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A comprehensive theory of the Lamb shift in light muonic atoms such as µH, µD, µ3He+,
and µ4He+ is presented, with all quantum electrodynamic corrections included at the
precision level constrained by the uncertainty of nuclear structure effects. This analysis
can be used in the global adjustment of fundamental constants and in the determination
of nuclear charge radii. Further improvements in the understanding of electromagnetic
interactions of light nuclei will allow for a promising test of fundamental interactions by
comparison with “normal” atomic spectroscopy, in particular, with H-D and 3He-4He
isotope shifts.
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I. INTRODUCTION

Two-body systems such as hydrogen (e−p+), positron-
ium (e−e+), and muonium (e−µ+) have long been recog-
nized as the best tools to verify fundamental interaction
theories (Kinoshita, 1990). This is because their energy
levels can be calculated analytically or numerically to a
high precision, limited in principle by the accuracy of fun-
damental physical constants. Starting with nonrelativis-
tic quantum mechanics, the Hamiltonian of two charged
particles with masses m1 and m2 interacting with an at-
tractive Coulomb potential,

H =
p⃗ 2
1

2m1
+

p⃗ 2
2

2m2
− Z α

r
= Ek +H0 , (1)

can be decomposed in terms of the total kinetic energy

Ek =
(p⃗1 + p⃗2)

2

2 (m1 +m2)
, (2)

and the one-body Hamiltonian with the reduced mass µ

H0 =
p⃗ 2

2µ
− Z α

r
, (3)

where p⃗ = −i ∇⃗r is the relative momentum of these two
particles. For precise definition of constants and units,
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see Sec. II. The eigenvalues of this Hamiltonian

Enl = − (Z α)2 µ

2n2
(4)

depend on the principal quantum number n = 1, 2, 3, . . .
and not on the angular momentum number l =
0, 1, . . . , n− 1. The degeneracy of states with different l
is a characteristic feature of the nonrelativistic Coulomb
Hamiltonian. We know, however, that a more accurate
description of hydrogenlike levels must rely on the rela-
tivistic theory. The first questions arise here: What is
the relativistic analog of the instantaneous Coulomb in-
teraction, and what is the correct two-body equation for
charged particles? In fact, there is no definitive answer to
these questions yet. Only in the case in which the mass
of one particle goes to infinity can we write a Dirac equa-
tion for the second spin-1/2 particle (or a Klein-Gordon
equation for a spin-0 particle) in the Coulomb poten-
tial of a static nucleus (Itzykson and Zuber, 1980). For
a hydrogen atom having a proton mass that is approx-
imately 2000 times larger than the electron mass, the
Dirac equation is a good starting point. It yields en-
ergy levels that depend on the principal quantum num-
ber n (as in the nonrelativistic case) but also on the to-
tal angular momentum number j, as well as on the fine
structure constant α. Accordingly, the states 2S1/2 and
2P1/2 carry the same j and are thus degenerate. Here we
use the historical notation, which is still used by atomic
spectroscopists, where a state is labeled by its nLj with
S, P,D, F, . . . standing for l = 0, 1, 2, 3, . . ., and the sub-
script j denoting the particular value of the total an-
gular momentum. However, in a true hydrogen atom
the energy of the 2S1/2 state is slightly above that of
the 2P1/2 one. This splitting, first observed experimen-
tally by Lamb and Retherford (1947) and subsequently
named the Lamb shift, was fundamental for the construc-
tion of quantum electrodynamics (QED) by Feynman,
Schwinger, and Tomonaga, for which they were awarded
the Nobel Prize (Dyson, 1965). QED theory allows us to
account in a perturbative manner for the finite nuclear
mass (Shabaev, 1998), for the electron self-interaction
and the vacuum polarization (Berestetskii et al., 1982;
Itzykson and Zuber, 1980), and, in current use, for the
accurate description of not only hydrogenlike but also
of arbitrary atomic systems (Drake, 2023). All of these
effects are described in Sec. III for such hydrogenlike sys-
tems, where the electron is replaced by the muon, a 200
times heavier lepton that is also a pointlike particle.

