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Accurate predictions for hydrogen molecular levels require the treatment of electrons and nuclei on
an equal footing. While nonrelativistic theory has been effectively formulated this way, calculation of
relativistic and quantum electrodynamic effects using an exponential basis with explicit correlations
that ensure well-controlled numerical precision is much more challenging. In this work, we derive a
complete set of integrals for the relativistic correction and demonstrate their application to several
of the lowest rovibrational levels. Together with similar advancements for quantum electrodynamic
corrections, this will improve the accuracy beyond 10−9 and hopefully explain discrepancies with
recent experimental values.

I. INTRODUCTION

Molecular hydrogen is the most abundant molecule in
the Universe [1]. It is also the dominant component
of the atmosphere of giant planets in the Solar Sys-
tem [2]. Hence, it draws the attention of astronomers
and laboratory physicists [3–6]. In particular, labora-
tory spectroscopy provides indispensable data for, e.g.,
constructing astronomical models and databases [7–10],
determining physical constants [11, 12], or searching for
new physics beyond the Standard Model [13–15]. In re-
cent years, precision spectroscopy of molecular hydrogen
has reached an accuracy that enables testing the quan-
tum electrodynamic (QED) theory at an accuracy level
of several ppb [16–21].

In several recent studies, a systematic discrepancy on
the level of 1.5-2.0 MHz (∼5-7·10−5 cm−1) between the-
oretical and experimental vibrational transition energies
of H2, HD, and D2 has been reported [19–22]. This incon-
sistency corresponds to 1-3σ of theoretical uncertainty.
As an illustration, we can quote the currently most ac-
curate experimental energy for the S2(0) rovibrational
transition in H2: 252 016 361.164(8) MHz [20]. The corre-
sponding theoretical prediction is 252 016 358.6(16) MHz
[23] and differs from the measured value by 2.6 MHz, i.e.,
1.6 σ. Given that the theoretical nonrelativistic energy
is known with kHz (∼ 10−7 cm−1) accuracy, incomplete
accounting for nuclear motion in relativistic and/or QED
components of the total energy is most likely the source
of these discrepancies.

In this study, we tackle relativistic correction by treat-
ing electrons and nuclei on an equal footing. We in-
troduce a computational method that achieves an ac-
curacy of a few kHz, similar to that for nonrelativistic

energies. We employ the nonadiabatic James-Coolidge
(naJC) basis function, which has previously been used
to solve the four-body Schrödinger equation [24] yielding
the nonrelativistic energy of rovibrational levels with a
relative accuracy of 10−13-10−14 [25–28]. This approach
retains its accuracy for rotationally and vibrationally ex-
cited states. Additionally, this accuracy surpasses the
uncertainty arising from the imprecise nuclear masses.
The naJC wavefunction fully accounts simultaneously for
both the electron correlation and the movement of the
nuclei. This means that there is no need to separate
the electronic and nuclear degrees of freedom, nor intro-
duce common approximations such as the one-electron or
the Born-Oppenheimer. Evaluation of matrix elements
with the nonrelativistic Hamiltonian necessitated finding
a new class of integrals, which was the main difficulty in
constructing the naJC-based method.
Applying the naJC wavefunction to relativistic and

QED corrections is even more involved. Matrix ele-
ments of the relativistic Breit-Pauli Hamiltonian in the
basis of naJC functions require the evaluation of thus-
far-unknown classes of integrals. Determination of these
integrals is the sine qua non of developing this new ap-
proach and of achieving the accuracy needed for testing
QED. This paper presents methods and techniques em-
ployed in the evaluation of three new classes of such rel-
ativistic integrals and presents a proof of concept for the
lowest rovibrational levels of H2.

A. Wavefunction

The nonadiabatic James-Coolidge basis function is a
special case of a general four-particle exponential func-
tion of the form
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ψ(r⃗1, r⃗2, r⃗A, r⃗B ; {wj , uj , ni}) = e−w1 r12−w2 r2A−w3 r2B−u1 rAB−u2 r1B−u3 r1A

× rn0

AB r
n1
12 (r1A − r1B)

n2 (r2A − r2B)
n3 (r1A + r1B)

n4 (r2A + r2B)
n5 . (1)

This function contains all inter-particle distances rij =
|r⃗i − r⃗j | with r⃗1, r⃗2 pointing at electrons and r⃗A, r⃗B –
at nuclei. The non-linear parameters wj and uj are as-
sumed to be positive real numbers, and the exponents ni

are non-negative integers. Matrix elements of the non-
relativistic Hamiltonian evaluated with these general ex-
ponential functions lead to integrals of the form

g(w1, w2, w3, u1, u2, u3, {ni}) =
∫
d3r12
4π

∫
d3r2A
4π

∫
d3r2B
4π

e−w1 r12

r12

e−w2 r2A

r2A

e−w3 r2B

r2B

e−u1 rAB

rAB

e−u2 r1B

r1B

e−u3 r1A

r1A
× rn0

AB r
n1
12 (r1A − r1B)

n2 (r2A − r2B)
n3 (r1A + r1B)

n4 (r2A + r2B)
n5 . (2)

The sequence of integer exponents n0, n1, n2, n3, n4, n5 is
denoted as {ni}. When this symbol is omitted, it means
{0} ≡ 0, 0, 0, 0, 0, 0, and the corresponding integral is
called the master integral. It is convenient to express
the function (1) in elliptic-like variables:

ζ1 = r1A + r1B , η1 = r1A − r1B , ζ2 = r2A + r2B ,

η2 = r2A − r2B , R = rAB , (3)

which entails introducing new symbols for linear combi-
nations of parameters

w2 = w + x, w3 = w − x, u2 = u− y,

u3 = u+ y, u1 = t. (4)

In this notation

ψ(r⃗1, r⃗2, r⃗A, r⃗B ; t, w1, y, x, u, w, {ni}) (5)

= e−t R−w1 r12−y η1−x η2−u ζ1−w ζ2 Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 ,

and corresponding integrals assume the following form

g(t, w1, y, x, u, w, {ni})

=

∫
dV

e−t R e−w1 r12 e−y η1 e−x η2 e−u ζ1 e−w ζ2

Rr12 r1A r1B r2A r2B
×Rn0 rn1

12 η
n2
1 ηn3

2 ζn4
1 ζn5

2 , (6)

where we introduced the shorthand symbol

∫
dV ≡∫

d3r12
4π

∫
d3r2A
4π

∫
d3r2B
4π

. Unfortunately, such inte-

grals are difficult to handle [29, 30], which prompts for
a slight simplification of the general function (1). This
simplification is achieved by setting

w1 = 0, y = 0, x = 0, and w = u. (7)

The corresponding function

ψ(r⃗1, r⃗2, r⃗A, r⃗B ; t, u, {ni})
= e−t R−u (ζ1+ζ2)Rn0 rn1

12 η
n2
1 ηn3

2 ζn4
1 ζn5

2 (8)

was named the nonadiabatic James-Coolidge (naJC)
function for its resemblance to the two-electron James-
Coolidge function used in clamped nuclei calculations
with H2 [31].

