk

∣∣R2J−2Rj
∣∣∇j

Bϕl

〉
− (J + 1)

〈
∇i

Aϕk

∣∣R2J−2
∣∣∇i

Bϕl

〉
− (J − 1)

〈
∇i

Aϕk

∣∣R2J−4RiRj
∣∣∇j

Bϕl

〉]

4π

2 J + 1

J∑
M=−J

〈
p2Aψ

J,M
k,Πa

∣∣∣p2BψJ,M
l,Πb

〉
(48)

=
〈
∇i

A∇i
Aϕk

∣∣R2Jrkar
k
b

∣∣∇j
B∇

j
Bϕl

〉
− (J2 − 3J − 2)

〈
∇i

Aϕk

∣∣R2J−2 rkar
k
b δ

ij
∣∣∇j

Bϕl

〉
+ (5J2 − 7J − 2)

〈
∇i

Aϕk

∣∣R2J−4rkar
k
bR

iRj
∣∣∇j

Bϕl

〉
− (J2 + J + 2)

〈
∇i

Aϕk

∣∣R2J−2(rjar
i
b + riar

j
b)
∣∣∇j

Bϕl

〉
+ (J − 1)

〈
∇i

Aϕk

∣∣R2J−4
[
(r2bA − r2bB)(R

jria +Rirja) + (r2aA − r2aB)(R
jrib +Rirjb)

]∣∣∇j
Bϕl

〉
+ (J + 1)(2J − 1)

[〈
∇i

Aϕk

∣∣R2J−2rkar
k
b

∣∣∇i
Aϕl

〉
+
〈
∇j

Bϕk

∣∣R2J−2rkar
k
b

∣∣∇j
Bϕl

〉]
+

1

2

[〈
∇i

Aϕk

∣∣R2J−4(r2aA − r2aB)(r
2
bA − r2bB)

∣∣∇i
Aϕl

〉
+
〈
∇j

Bϕk

∣∣R2J−4(r2aA − r2aB)(r
2
bA − r2bB)

∣∣∇j
Bϕl

〉]
+ 4J(J + 1)

〈
ϕk

∣∣R2J−4rkar
k
b

∣∣ϕl

〉
4π

2 J + 1

J∑
M=−J

〈
p2Aψ

J,M
k,Π

∣∣∣p2BψJ,M
l,Σ

〉
(49)

=
√

2J(J + 1)

{
2 (J − 1)

[〈
ρi∇i

Aϕk

∣∣R2J−3
∣∣Rj∇j

BϕΣ

〉
+
〈
ρj∇j

Bϕk

∣∣R2J−3
∣∣Ri∇i

AϕΣ

〉
+
〈
ϕk

∣∣R2J−3
∣∣ ρi(∇i

B −∇i
A)ϕΣ

〉
+
〈
ϕk

∣∣R2J−3∇i
Rρ

i
∣∣Ri(∇i

B −∇i
A)ϕΣ

〉]
+
〈
ρj∇j

Bϕk
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A∇i
AϕΣ

〉
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〉
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