In contrast to leptons, however, the nucleus in most
cases cannot be treated as a pointlike particle. For ex-
ample, a proton has a finite charge distribution that can
be measured in lepton-proton scattering experiments, as
was first shown by Chambers and Hofstadter (1956). At
present the nuclear charge distribution cannot be calcu-
lated ab initio, at least not with the accuracy needed by
atomic spectroscopy measurements. This nuclear charge

distribution affects the Coulomb interaction at small dis-
tances. Although it is a small effect (about 1 MHz in
H) it needs to be taken into account due to the high ac-
curacy of spectroscopic measurements; for example, the
1S−2S transition frequency in hydrogen (Parthey et al.,
2011) is

νH(1S − 2S) = 2 466 061 413 187 035(10) Hz . (5)

The finite proton size effect can in principle be deter-
mined from the comparison of theoretical predictions for
νH(1S − 2S) to the aforementioned measurement. How-
ever, the Rydberg constant Ry enters into the comparison
as a conversion constant between experiment (measured
in SI units) and theory (performed in atomic units) (Pohl
et al., 2017; Tiesinga et al., 2021). Thus far the only de-
termination of Ry has been available from hydrogen itself
because only this system can be calculated and measured
accurately enough at the same time. Therefore, we need
a second transition like 2S−nS to determine the two un-
knowns (Tiesinga et al., 2021): the Rydberg constant and
the mean square proton charge radius; see Eq. (73). Since
the measurements of 2S−nS and other transitions in hy-
drogen are much less accurate, the atomic spectroscopy
determination of the proton charge radius was of lim-
ited accuracy: rp = 0.8768(69) fm (Mohr et al., 2008),
consistent with the electron-proton scattering determi-
nation (Bernauer et al., 2014). This situation was stable
for a long time, until a new determination of the pro-
ton charge radius became available from the Lamb shift
measurement in muonic hydrogen µH (Pohl et al., 2010).
This new determination resulted in a much smaller pro-
ton charge radius of rp = 0.841 84(67) fm and thus ques-
tioned the universality of electromagnetic interactions
and the validity of QED theory for composite particles
(Pohl et al., 2013).
This is why the comparison of nuclear charge radii ob-

tained at first from µH (Antognini et al., 2013b; Pohl
et al., 2010), then from µD (Pohl et al., 2016), µ4He
(Krauth et al., 2021), and µ3He (Schuhmann et al., 2023)
to those obtained from “normal” atomic spectroscopy is
a sensitive test of lepton universality and also a search
for the existence of possible yet unknown lepton-nucleus
interactions at the scale from a few to a few hundred fem-
tometers; these interactions have not yet been probed ex-
perimentally by other means (Carlson, 2015; Pohl et al.,
2013). A similar or even stronger sensitivity to the lep-
ton universality is expected from a direct comparison
of the electron versus muon scattering of the proton,
which is the aim of the MUSE Collaboration (Lorenzon,
2020). The charge radii of the proton and other light
nuclei are also important for the determination of fun-
damental physical constants like the Rydberg constant
from the spectroscopy of H (Tiesinga et al., 2021) or
He+ (Herrmann et al., 2009; Krauth et al., 2020) and
the electron-nucleus mass ratios from the spectroscopy
of HD+ (Alighanbari et al., 2020; Kortunov et al., 2021;
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Patra et al., 2020). In fact, the global adjustment of
fundamental constants, performed periodically every four
years by CODATA (Tiesinga et al., 2021), will now em-
ploy the nuclear charge radii obtained from muonic atom
spectroscopy. Indeed, the most accurate determination
of the root mean square (rms) nuclear charge radius rC is
by the measurement of the 2S− 2P transition in the hy-
drogenlike system, which consists of a muon and the nu-
cleus (Antognini et al., 2013b; Pohl et al., 2010). Owing
to the 200-times-heavier muon, muonic atoms are much
more sensitive to the nuclear size and to nuclear struc-
ture effects than normal electronic atoms. In particular,
the rms radius shift of the muonic atom energy levels is
∼ 2003 larger than that of the electronic ones. There-
fore, the determination of the nuclear charge radii from
muonic atoms is much more accessible and precise. For
this purpose, one needs to calculate QED and nuclear
structure effects on the energy levels accurately enough
to be able to interpret the remainder as a finite nuclear
size effect. Borie and Rinker (1982) performed an exten-
sive study of energy levels in muonic atoms by solving
the Dirac equation with the muon mass replaced by the
reduced mass of the muon-nucleus system, and by in-
cluding the Breit interaction. This treatment partially
accounts for the nuclear recoil corrections, but its results
are not accurate enough for light muonic atoms. There-
fore, an approach suited to light atomic systems, exact
in the mass ratio, was developed by Pachucki (1996) and
was widely followed in the later literature.