B. Integrals in the James-Coolidge basis

The whole class of integrals appearing in the matrix
elements of the nonrelativistic Hamiltonian in the naJC
basis (8) were implemented [24]. Arbitrary {ni} inte-
grals can be formally defined as multiple derivatives with
respect to non-linear parameters present in the general
master integral g(t, w1, y, x, u, w) of Eq. (6)

G(t, u; {ni}) =
(
− ∂

∂t

)n0
(
− ∂

∂w1

)n1

w1=0

(
− ∂

∂y

)n2

y=0

(
− ∂

∂x

)n3

x=0

(
− ∂

∂u

)n4

u=w

(
− ∂

∂w

)n5

g(t, w1, y, x, u, w). (9)

In the above formulas and in what follows henceforth, we use the notation in which simplified versions of inte-
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grals g will be denoted by capital G and will appear in
two variants, one with w = u and the other one with
w ̸= u

G(t, u; {ni}) ≡ g(w1 = 0, y = 0, x = 0, w = u), (10)

G(t, u, w; {ni}) ≡ g(w1 = 0, y = 0, x = 0). (11)

Hence, writing explicitly

G(t, u; {ni}) =
∫
dV

e−t R e−u (ζ1+ζ2)

Rr12 r1A r1B r2A r2B
×Rn0 rn1

12 η
n2
1 ηn3

2 ζn4
1 ζn5

2 , (12)

G(t, u) =

∫
dV

e−t R e−u (ζ1+ζ2)

Rr12 r1A r1B r2A r2B
. (13)

From now on, we also assume that the condition t > 2u
is satisfied, and formulas for −2u ≤ t ≤ 2u are obtained
by analytic continuation.

Techniques developed by one of us (K.P.) to evaluate
such integrals were described in Refs. 32 and 33. In short,
this approach relies on a set of partial differential equa-
tions (PDE) to which the integrals g are solutions. All
these PDEs can be written as

σ
∂g

∂β
+

1

2

∂σ

∂β
g + Pβ = 0 , (14)

where β is one of the six parameters t, w1, y, x, u, or w,
and σ is the following polynomial in these six parameters

σ = w2
1 t

4 + w2
1 (u+ w − x− y)(u− w + x− y)

× (u− w − x+ y)(u+ w + x+ y)

+ t2
(
w4

1 − 2w2
1

(
u2 + w2 + x2 + y2

)
+ 16uw x y

)
− 16(u y − w x)(ux− w y)(uw − x y) . (15)

Properly manipulating these equations leads to recur-
rence relations in all variables, which enables finding ar-
bitrary nonrelativistic integrals of Eq. (12). In particular,
the explicit formulae for the master integrals are

G(t, u, w) =
1

4uw

[
ln 2uw

(t+u+w)(u+w)

t+ u+ w
−

ln 2u
t+u+w

t− u+ w

−
ln 2w

t+u+w

t+ u− w
+

ln 2 (u+w)
t+u+w

t− u− w

]
, (16)

G(t, u) =
1

4u2

[
ln u

t+2u

t+ 2u
−

2 ln 2u
t+2u

t
+

ln 4u
t+2u

t− 2u

]
.

(17)

Similarly, we proceed with the relativistic integrals re-
sulting from evaluating matrix elements with the Breit-
Pauli Hamiltonian. The new relativistic integrals can be
divided into three classes

GAB(t, u; {ni}) =
∫
dV

e−t R e−u (ζ1+ζ2)

R2 r12 r1A r1B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 , (18)

G12(t, u; {ni}) =
∫
dV

e−t R e−u (ζ1+ζ2)

Rr212 r1A r1B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 , (19)

G1B(t, u; {ni}) =
∫
dV

e−t R e−u (ζ1+ζ2)

Rr12 r1A r21B r2A r2B

×Rn0 rn1
12 η

n2
1 ηn3

2 ζn4
1 ζn5

2 . (20)

The remaining integrals (G1A, G2A, and G2B) can be
obtained by a permutation of variables. To find the in-
tegrals (18)-(20) from their master integrals, we need
to established recurrence relation for all six indices
n0, n1, n2, n3, n4, and n5. Each type of these integrals
requires a different treatment. Therefore, a separate sec-
tion will be devoted to each of them. In each section, we
will first describe the derivation of the pertinent master
integral and then the recursive relations in all variables.

II. GAB INTEGRALS

Let us first note that

GAB(t, u; {ni}) = G(t, u;n0 − 1, n1, n2, n3, n4, n5) ,
(21)

so all the integrals with n0 ≥ 1 are considered to be
known. What we need are the remaining GAB integrals
with n0 = 0, in particular, the master integral

GAB(t, u) =

∫
dV

e−t R e−u (ζ1+ζ2)

R2 r12 r1A r1B r2A r2B
. (22)

The GAB(t, u) master integral can be found analytically
by direct integration of G(t, u) over t. For this purpose,
we first rearrange Eq. (17)

G(t, u) = −
t ln 2− 2u ln t+2u

2u

t u (t− 2u) (t+ 2u)
. (23)

Then, relying on the integral

e−t R

R2
=

∫ ∞

t

dt
e−t R

R
, (24)

we evaluate

GAB(t, u) =

∫ ∞

t

dtG(t, u) (25)

and express the result in terms of dilogarithms (Li2),
namely

GAB(t, u) =
1

2u2

[
1

2
Li2

(
t− 2u

t+ 2u

)
− Li2

(
t

t+ 2u

)
+
π2

12

]
.

(26)

The integration in Eq. (25) can also be performed nu-
merically and confronted with the analytic result to ver-
ify its accuracy. All other GAB(t, u; 0, n1, n2, n3, n4, n5)
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integrals were evaluated by numerical integration with
respect to t of corresponding G(t, u; 0, n1, n2, n3, n4, n5)
functions; therefore, no recurrences are needed in this
case.

III. G12 INTEGRALS

A. The G12(t, u) master integral

Let us note that

G12(t, u; {ni}) = G(t, u;n0, n1 − 1, n2, n3, n4, n5) , (27)

which means that all the G12 integrals with n1 ≥ 1 are
identical to the corresponding nonrelativistic integrals G.
Of interest to us are the remaining G12 integrals with
n1 = 0. We start with the evaluation of the master inte-
gral

G12(t, u) =

∫
dV

e−t R e−u (ζ1+ζ2)

Rr212 r1A r1B r2A r2B
. (28)

Because this integral does not depend explicitly on the
w1 parameter (related to the r12 variable), the direct
integration method applied to GAB functions will not
work, and a more sophisticated method, described below,
must be applied.