Here we present a comprehensive theory of the Lamb
shift in light muonic atoms, with particular attention
paid to the consistent separation of a point-nucleus QED
from the nuclear structure effects. It is based mostly
on the recent literature [see reviews by Antognini et al.
(2013a); Diepold et al. (2018); Franke et al. (2017);
Krauth et al. (2016), and references therein], with several
contributions calculated or recalculated here. All results
are shown in Table I, with each entry explained in its
dedicated section. The crucial point is the preservation
of consistency in the Lamb shift theory among all muonic
and electronic atoms and, consequently, the consistent
determination of nuclear charge radii.

II. EXPANSION OF ENERGY IN POWERS OF THE FINE
STRUCTURE CONSTANT α

Throughout this review, we use the natural units ℏ =
c = 1. We start with the definition of the Lamb shift
in the presence of the nuclear spin I⃗, the spin of the
orbiting lepton S⃗, and the angular momentum L⃗. The
effective Hamiltonian in the subspace of states with a
definite principal quantum number n, orbital momentum
l = 0 or 1, and nuclear spin I ≤ 1 is

Heff(n, l) = E1 + E2 S⃗ · L⃗+ E3 S⃗ · I⃗ + E4 L⃗ · I⃗

+ E5 (L
i Lk)(2) (Ii Ik)(2) + E6 (L

i Lk)(2) Ii Sk , (6)

where (Li Lk)(2) = Li Lk/2 + Lk Li/2 − L⃗2 δik/3. Here
i and k are Cartesian indices; to distinguish them from
Minkowski indices, the latter are denoted by lowercase
greek letters. Furthermore, we use Einstein notation,
which implies a sum over repeated indices. Note that
we also limit the consideration to the case in which the
orbiting lepton is a muon. Let J⃗ = L⃗ + S⃗; then for the
S1/2 state l = 0, j = 1/2, and we define E(nS1/2) =
E1(n, 0), while for the P1/2 state

E(nP1/2) = E1(n, 1) + E2(n, 1) ⟨S⃗ · L⃗⟩j=1/2

= E1(n, 1)− E2(n, 1) , (7)

so we calculate energies as if there were no nuclear spin
couplings. Owing to the hyperfine mixing of the P1/2

and P3/2 states, this definition is not equivalent to the
centroid energy but follows the definitions assumed in
the literature devoted to muonic atoms and those of CO-
DATA (Tiesinga et al., 2021).
Having defined the Lamb shift

EL = E(2P1/2)− E(2S1/2) , (8)

we employ an expansion in the fine structure constant
α = e2/(4π) with e the proton charge, to classify all im-
portant contributions and express EL as the sum of many
terms that have a definite power of α or Zα (where Z is
the nuclear charge in units of e) but may depend on the
muon-nuclear mass ratio in a nontrivial way. For this
we assume that the electron vacuum polarization gives a
single power of α (details are explained in Sec. III). All
corrections up to α5 are calculated with the exact mass
dependence, while corrections of order α6 are obtained
using the expansion in the muon-nucleus mass ratio up
to the linear term only because these higher-order cor-
rections are almost negligible.

To obtain the numerical values in Table I, we use the
following constants from the CODATA 2018 adjustment
(Tiesinga et al., 2021):

α−1 = 137.035 999 084(21) , (9)

mµ = 105.658 375 5(23)MeV , (10)

λµ = 1.867 594 306(42) fm , (11)

where mµ is the mass and λµ = 1/mµ the reduced Comp-
ton wavelength of the muon. The conversion constant
that connects the energy and length units is

ℏc = 197.326 980 459 . . . MeV fm . (12)

The relevant mass ratios are

mµ

me
= 206.768 283 0(46) , (13a)

mµ

mp
= 0.112 609 526 4(25) , (13b)
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TABLE I Contributions to the 2P1/2−2S1/2 energy difference EL in meV, with the charge radii rC given in fm. All corrections

larger than 3% of the overall uncertainty are included. Theoretical predictions for EL are EL(theo) = EQED+C r2C +ENS. The
last two rows show the values of rC determined from a comparison of EL(theo) to EL(exp).

Sec. Order Correction µH µD µ3He+ µ4He+

III.A α (Zα)2 eVP(1) 205.007 38 227.634 70 1641.886 2 1665.773 1

III.A α2(Zα)2 eVP(2) 1.658 85 1.838 04 13.084 3 13.276 9

III.A α3(Zα)2 eVP(3) 0.007 52 0.008 42(7) 0.073 0(30) 0.074 0(30)
III.B (Z,Z2, Z3)α5 light-by-light eVP −0.000 89(2) −0.000 96(2) −0.013 4(6) −0.013 6(6)
III.C (Zα)4 recoil 0.057 47 0.067 22 0.126 5 0.295 2

III.D α (Zα)4 relativistic with eVP(1) 0.018 76 0.021 78 0.509 3 0.521 1

III.E α2(Zα)4 relativistic with eVP(2) 0.000 17 0.000 20 0.005 6 0.005 7

III.F α (Zα)4 µSE(1) + µVP(1), LO −0.663 45 −0.769 43 −10.652 5 −10.926 0

III.G α (Zα)5 µSE(1) + µVP(1), NLO −0.004 43 −0.005 18 −0.174 9 −0.179 7

III.H α2(Zα)4 µVP(1) with eVP(1) 0.000 13 0.000 15 0.003 8 0.003 9

III.I α2(Zα)4 µSE(1) with eVP(1) −0.002 54 −0.003 06 −0.062 7 −0.064 6
III.J (Zα)5 recoil −0.044 97 −0.026 60 −0.558 1 −0.433 0

III.K α (Zα)5 recoil with eVP(1) 0.000 14(14) 0.000 09(9) 0.004 9(49) 0.003 9(39)

III.L Z2α (Zα)4 nSE(1) −0.009 92 −0.003 10 −0.084 0 −0.050 5

III.M α2(Zα)4 µF
(2)
1 , µF

(2)
2 , µVP(2) −0.001 58 −0.001 84 −0.031 1 −0.031 9

III.N (Zα)6 pure recoil 0.000 09 0.000 04 0.001 9 0.001 4
III.O α (Zα)5 radiative recoil 0.000 22 0.000 13 0.002 9 0.002 3
III.P α (Zα)4 hVP 0.011 36(27) 0.013 28(32) 0.224 1(53) 0.230 3(54)

III.Q α2(Zα)4 hVP with eVP(1) 0.000 09 0.000 10 0.002 6(1) 0.002 7(1)

IV.A (Zα)4 r2C −5.197 5 r2p −6.073 2 r2d −102.523 r2h −105.322 r2α
IV.B α (Zα)4 eVP(1) with r2C −0.028 2 r2p −0.034 0 r2d −0.851 r2h −0.878 r2α
IV.C α2(Zα)4 eVP(2) with r2C −0.000 2 r2p −0.000 2 r2d −0.009(1) r2h −0.009(1) r2α

V.A (Zα)5 TPE 0.029 2(25) 1.979(20) 16.38(31) 9.76(40)
V.B α2(Zα)4 Coulomb distortion 0.0 −0.261 −1.010 −0.536
V.C (Zα)6 3PE −0.001 3(3) 0.002 2(9) −0.214(214) −0.165(165)

V.D α (Zα)5 eVP(1) with TPE 0.000 6(1) 0.027 5(4) 0.266(24) 0.158(12)

V.E α (Zα)5 µSE(1) + µVP(1) with TPE 0.000 4 0.002 6(3) 0.077(8) 0.059(6)

III EQED point nucleus 206.034 4(3) 228.774 0(3) 1644.348(8) 1668.491(7)
IV C r2C finite size −5.225 9 r2p −6.107 4 r2d −103.383 r2h −106.209 r2α
V ENS nuclear structure 0.028 9(25) 1.750 3(200) 15.499(378) 9.276(433)

EL(exp) experimenta 202.370 6(23) 202.878 5(34) 1258.598(48) 1378.521(48)

rC this review 0.840 60(39) 2.127 58(78) 1.970 07(94) 1.678 6(12)
rC previous worka 0.840 87(39) 2.125 62(78) 1.970 07(94) 1.678 24(83)

a Presented by Antognini et al. (2013b), Pohl et al. (2016), Krauth et al. (2021), and Schuhmann et al. (2023).

mµ

md
= 0.056 332 718 3(13) , (13c)

mµ

mh
= 0.037 622 379 7(8) , (13d)

mµ

mα
=0.028 346 557 7(6) , (13e)

where the subscripts d, h, and α denote the deuteron,
helion (3He nucleus), and α particle (4He nucleus), re-
spectively. Moreover, with µ the reduced mass of the
two-body system,

µ =
mµ

1 +mµ/M
(14)

with M standing for the nuclear mass, we define the ratio

β =
me

Zαµ
, (15)

for which we obtain the following values:

βp = 0.737 383 68 , (16a)

βd = 0.700 086 14 , (16b)

βh = 0.343 842 92 , (16c)

βα = 0.340 769 14 . (16d)

Finally, the nonrelativistic Coulomb wave function ϕ with
nonrelativistic energy E0 is the solution of (H0−E0)ϕ =
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0, with H0 as given by Eq. (3) and E0 = Enl from Eq.
(4). The radial parts of the wave function for the states
of interest are

R20(r) =
(µZ α)3/2√

2
exp

(
−µZ α r

2

)(
1− µZ α r

2

)
,

(17)

R21(r) =
(µZ α)3/2

2
√
6

exp

(
−µZ α r

2

)
(µZ α r) , (18)

and the wave function at the origin is

ϕ2
nl(0) =

R2
nl(0)

4π
=

(µZ α)3

π n3
δl0 . (19)

Note that our choice of electromagnetic units is specified
by the definition of α in terms of e. However, the ex-
pressions for the relevant energies [Eqs. (3) and (4)], the
wave functions [Eqs. (17)–(19)], and the final results for
the energy shifts do not depend on this choice. At the
same time, intermediate quantities such as the photon
propagator may change if one uses different electromag-
netic units.

III. QED CONTRIBUTIONS TO THE LAMB SHIFT

To calculate QED corrections to the energy levels, we
assume at first that the nucleus is pointlike, while the
nuclear size and nuclear structure are considered sepa-
rately in Secs. IV and V. A pointlike nucleus with spin 0
satisfies the Klein-Gordon equation, a nucleus with spin
1/2 satisfies the Dirac equation, and a nucleus with spin
1 satisfies the Proca equation, with the last correspond-
ing to a g factor equal to 1. The radiative corrections
on the nucleus line are included in the nuclear electro-
magnetic form factors and structure functions, with an
exception described in Sec. III.L. As explained in Sec. II,
all corrections up to α5 mµ order are calculated with the
exact muon-nuclear mass ratio, and α6 mµ QED correc-
tions are expanded in the mass ratio. We now start with
the leading QED effects. Since we specialize in the case
of an orbiting muon, from this point on we suppress the
label on the muon mass, denoting it as m to make the
equations more compact.

A. Electron vacuum polarization

The electron vacuum polarization (eVP) (see Fig. 1)
modifies the photon propagator

−gµν

k2
→ − gµν

k2 [1 + ω̄(k2/m2
e)]

, (20)

where k2 = (k0)2− k⃗ 2 is the photon momentum squared.
The sum of one-particle irreducible diagrams ω̄ is ex-
panded in a power series of α/π

ω̄ = ω̄(1) + ω̄(2) + ω̄(3) + . . . , (21)

µ

e

e

e

e

µ µ µ

e

(a) (b) (c) (d)

FIG. 1 Feynman diagrams for the pure QED electric vacuum
polarization contribution to the Lamb shift. (a) Uehling po-
tential. (b) Källen-Sabry potential, reducible two-loop part.
(c), (d) Källen-Sabry potential, irreducible two-loop part.

which results in the following expansion of the photon
propagator:

−gµν

k2
→ −gµν

k2
(1 + ρ(1) + ρ(2) + ρ(3) + . . .) , (22)

where

ρ(1) = − ω̄(1) , (23)

ρ(2) = − ω̄(2) + (ω̄(1))2 , (24)

ρ(3) = − ω̄(3) + 2 ω̄(1) ω̄(2) − (ω̄(1))3 . (25)

Each ρ(i) generates an eVP potential V (i)(r) at k0 = 0

V (i)(r) = −Z α

∫
d3k

(2π)3
4π

k⃗2
ρ(i)(−k⃗ 2) ei k⃗ r⃗ , (26)

and the corresponding corrections to the energy are

E(1) = ⟨V (1)⟩ , (27)

E(2) = ⟨V (2)⟩+
〈
V (1) 1

(E0 −H0)′
V (1)

〉
, (28)

E(3) = ⟨V (3)⟩+ 2
〈
V (2) 1

(E0 −H0)′
V (1)

〉
(29)

+
〈
V (1) 1

(E0 −H0)′
(
V (1) − ⟨V (1)⟩

) 1

(E0 −H0)′
V (1)

〉
,

where the prime in the denominator denotes a subtrac-
tion of the reference state. For example, at the one–loop
level V (1) is