Let g(−w1) = g(t, w1, y, x, u, w), see Eq. (6), and con-
sider the following Hankel’s contour integral (see Eq.
(6.1.4) of Ref. 34 and Figure 1)

gα = Ω̂
(
ω−α g(ω)

)
≡ 1

2π i

∫ (0+)

−∞
g(ω)ω−α dω (29)

for an arbitrary real α. We show, that, subject to y = 0,
x = 0, and w = u,

g′0 ≡ dgα
dα

∣∣∣∣
α=0

= G12(t, u) . (30)

If in Eq.(29) we change the order of dV with dω integra-
tions, then the ω-integral takes the form

rα−2
12

Γ(α)
=

1

2π i

∫ (0+)

−∞

eω r12

r12
ω−α dω . (31)

FIG. 1. Integration path for the Hankel’s integral of Eq. (29).

Because the derivative at α = 0 of the left side is

d

dα

∣∣∣∣
α=0

rα−2
12

Γ(α)
=

d

dα

∣∣∣∣
α=0

α rα−2
12 =

1

r212
, (32)

Eq. (30) is proved.
Consider now two PDE’s of Eq. (14), the first with

β = w1 and the second with β = t, where σ(y = 0, x =
0, w = u) = w2

1 t
2 (w2

1 + t2 − 4u2) and where Pw1
and

Pu1
are taken from Appendix A. We transform the first

equation by substituting w1 = −ω and multiplying by
t−2 ω−3−α

ω−α−1
(
t2 − 4u2 + ω2

) ∂g(ω)
∂ω

(33)

+ ω−α−2
(
t2 − 4u2 + 2ω2

)
g(ω)− t−2 ω−α−3Pw1(ω) = 0.

In the next step, we apply Ω̂ of Eq. (29) to the above
equation and use the relation

Ω̂

(
ω−α ∂g(ω)

∂ω

)
= α Ω̂

(
ω−α−1g(ω)

)
, (34)

to obtain

(α+ 2)(t2 − 4u2) Ω̂
(
ω−α−2g(ω)

)
(35)

+ (α+ 1) Ω̂
(
ω−αg(ω)

)
− t−2 Ω̂

(
ω−α−3Pw1(ω)

)
= 0 .

Recalling the definition of the gα in Eq. (29), we get

(α+ 2)(t2 − 4u2)gα+2 + (α+ 1)gα −Gw1
(α+ 3) = 0 ,

(36)

where

Gβ(α) =
1

t2
Ω̂
(
ω−αPβ(ω)

)
, (37)

and hence

gα+2 =
−(α+ 1)gα +Gw1

(α+ 3)

(α+ 2)(t2 − 4u2)
. (38)

Now, let us transform the second PDE. Again, we set
w1 = −ω, next we multiply it by t−1 ω−4−α, and then
apply the Ω̂ operator to get

t (t2 − 4u2)
∂gα+2

∂t
+ t

∂gα
∂t

+ 2 (t2 − 2u2) gα+2 + gα

= −tGu1
(α+ 4) . (39)

Now, we insert gα+2 from Eq. (38) and multiply the result
by (2 + α)(t2 − 4u2), obtaining

t (t2 − 4u2)
∂gα
∂t

+
[
t2 (2 + α)− 4u2

]
gα = Hα , (40)

where

Hα = −(2 + α) t (t2 − 4u2)Gu1
(α+ 4) (41)



5

− t (t2 − 4u2)
∂Gw1

(α+ 3)

∂t
+ 4u2Gw1(α+ 3) .

Differentiation of Eq. (40) with respect to α at α = 0,
bearing in mind that g0 = 0, yields the partial differential
equation of the form

t (t2 − 4u2)
∂g′0(t)

∂t
+
(
2 t2 − 4u2

)
g′0(t) = H ′

0 . (42)

The solution to this equation is the master integral g′0 we
are looking for. First, however, we must find an explicit
formula for H ′

0. For this purpose, we evaluate

H ′
0 =

∂Hα

∂α

∣∣∣∣
α=0

= −t (t2 − 4u2)Gu1(4)− 2 t (t2 − 4u2)G′
u1
(4)

− t (t2 − 4u2)
∂G′

w1
(3)

∂t
+ 4u2G′

w1
(3) . (43)

Explicit formulas for Gβ functions can be obtained from
the corresponding Pβ polynomials, cf. Eq. (37), and are
listed in Appendix B. After insertion of these formulas to
Eq. (43), H ′

0 simplifies greatly to its final form

H ′
0 = −π

2

12
+ 2Li2

(
t

t+ 2u

)
. (44)

We can now return to Eq. (42) and solve it for g′0.

g′0 = G12(t, u) =
1

t
√
t2 − 4u2

∫ t

2u

dt
H ′

0√
t2 − 4u2

. (45)

The lower integration limit is 2u, because g′0 must be
finite at every positive t including t = 2u.
Integration by parts and appropriate variable changes

enable the working representation of the above integral,
suitable for effective numerical integration to a desired
accuracy

G12(t, u) =
1

t
√
t2 − 4u2

{
H ′

0(t, u) ln
(
τ +

√
τ2 − 1

)

−
∫ √

τ−1
τ+1

0

dy
4 y

y2 + 1
ln

1− y2

2
ln

1− y

1 + y

}
,

(46)

where τ = t/(2u). The numerical integration is per-
formed over a bounded interval with the upper limit√

τ−1
τ+1 < 1, and the integrand is a monotonic function

of y. Therefore, the convergence of a numerical quadra-
ture is fast.

B. Recurrences

Our next goal is to establish recurrence relations
which enable the evaluation of an arbitrary integral

G12(t, u; {ni}) from integrals with lower values of expo-
nents ni. We proceed similarly as in the derivation of
the master integral. The main difference is that we set
y = 0, x = 0, and w = u only after differentiation with
D̂ of Eq. (53). We start by employing the PDE (14) with
β = w1 and σ of Eq. (15). For clarity, we write the latter
as

σ = w4
1 Aw1 + w2

1 Bw1 + Cw1 (47)

and

1

2

∂σ

∂w1
= 2w3

1 Aw1
+ w1Bw1

, (48)

where

Aw1
= t2, (49)

Bw1
= t4 − 2 t2

(
u2 + w2 + x2 + y2

)
+ (u+ w − x− y)(u− w + x− y)

× (u− w − x+ y)(u+ w + x+ y), (50)

Cw1 = 16 t2 uw x y − 16 (uy − wx)(ux− wy)(uw − xy) .
(51)

Subsequently, we set w1 = −ω, multiply the PDE by
ω−α−3, apply the operator Ω̂ defined in Eq. (29), and
use Eqs. (34) and (37). As a result, we get

(α+ 1)Aw1
gα + (α+ 2)Bw1

gα+2 + (α+ 3)Cw1
gα+4

− t2Gw1
(α+ 3) = 0 . (52)

The obtained equation is differentiated using the follow-
ing operator

D̂ ≡ (−1)n2+n3+n4+n5 (53)

×
(
∂

∂w

)n5
∣∣∣∣
w=u

(
∂

∂u

)n4
(
∂

∂x

)n3
∣∣∣∣
x=0

(
∂

∂y

)n2
∣∣∣∣
y=0

.

The resulting expression is a long combination of multi-
ple derivatives of gα, gα+2, and gα+4 of the order at most
n2 + n3 + n4 + n5 plus a single Gw1

term, see Eq. (37).
Among them, one gα and one gα+2 function occur with
the highest shell of exponents n2, n3, n4, n5. Let us ex-
tract this gα+2 function to obtain the relation

gα+2(t, u;n2, n3, n4, n5) = (. . . ) gα(t, u;n2, n3, n4, n5)+. . .
(54)

needed for recursion in the parameter α.
Next, we employ another PDE (14) with β = y. This

time,

1

2

∂σ

∂y
= w2

1 Ay +By , (55)

where

Ay = −2(t2y − 2uwx+ u2y + w2y + x2y − y3), (56)

By = 8t2uwx+ 8x(−wx+ uy)(ux− wy)
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+ 8w(−wx+ uy)(uw − xy)

− 8u(ux− wy)(uw − xy) . (57)

We treat this PDE in a similar way as the first one; we
set w1 = −ω, multiply it by ω−α−4, and apply the Ω̂
operator, obtaining

Ay gα+2 +By gα+4 +Aw1

∂gα
∂y

+Bw1

∂gα+2

∂y

+ Cw1

∂gα+4

∂y
+ t2Gy (α+ 4) = 0 , (58)

which we differentiate using D̂. There are two functions
with arguments from the maximal shell, gα(t, u;n2 +
1, n3, n4, n5) and gα+2(t, u;n2 + 1, n3, n4, n5). We use
Eq. (54) to eliminate gα+2(t, u;n2 + 1, n3, n4, n5) to get
the new relation

gα(t, u;n2 + 1, n3, n4, n5) = . . . , (59)

which expresses gα in terms of the other gα, gα+2 and
gα+4 from lower shells, as well as by functions Gw1 and
Gy originating from inhomogeneous terms.

Now, we can repeat this procedure for the other pairs of
parameters (and pertinent PDEs): (w1, x), (w1, u), and
(w1, w), each time obtaining the corresponding recursive
relation for

gα(t, u;n2, n3 + 1, n4, n5) = . . . , (60)

gα(t, u;n2, n3, n4 + 1, n5) = . . . , (61)

gα(t, u;n2, n3, n4, n5 + 1) = . . . . (62)

From the obtained set of five gα relations for arbitrary
α, we get corresponding relations at α = 0 and deriva-
tives in α at α = 0. The final 10 relationships together
with the initial g′0 of Eq. (45) form an exhaustive set of
recurrences needed to evaluate the function g′0 with ar-
bitrary n2, n3, n4, and n5

g′0(t, u;n2, n3, n4, n5) = G12(t, u; 0, 0, n2, n3, n4, n5) .
(63)

Other functions g0, g2, g4, g
′
2, g

′
4 appearing within these

relationships are just auxiliary and serve only to maintain
the complete scheme of recurrences.
The last step is to construct G12 integrals for any ex-

ponent n0 from the relation

G12(t, u;n0, 0, n2, n3, n4, n5)

=

(
− ∂

∂t

)n0

G12(t, u; 0, 0, n2, n3, n4, n5) . (64)

Inspection of achieved explicit expressions permits the
writing of functions to be differentiated in a general form

G12(t, u; 0, 0, n2, n3, n4, n5)

= u−(n2+n3+n4+n5)
3∑

i=0

ci(x) fi (65)

where x = 2u/t,

f0 = u2G12(t, u), f1 =
π2

24
− Li2

(
t

t+ 2u

)
,

f2 = log

(
2u

t+ 2u

)
, f3 = 1 (66)

and where the coefficients ci(x) are simple rational func-
tions of x, for example

G12(t, u; 0, 0, 0, 0, 1, 0) =
1

u3
2 f0 + f1
x2 − 1

, (67)

G12(t, u; 0, 0, 1, 1, 0, 0) = − 1

u4
2 f0

(
x2 − 4

)
− f1

(
x2 + 2

)
+ f2 (x− 1)

(
x2 − 2

)
+ (x− 1)2

(x2 − 1)2
, (68)

G12(t, u; 0, 0, 0, 2, 0, 0) =
x2

u4
f2 (x− 1)x4 − f1 (x

2 − 4)x2 + 2 f0
(
x4 − 2x2 + 4

)
+ (x− 1)2

16 (x2 − 1)2
. (69)

Differentiating such functions does not pose any partic-
ular difficulties.

IV. G1B INTEGRALS

A. The G1B(t, u) master integral

We are going to derive here an explicit formula for the
master integral

G1B(t, u) =

∫
dV

e−t R e−u (ζ1+ζ2)

Rr12 r1A r21B r2A r2B
. (70)
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For this purpose we express this integral in terms of the
derivative of the function g

G1B(t, u) =

∫ ∞

u2

du2 g(t, u2, u3, w)
∣∣∣
u2=u3=u

(71)

= −
∫ ∞

u

du2

∫ ∞

t

dt
∂g(t, u2, u, w)

∂t
(72)

=−
∫ ∞

t

dt

∫ ∞

u

du2
∂g(t, u2, u, w)

∂t
. (73)

Because g satisfies the PDE (14) with β = t = u1, σ =

(u2 − u3)
2 (u2 + u3)

2 w2, and
∂σ

∂t
= 0, its derivative can

be found immediately

∂g(t, u2, u3, w)

∂t
= −Pu1

σ
. (74)

Hence, we arrive at

G1B(t, u) =−
∫ ∞

t

dt

∫ ∞

u2

du2

(
− Pu1

σ

)∣∣∣
u2=u3=u

. (75)

The function Pβ , for arbitrary arguments, is presented in
Appendix A. It is a combination of logarithms and simple
rational functions; thus, the integral in u2 can readily be
performed, and the result for w = u is