V (1)(r) = −Z α

r

α

π

∫ ∞

4

d(ξ2)

ξ2
e−me ξ r u(ξ2) , (30)

where

u(ξ2) =
1

3

√
1− 4

ξ2

(
1 +

2

ξ2

)
, (31)

and similarly

ω̄(1)(ζ2) =
α

π
ζ2
∫ ∞

4

d(ξ2)
1

ξ2(ξ2 − ζ2)
u(ξ2) . (32)
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Using the radial functions for the 2P and 2S states from
Eqs. (17) and (18), we find that the one-loop vacuum
polarization contribution to the Lamb shift is

E
(1)
L = µ (Z α)2

α

π

∫ ∞

4

d(ξ2)

ξ2
u(ξ2)

(β ξ)2

2 (1 + β ξ)4
, (33)

with the numerical results presented in Table I. All of
these one-, two-, and three-loop eVP contributions have
already been obtained in the literature; see Korzinin et al.
(2013) and references therein. While the two-loop vac-
uum polarization (VP) is also known analytically (Källen
and Sabry, 1955), the three-loop VP is known only nu-
merically. It was first calculated for µH by Kinoshita and
Nio (1999) and later corrected by Ivanov et al. (2009) as
well as by Kinoshita and Nio (2009). For other muonic
atoms, Korzinin et al. (2013) obtained approximate val-
ues, and the numerical values in Table I are taken from
Table I of their work.

B. Light-by-light electron vacuum polarization

µ µ µ

e e e

(a) (b) (c)

FIG. 2 Feynman diagrams for the light-by-light vacuum po-
larization contribution to the Lamb-shift. (a) Wichmann-
Kroll correction. (b) Virtual Delbrück scattering correction.
(c) Inverted Wichmann-Kroll correction.

This contribution comes from a closed electron loop
with four photon legs. These legs can be attached in
all possible ways to the muon and the nucleus lines; see
Fig. 2. There are three types of diagrams with one, two,
or three legs attached to the muon and the remaining
legs to the nucleus. Those with three legs attached to
the nucleus are called the Wichmann-Kroll correction in
the literature, those with two legs on each line are called
the virtual Delbrück scattering correction, and those with
one leg on the nucleus side we call here the inverted
Wichmann-Kroll correction. They were all calculated by
Borie and Rinker (1978); Karshenboim et al. (2010), and
Korzinin et al. (2013) (“LbL” in their Table I). The over-
all contribution is of the same order in α as the three-loop
eVP but is about 10 times smaller.

C. Leading recoil ∼ (Z α)4

This is the leading-order nuclear recoil contribution.
The nonrelativistic energies of the 2S and 2P states are

the same, so the (Z α)2 recoil cancels out in the differ-
ence. The leading (Z α)4 relativistic correction is almost
the same; the difference is quadratic in the muon-nucleus
mass ratio. It is derived starting with the expectation
value of the Breit-Pauli Hamiltonian H(4) (Bethe and
Salpeter, 1977) with the nonrelativistic wave function,
namely,

δE = ⟨H(4)⟩ , (34)

where

H(4) = − p4

8

(
1

m3
+

1

M3

)
− Z α

2mM
pi
(
δij

r
+

ri rj

r3

)
pj

+
( 1

4m2
+

1

2mM

) Z α

r3
r⃗ × p⃗ · σ⃗

+
π Z α

2

( 1

m2
+

δI
M2

+
4

3
r2C

)
δ(3)(r⃗) , (35)

and where δI = 1 for I = 1/2, and δI = 0 for I = 0 and 1
by convention (Pachucki and Karshenboim, 1995). This
results from the assumption that the scalar particle sat-
isfies the Klein-Gordon equation and the vector particle
satisfies the Proca equation. The Hamiltonian in Eq. (35)
includes the finite nuclear size correction, the treatment
of which is deferred to Sec. IV; see Eq. (72). Without
the finite size term, Eq. (35) yields for the 2P1/2 − 2S1/2

energy difference (Jentschura, 2011b)

δEL =


(Zα)4µ3

48M2
for δI = 1 ,

(Zα)4µ3

12M2
for δI = 0 ,

(36)

with the numerical results presented in Table I.