G1B(t, u) = −
∫ ∞

t

dt
1

4u2

[
g1(t, u)

t− 2u
− g1(t, u)

t
+
g2(t, u)

t
− g2(t, u)

t+ 2u

]
, (76)

where

g1(t, u) =
π2

12
− 1

2
ln2

(
2u

t+ 2u

)
− Li2

(
t

t+ 2u

)
+ Li2

(
t− 2u

t+ 2u

)
, (77)

g2(t, u) =
π2

12
+

1

2
ln2

(
2u

t+ 2u

)
− 2Li2

(
t

t+ 2u

)
+ Li2

(
t− 2u

t+ 2u

)
. (78)

Repeating the above derivation but with w ̸= u, we obtain

G1B(t, u, w) = −
∫ ∞

t

dt
∂G1B(t, u, w)

∂t
(79)

∂G1B(t, u, w)

∂t
=

1

4uw

[
g1(t, u, w)

t− u− w
− g1(t, u, w)

t+ u− w
+
g2(t, u, w)

t− u+ w
− g2(t, u, w)

t+ u+ w

]
(80)

where

g1(t, u, w) = Li2

(
t− u− w

t+ u+ w

)
− Li2

(
t+ u− w

t+ u+ w

)
− Li2

(
− u

w

)
− 1

2
ln2

(
2w

t+ u+ w

)
, (81)

g2(t, u, w) = Li2

(
t− u− w

t+ u+ w

)
− 2Li2

(
t− u+ w

t+ u+ w

)
+ Li2

(
− u

w

)
+

1

2
ln2

(
2w

t+ u+ w

)
+
π2

6
. (82)

For the recurrence relations discussed in the following section, we will also need derivatives of the master integral with
respect to u and w

∂G1B(t, u, w)

∂u
= −G1B(t, u, w)

u
− 1

4uw

[
g1(t, u, w)

t− u− w
+
g1(t, u, w)

t+ u− w
+
g2(t, u, w)

t− u+ w
+
g2(t, u, w)

t+ u+ w

]
, (83)

∂G1B(t, u, w)

∂w
= −G1B(t, u, w)

w
− 1

4uw

[
g1(t, u, w)

t− u− w
− g1(t, u, w)

t+ u− w
− g2(t, u, w)

t− u+ w
+
g2(t, u, w)

t+ u+ w

]
. (84)

These derivatives can be obtained from Eqs. (79) and (80) as follows

∂G1B(t, u, w)

∂w
=

∂

∂w

(
−
∫ ∞

t

dt
∂G1B(t, u, w)

∂t

)
(85)

= −
∫ ∞

t

dt
∂

∂w

1

4uw

[
g1(t, u, w)

t− u− w
− g1(t, u, w)

t+ u− w
+
g2(t, u, w)

t− u+ w
− g2(t, u, w)

t+ u+ w

]
= −G1B(t, u, w)

w
− 1

4uw

∫ ∞

t

dt
∂

∂w

[
g1(t, u, w)

t− u− w
− g1(t, u, w)

t+ u− w
+
g2(t, u, w)

t− u+ w
− g2(t, u, w)

t+ u+ w

]
= −G1B(t, u, w)

w
− 1

4uw

∫ ∞

t

dt

{
∂

∂t

[
− g1(t, u, w)

t− u− w
+
g1(t, u, w)

t+ u− w
+
g2(t, u, w)

t− u+ w
− g2(t, u, w)

t+ u+ w

]
+X

}

where

X =

(
1

t− u− w
− 1

t+ u− w

)(
∂

∂w
+
∂

∂t

)
g1(t, u, w)

+

(
1

t− u+ w
− 1

t+ u+ w

)(
∂

∂w
− ∂

∂t

)
g2(t, u, w) ≡ 0

(86)



8

Hence, Eq. (84) is proved.
The direct integral representation of G1B(t, u, w),

namely

G1B(t, u, w) =

∫ ∞

0

dk g(t, u+ k, u, w) , (87)

where

g(t, u2, u3, w) =
1

2w(u2 − u3)(u2 + u3)

×
[
−Li2

(
t− u3 − w

t+ u2 + w

)
+ Li2

(
t− u3 + w

t+ u2 + w

)
+ Li2

(
t+ u2 − w

t+ u2 + w

)
+ Li2

(
t− u2 − w

t+ u3 + w

)
− Li2

(
t− u2 + w

t+ u3 + w

)
− Li2

(
t+ u3 − w

t+ u3 + w

)]
, (88)

will also be needed for deriving the recurrences. The
latter formula was obtained using

g(t, u2, u3, w) = −
∫ ∞

t

dt
∂g

∂t
(t, u2, u3, w) (89)

with the integrand taken from Eq. (74).

B. Recurrences

In this section we are going to derive formulas for
G1B(t, u; {ni}) in Eq. (20) for arbitrary ni, and the sub-
sequent steps of this derivation are as follows.

1. Recurrence in n3

In the first step, we obtain formulas for the standard
integral g(t, w1, x, u2, u3, w;n3) at w1 = x = 0. For this
purpose, we employ the PDE (14) with β = x. For w1 =
0, we take

σ = 16 t2 uw x y − 16 (−w x+ u y)(ux− w y)(uw − x y)
(90)

and Px = Pw2 − Pw3 (see Appendix A). Next, we differ-
entiate this PDE n3 times with respect to x, set x = 0,
and extract the highest-order derivative

g(n3) ≡ g(t, w1, x, u2, u3, w;n3)
∣∣
x=0

= (−1)n3
∂n3g

∂xn3

∣∣∣∣
x=0

.

(91)

The obtained recursive formula enables the n3-th deriva-
tive g(n3) to be evaluated from lower-order derivatives of
g and the derivative of the inhomogeneous term Px(n3) ≡

(−1)n3
∂n3Px

∂xn3

∣∣∣∣
x=0

g(n3) = −
(2n3 − 1)

(
t2 − u2 − w2 − y2

)
2uw y

g(n3 − 1)

−
(n3 − 1)2

(
u2w2 + u2y2 + w2y2

)
u2 w2 y2

g(n3 − 2

− (n3 − 2)(2n3 − 3)(n3 − 1)

2uw y
g(n3 − 3)

+
Px(n3 − 1)

16u2 w2 y2
. (92)

The g(n3) obtained from this relation is the starting point
for the next recurrence.

2. Recurrence in n1

In the second step, we will obtain formulas for
g(t, w1, x, u2, u3, w;n1, n3) at w1 = x = 0. In a simi-
lar way as above, we begin the PDE (14) with β = w1,
σ from Eq. (15), and Pw1

taken from Appendix A. We
differentiate this equation n1 times with respect to w1

and set w1 = 0. Then, we differentiate the obtained rela-
tionship again n3 times with respect to x and set x = 0.
These operations yield

g(n1, n3) ≡ (−1)n1+n3
∂n3

∂xn3

∂n1

∂wn1
1

g

∣∣∣∣w1 = 0
x = 0

(93)

with the following recursion relations:

g(n1, n3) (94)

=
c1 (n1 − 1)2 (n3 − 1)n3 g(n1 − 2, n3 − 2)

8u2 w2 y2
− c2 (n1 − 1)2 g(n1 − 2, n3)

16u2 w2 y2
− c3 (n3 − 1)n3 g(n1, n3 − 2)

u2 w2 y2

− c4 n3 g(n1, n3 − 1)

uw y
− (n1 − 3) (n1 − 2)2 (n1 − 1) t2 g(n1 − 4, n3)

16u2 w2 y2
− (n3 − 2) (n3 − 1)n3 g(n1, n3 − 3)

uw y

− (n1 − 1)2 (n3 − 3) (n3 − 2) (n3 − 1)n3 g(n1 − 2, n3 − 4)

16u2 w2 y2
+

(n1 − 1)2 n3 g(n1 − 2, n3 − 1)

2uw y
+
Pw1

(n1 − 1, n3)

16u2 w2 y2
,

where

c1 = t2 + u2 + w2 + y2, c2 = t4 − 2 t2 u2 + u4 − 2 t2 w2 − 2u2 w2 + w4 − 2 t2 y2 − 2u2 y2 − 2w2 y2 + y4,
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c3 = u2 w2 + u2 y2 + w2 y2, c4 = −t2 + u2 + w2 + y2. (95)

and where we have defined g(0, n3) ≡ g(n3) of Eq. (92)

and Pw1(n1, n3) ≡ (−1)n1+n3
∂n3

∂xn3

∂n1

∂wn1
1

Pw1

∣∣∣∣w1 = 0
x = 0

.

3. Integration with respect to u2

In the third step, we perform analytic integration of
g(t, u2, u3, w;n1, n3) with respect to u2 in order to obtain
a function with an additional power of 1/r1B

G1B(t, u, w; 0, n1, 0, n3, 0, 0)

=

∫ ∞

0

dk g(t, u+ k, u, w;n1, n3)

∣∣∣∣
w1=x=0

. (96)

The integrand combines dilogarithmic (Li2), logarithmic,
and rational functions of t, u, w, and k. The Li2 functions
always appear in the same combination as in Eq. (88),
namely, they form g(t, u+k, u, w), and we use this equa-
tion to express the integral in terms of G1B(t, u, w) ac-
cording to Eq. (87). Further on, the integration of log-
arithmic functions gives dilogarithms Li2 in such a com-
bination, which can always be expressed in terms of g1
and g2 functions defined in Eqs. (81) and (82). What
remains after the integration are the logarithmic and ra-
tional functions of t, u, and w.

4. Recurrence in n4 and n5

In the fourth step, we derive
G1B(t, u; 0, n1, 0, n3, n4, n5) by taking derivatives
with respect to u and w of G1B(t, u, w; 0, n1, 0, n3, 0, 0)

G1B(t, u; 0, n1, 0, n3, n4, n5) (97)

=

(
− ∂

∂w

)n5

w=u

(
− ∂

∂u

)n4

G1B(t, u, w; 0, n1, 0, n3, 0, 0),

and in this operation we make use of Eqs. (83) and (84).

5. Recurrence in n2

Recurrence in the n2 exponent can be found from an
algebraic relation between variables

ηn2
1

r1B
= ηn2−1

1

(
ζ1
r1B

− 2

)
, (98)

which leads directly to the following formula:

G1B(t, u; 0, n1, n2, n3, n4, n5)

= G1B(t, u; 0, n1, n2 − 1, n3, n4 + 1, n5)

− 2G(t, u; 0, n1, n2 − 1, n3, n4, n5). (99)

As we can see, apart from G1B integrals of lower order
in n2, it involves also standard integrals G of Eq. (12).

6. Recurrence in n0

The last exponent for which we need to find a recur-
rence is n0, which relates to the internuclear variable R
and the non-linear parameter t. Because of the presence
of the parameter t in the naJC basis function, Eq. (8),
the n0 = 0 integrals have an explicit dependence on t,
e.g.,

G1B(t, u; 0, 0, 0, 0, 0, 1)

=
1

2 t u

[
2 tG1B(t, u) +

g1(t, u)

t− 2u
− g2(t, u)

t+ 2u

]
, (100)

G1B(t, u; 0, 1, 0, 0, 0, 0)

=
1

2 t u (t+ 2u)
ln

(
2u

t+ 2u

)
, (101)

G1B(t, u; 0, 1, 1, 0, 0, 0)

=
1

t (t+ 2u)2

[
1

2u
+

1

t
ln

(
2u

t+ 2u

)]
. (102)

Therefore, it is sufficient to perform a direct differen-
tiation of pertinent G1B integrals with respect to this
variable

G1B(t, u; {ni}) =
(
− ∂

∂t

)n0

G1B(t, u; 0, n1, n2, n3, n4, n5)

(103)

using Eq. (76) to obtain formulas for an arbitrary n0.
This concludes the derivation of explicit formulas for an
arbitrary G1B integral. A few examples of moderate-size
formulas are given below:

G1B(t, u; 1, 0, 0, 0, 0, 1)

= − t2 − 4 t u+ 2u2

2 t2 u2 (t− 2u)2
g1(t, u)−

t2 + 4 t u+ 2u2

2 t2 u2 (t+ 2u)2
g2(t, u)

+
8u

t (t− 2u)2(t+ 2u)2
ln 2

− t3 − 3 t2 u− 12u3

t2 u (t− 2u)2(t+ 2u)2
ln

2u

t+ 2u
(104)

G1B(t, u; 1, 1, 0, 0, 0, 0)

=
1

2 t u (t+ 2u)2

[
1 +

2 (t+ u)

t
ln

2u

t+ 2u

]
, (105)

G1B(t, u; 1, 1, 1, 0, 0, 0)

=
1

t2 (t+ 2u)3

[
3 t+ 4u

2u
+

4 (t+ u)

t
ln

2u

t+ 2u

]
. (106)

V. NUMERICAL RESULTS

In this section, we present a small selection of numeri-
cal results that can be helpful in reproduction and numer-
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TABLE I. Numerical values of the master integrals, defined
in Eqs. (22), (28), and (70), evaluated for t = 38.38 and u =
1.956, are shown with a precision of 32 significant digits.