D. Relativistic correction with the one-loop electron
vacuum polarization

This is a contribution of the order α (Z α)4 that com-
bines the leading relativistic corrections with the one-
loop eVP. To derive it, we construct the photon prop-
agator Gµν in the modified Coulomb gauge. What we
mean is the following: We require the time component
G00 of the propagator to coincide with the Coulomb po-
tential including the vacuum polarization charge density,
namely, G00 = ρ(k⃗2)/k⃗2. The transverse part of the
propagator has to be of the form (Pachucki and Yerokhin,
2023)

Gij(k) =
ρ(−k2)

k2

(
δij − ki kj

(k0)2

)
− ki kj

(k0)2
ρ(k⃗2)

k⃗2
(37)

in order to be equivalent to the well-known propagator
in the Feynman gauge

Gµσ
F (k) = −gµσ

k2
ρ(−k2) . (38)
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For the evaluation of relativistic corrections with eVP,
one needs the coordinate-space representation of the
propagator at k0 = 0, which is

G00(r⃗) =

∫
d3k

(2π)3
eik⃗·r⃗

ρ(k⃗2)

k⃗2
, (39)

Gij(r⃗) = − 1

2

(
δij − rirj

r

d

dr

)
G00(r⃗). (40)

In the case of ρ(k⃗2) = 1 it becomes

G00(r⃗) =
1

4π r
, (41)

Gij(r⃗) = − 1

8π

(
δij

r
+

ri rj

r3

)
, (42)

the standard Coulomb gauge propagator at k0 = 0. One
can now repeat the derivation of the Breit-Pauli Hamil-
tonian H(4)(V ), as done by Veitia and Pachucki (2004)
using the aforementioned modified Coulomb propagator,

H(4)(V ) =− p4

8

(
1

m3
+

1

M3

)
+

1

8

(
1

m2
+

δI
M2

)
∇2V

+

(
1

4m2
+

1

2mM

)
V ′

r
L⃗ · σ⃗

+
1

2mM

[
∇2

(
V − 1

4
(r V )′

)
+

V ′

r
L⃗2

+
p2

2
(V − r V ′) + (V − r V ′)

p2

2

]
, (43)

and obtain the correction

δE = ⟨H(4)(V (1))⟩+ 2

〈
V (1) 1

(E0 −H0)′
H(4)

〉
, (44)

where H(4) = H(4)(−Z α/r). Equation (44) was first de-
rived and calculated for µH by Pachucki (1996), but with
some mistakes. We take the numerical values from Table
I of Jentschura (2011b), who corrected these mistakes
and calculated Eq. (44) for all nuclei of interest. The
use of Gij(r⃗) from Eq. (40) will allow for future non-
perturbative calculations of eVP corrections by solving
the Schrödinger or Dirac equation numerically, which is
much more efficient for heavier elements.

E. Relativistic correction with the two-loop electron
vacuum polarization

This correction is of the order α2 (Z α)4 and can be
obtained as in the one-loop case in Sec. III.D. However,
Korzinin et al. (2013) calculated it numerically using a
slightly different approach that employed the Dirac equa-
tion. The numerical values (see their Table VI) are about
1% of the one-loop case and are shown in Table I.

F. Leading muon self-energy and vacuum polarization

For the calculation of the one-loop muon self-energy
µSE(1) and the muon vacuum polarization µVP(1) cor-
rections to the Lamb shift, we rewrite the corresponding
formula known for electronic hydrogen,

E(2S1/2) =
1

8
m

α

π
(Z α)4

( µ

m

)3 [10
9

− 4

15

− 4

3
ln k0(2S) +

4

3
ln

(
m

µ (Z α)2

)]
, (45)

E(2P1/2) =
1

8
m

α

π
(Z α)4

( µ

m

)3[
−1

6

m

µ
− 4

3
ln k0(2P )

]
,

(46)

where ln k0(n, l) is the Bethe logarithm,

ln k0(2S) = 2.811 769 893 1 . . . , (47)

ln k0(2P ) = −0.030 016 708 9 . . . , (48)

which is the same for electronic and for muonic hydro-
genlike atoms.

G. Next-to-leading muon self-energy and vacuum
polarization

This is a two-photon exchange contribution accompa-
nied by the one-loop self-energy µSE(1) or vacuum po-
larization µVP(1). For a point nucleus it is given by a
contact interaction and thus has the same form for elec-
tronic and muonic hydrogenlike atoms, namely (Eides
et al., 2001),

δE(n, l) =
α (Z α)5

π n3

µ3

m2
4π

(
139

128
+

5

192
− ln 2

2

)
δl0 ,

(49)

where the second term in parentheses comes from µVP(1).
There is a nuclear recoil correction to this formula that is
considered in Sec. III.O, and there is also a finite nuclear
size correction that is considered in Sec. V.E.