Master integral Value
GAB(t, u) 0.007 321 991 591 821 939 899 610 091 538 52
G12(t, u) 0.002 007 747 417 108 337 201 534 734 124 51
G1B(t, u) 0.002 832 386 807 422 208 953 576 913 409 21

ical implementation of the equations derived in previous
sections. Among many formulas employed to produce
the full set of the relativistic integrals, those for the mas-
ter integrals seem to be the most important. Because
they are the seeds of all recurrences, their numerical val-
ues must be known to a sufficiently high precision. Ev-
ery step of the recurrence in ni may introduce a small
round-off error, which when accumulated would deteri-

orate the precision of the highest order terms. Because
the target precision imposed on all the integrals is about
64 digits, the master integrals must be evaluated to a sig-
nificantly higher accuracy. This goal has been achieved
using MPFR libraries [35] coupled with a MPFUN library
[36] and linked to a source code in Fortran 95. Numerical
values of the master integrals representing three different
classes of relativistic integrals are listed in Table I.
The total energy of a rovibrational level of a light

molecule described by the vibrational v and rotational
J quantum numbers is represented as a series in powers
of the fine-structure constant α

E(v,J) = α2E(v,J)
nr + α4E

(v,J)
rel + α5E

(v,J)
qed + . . . . (107)

Our ultimate purpose, for which the integrals described
above are indispensable, is an accurate prediction of the

relativistic correction E
(v,J)
rel for rovibrational states of

H2 and its isotopologues. This correction is evaluated as
an expectation value ⟨Ψ|HBP|Ψ⟩ of the mass-dependent
Breit-Pauli Hamiltonian (in atomic units, m = 1)

HBP = − p41
8m3

− p42
8m3

− p4A
8m3

A

− p4B
8m3

B

+
π

m2
δ(3)(r12) +

π

2

(
1

m2
+
δIA
m2

A

)(
δ(3)(r1A) + δ(3)(r2A)

)
+
π

2

(
1

m2
+
δIB
m2

B

)(
δ(3)(r1B) + δ(3)(r2B)

)
− 1

2m2
pi1

(
δij

r12
+
ri12 r

j
12

r312

)
pj2 −

1

2mAmB
piA

(
δij

rAB
+
riAB r

j
AB

r3AB

)
pjB

+
1

2mmA
pi1

(
δij

r1A
+
ri1A r

j
1A

r31A

)
pjA +

1

2mmB
pi1

(
δij

r1B
+
ri1B r

j
1B

r31B

)
pjB

+
1

2mmA
pi2

(
δij

r2A
+
ri2A r

j
2A

r32A

)
pjA +

1

2mmB
pi2

(
δij

r2B
+
ri2B r

j
2B

r32B

)
pjB (108)

with the wavefunction Ψ expanded in the basis of the
nonadiabatic James-Coolidge (naJC) functions, Eq. (8).
In the above equation, subscripts A and B, accompany-
ing symbols of mass (m), momentum (p), and coordinate
(r), concern nuclei, while 1 and 2 refer to electrons. The
nuclear-spin factor δI , present in Dirac delta terms, de-
pends on the nucleus’ spin I: δI = 1 for I = 1/2 and
δI = 0 otherwise. All the electron spin-dependent terms
are omitted as they vanish for the ground electronic state
of 1Σ+

g symmetry, while nuclear-spin dependent terms are
also omitted because we do not consider the fine and hy-
perfine structure. Due to its negligible magnitude, we
have also omitted the nucleus-nucleus Dirac delta term.

Table II contains preliminary numerical results of the
relativistic correction obtained for the three lowest rovi-
brational levels of H2. E

(v,J)
rel was evaluated with a se-

quence of wavefunctions of growing quality, which en-
ables estimation of its numerical accuracy. The size of the
wavefunction expansions was determined by the shell pa-
rameter Ω limiting from above the sum of the exponents
n1 + n2 + n3 + n4 + n5 of the naJC basis functions (8)

included. The extrapolation to the infinite basis size was
performed at the level of individual operators present in
the Hamiltonian (108). The relativistic integrals were
evaluated for integer exponents fulfilling the following
conditions n1+n2+n3+n4+n5 ≤ 35 and n0 ≤ 85, which
enables application of wavefunctions with the shell Ω up
to 14 for J = 0 and up to 12 for J > 0.

For the rotationless level (J = 0), analogous results
are available in the literature. In 2018, Wang and Yan

[37] reported E
(0,0)
rel = −0.204 544(5) a.u. in agreement

with our results, whereas Puchalski et al. [38] obtained

E
(0,0)
rel = −0.204 547 56(4) a.u., which is off by 4σ from

the new result. Reinvestigating the convergence of the
latter correction revealed that the error bar estimation
was too optimistic. Calculations performed by Stanke

and Adamowicz [39] in 2013 yielded E
(0,0)
rel = −0.201 3

a.u. The uncertainty of this number is unknown. As-
suming that all the digits quoted are significant, we note
a considerable disagreement with all the other values.
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TABLE II. Convergence of the relativistic correction E
(v,J)
rel (in a.u.) calculated using the nonadiabatic James-Coolidge (naJC)

wavefunction for the (v, J) rovibrational level of H2. K is the size of the naJC basis set employed, governed by Ω – the largest
shell enabled. Calculations were performed using the nuclear mass M/m = 1836.152 673 43(11) [40].

Ω K E
(0,0)
rel K E

(0,1)
rel K E

(0,2)
rel

9 28 756 −0.204 547 752 0 49 042 −0.204 326 998 3 49 042 −0.203 890 204 8
10 42 588 −0.204 547 538 4 73 164 −0.204 326 718 0 73 164 −0.203 889 953 8
11 61 152 −0.204 547 467 0 105 840 −0.204 326 616 4 105 840 −0.203 889 881 7
12 85 904 −0.204 547 434 3 149 408 −0.204 326 587 7 149 408 −0.203 889 846 0
13 117 936 −0.204 547 423 1 − − − −
14 159 120 −0.204 547 417 6 − − − −

∞ −0.204 547 412(5) ∞ −0.204 326 56(3) ∞ −0.203 889 81(3)

For the rotationally excited levels there are no analo-
gous data available in the literature. A comparison can
be made to the relativistic correction obtained within the
adiabatic approximation, e.g., within the nonadiabatic
perturbation theory (NAPT) implemented in the pub-
licly available H2Spectre program [23, 41]. For J = 1,

NAPT yields E
(0,1)
rel = −0.204 326 8(2) a.u., which agrees

to within 1.2σ with the direct nonadiabatic (DNA) re-
sult of Table II. The uncertainty of the NAPT result
is due to neglected higher order finite nuclear mass ef-
fects; the comparison with the DNA value validates the
method of uncertainty estimation. For J = 2, NAPT

gives E
(0,2)
rel = −0.203 889 6(2) a.u., which is in agreement

with the DNA result.

VI. CONCLUSIONS

The naJC wavefunction, together with the nuclear-
mass dependent Breit-Pauli Hamiltonian of Eq. (108),
fully take into account nonadiabatic effects (nuclear re-
coil) in the relativistic correction. However, the expecta-
tion values of the operators present in this Hamiltonian
evaluated in the naJC basis require access to new, pre-
viously unknown classes of integrals. The mathematical
techniques reported in this paper enabled the evaluation
of such extended integrals, allowing an unprecedented
relative accuracy of 3 · 10−8 for the relativistic correction
of the ground state of H2. Regarding the dissociation
energy of a rovibrational level, this corresponds to an
absolute accuracy of 6 · 10−8 cm−1 (∼ 2 kHz). Previous
calculations, apart from the rotationless cases mentioned
above, were performed in the framework of the adia-

batic approximation using the second-order nonadiabatic
perturbation theory (NAPT) with the inclusion of the
relativistic terms proportional to the electron-to-nucleus
mass ratio. The two-orders-of-magnitude more accurate
new DNA method removes the uncertainty caused by un-
known higher-order terms of the NAPT expansion and
enables the error estimation of the NAPT computation
to be verified.
One of the essential features opened up by the ex-

tended classes of integrals is the possibility of accurately
determining the relativistic correction for higher rota-
tional levels. As in the case of the nonrelativistic energy
[24–28], the accuracy now achieved allows the error from
the relativistic correction to be neglected in the total er-
ror budget. From now on, the missing recoil contribution
to the QED correction and the unknown higher-order in
α corrections will be the only factors that determine the
overall energy uncertainty.
Apart from the relativistic correction itself, the new

classes of integrals will also enable an extension of the
field of application of the naJC wavefunction to the eval-
uation of the operators present in the QED term of the
expansion (107) as well as to various electric and mag-
netic properties of the hydrogen molecule.

ACKNOWLEDGMENT

This research was supported by the National Science
Center (Poland) Grant No. 2021/41/B/ST4/00089.
A computer grant from the Poznań Supercomputing and
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Appendix A: Inhomogeneous terms, Pβ

The PDE (14) is satisfied by the general four body
integral of Eq. (2). These equations involve inhomoge-
neous terms Pβ with β = ui, wi. All these terms can be
expressed by a single general function P

Pw1
= P (w1, u1;w2, u2;w3, u3)

= P (w1, u1;w3, u3;w2, u2) ,

Pu1 = P (u1, w1;w2, u2;u3, w3) ,

Pw2
= P (w2, u2;w3, u3;w1, u1) ,

Pu2
= P (u2, w2;w3, u3;u1, w1) ,

Pw3
= P (w3, u3;w1, u1;w2, u2) ,

Pu3
= P (u3, w3;u1, w1;w2, u2) . (A1)

The explicit formula for P was obtained in [33] and is
repeated here for completeness
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P (w1, u1;w2, u2;w3, u3)

=
u1 w1 [(u1 + w2)

2 − u23]

(−u1 + u3 − w2) (u1 + u3 + w2)
ln

[
u2 + u3 + w1

u1 + u2 + w1 + w2

]

+
u1 w1 [(u1 + u3)

2 − w2
2]

(−u1 − u3 + w2) (u1 + u3 + w2)
ln

[
w1 + w2 + w3

u1 + u3 + w1 + w3

]

−u
2
1 w

2
1 + u22 w

2
2 − u23 w

2
3 + w1 w2 (u

2
1 + u22 − w2

3)

(−w1 − w2 + w3) (w1 + w2 + w3)
ln

[
u1 + u2 + w3

u1 + u2 + w1 + w2

]

−u
2
1 w

2
1 − u22 w

2
2 + u23 w

2
3 + w1 w3 (u

2
1 + u23 − w2

2)

(−w1 + w2 − w3) (w1 + w2 + w3)
ln

[
u1 + u3 + w2

u1 + u3 + w1 + w3

]

+
u2 (u2 + w1) (u

2
1 + u23 − w2

2)− u23 (u
2
1 + u22 − w2

3)

(−u2 + u3 − w1) (u2 + u3 + w1)
ln

[
u1 + u3 + w2

u1 + u2 + w1 + w2

]

+
u3 (u3 + w1) (u

2
1 + u22 − w2

3)− u22 (u
2
1 + u23 − w2

2)

(u2 − u3 − w1) (u2 + u3 + w1)
ln

[
u1 + u2 + w3

u1 + u3 + w1 + w3

]

−w1 [w2 (u
2
1 − u22 + w2

3) + w3 (u
2
1 − u23 + w2

2)]

(w1 − w2 − w3) (w1 + w2 + w3)
ln

[
u2 + u3 + w1

u2 + u3 + w2 + w3

]

−w1 [u2 (u
2
1 + u23 − w2

2) + u3 (u
2
1 + u22 − w2

3)]

(−u2 − u3 + w1) (u2 + u3 + w1)
ln

[
w1 + w2 + w3

u2 + u3 + w2 + w3

]
. (A2)

In the main text, we often referred to equation (14)
with β being a linear combination of wi, ui as in Eq. (4).
In such a case, Pβ can be obtained from one of the fol-
lowing equations

Pw = Pw2
+ Pw3

, Px = Pw2
− Pw3

,

Pu = Pu2 + Pu3 , Py = Pu3 − Pu2 . (A3)

Appendix B: Explicit formulas for Gβ(α) functions
and their derivatives

The functions Gβ(α) were defined in Eq. (37). Explicit
formulas for these functions and their derivatives with
respect α, G′

β(α), needed for evaluation ofH ′
0 in Eq. (43),

are shown below.

Gu1(4) =
−t+ u

t u (t+ 2u)2
, (B1)

G′
u1
(4) = − 1

8tu2
+

5

4u(t+ 2u)2
+

1

8u2(t+ 2u)

+
ln(2u)

t u (t+ 2u)
− 3 ln(t+ 2u)

t (t+ 2u)2
, (B2)

G′
w1

(3) = − 1

2u2
− π2

48u2
+

2

u(t+ 2u)
− ln(2u)

2u2
(B3)

+
2 ln(t+ 2u)

u(t+ 2u)
−

ln( t+2u
2u )

tu
+

Li2(
t

t+2u )

2u2
,

∂G′
w1

(3)

∂t
= − 1

2tu2
+

1

2u2(t+ 2u)

2(t+ u) ln
(
t+2u
2u

)
t2u(t+ 2u)

− 2 ln(t+ 2u)

u(t+ 2u)2
. (B4)
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