H. Combined muon and electron vacuum polarizations

Correction to the energy due to µVP(1) can be repre-
sented as a contact interaction,

δE = − 4

15m2
α (Z α) ⟨δ(3)(r)⟩ = − 1

15m2

α

π
⟨∇2V ⟩,

(50)

where V = −Z α/r. Combining this contact interaction
with the perturbation due to eVP(1), one obtains

δE = − 2

15m2

α

π

[
⟨∇2V (1)⟩+ 4π Zαϕ(0) δϕ(0)

]
, (51)
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where

|δϕ⟩ = 1

(E0 −H0)′
V (1)|ϕ⟩ . (52)

This correction was obtained by Eides et al. (2001),
among many others. Particular values for the considered
muonic atoms were taken from Korzinin et al. (2013).

I. Muon self-energy combined with the electron vacuum
polarization

This is similar to the previous correction, with µVP(1)

replaced by µSE(1). It is the one-loop muon self-energy
in the Coulomb potential with one eVP(1) insertion. For
its derivation we generalize Eqs. (45) and (46) to an ar-
bitrary potential

δE =
α

4πm2
⟨ϕ|∇2(V )|ϕ⟩

[
10

9
+

4

3
ln

(
m

µ (Z α)2

)]
+

2α

3πm2
⟨ϕ|∇⃗ (H − E) ln

(2 (H − E)

µ (Z α)2

)
∇⃗ |ϕ⟩

+
α

4πmµ
⟨ϕ|V

′

r
L⃗ · σ⃗|ϕ⟩ , (53)

where H is the nonrelativistic Hamiltonian with the po-
tential V and eigenenergy E. The perturbation due
to V (1) was first estimated by Pachucki (1996). The
complete calculation including the perturbed Bethe loga-
rithm was performed by Jentschura and Wundt (2011) in
their Eqs. (29a)-(29d), and in Table I we use their results.

J. Recoil ∼ (Z α)5

This is the (Z α)5 contribution to the energy of two
bound point particles, the muon and the nucleus, without
any radiative corrections. It vanishes in the limit of a
heavy nucleus; therefore, we call it a recoil correction. It
depends not only on the muon-nucleus mass ratio but also
on the value of the nuclear spin I. The explicit formula
was derived originally for the spin I = 1/2 nucleus by
Erickson (1977) and Salpeter (1952); this formula was
valid for an arbitrary mass ratio. Here we extend this
formula to the case in which one of the particles has spin
I = 0 or I = 1 using derivations presented in Sec. V.A.
The result is

E(n, l) =
µ3

mM

(Z α)5

π n3

{
2

3
δl0 ln

( 1

Z α

)
− 8

3
ln k0(n, l)

− 1

9
δl0 −

7

3
an − 2 δl0 ln

(
1 +

m

M

)
+

m2

M2 −m2
ln

(
M

m

)
δl0 [2 + I (2 I − 1)]

}
,

(54)

where

an = − 2

[
ln
( 2
n

)
+
(
1 +

1

2
+ . . .+

1

n

)
+ 1− 1

2n

]
δl0

+
1− δl0

l (l + 1) (2 l + 1)
. (55)

It agrees with that of Shelyuto et al. (2018, 2019) for
I = 0 and I = 1 nuclei under the assumption that g = 1.
For other values of g, this recoil correction would have
a logarithmic UV divergence. Numerical results using
Eq. (54) for all nuclei are shown in Table I.

K. Recoil with the electron vacuum polarization

This is the eVP(1) correction to the (Z α)5 contribution
in Eq. (54). It is quite difficult to calculate; in fact, it was
obtained only by Jentschura and Wundt (2011) and only
in the logarithmic approximation. The results shown in
Table I are numerically small and suppressed with respect
to the leading recoil correction given in Eq. (54) by a
factor of α. To account for nonlogarithmic terms, we
assume a conservative 100% uncertainty.

L. Nuclear self-energy

If we assume a pointlike nucleus with spin 1/2, the
contribution of the nuclear self–energy for an arbitrary
hydrogenic state is

E(n, l) =
Z (Z α)5 µ3

π n3 M2

[(
10

9
+

4

3
ln

M

µ (Z α)2

)
δl0

− 4

3
ln k0(n, l)

]
. (56)

For a nonpointlike nucleus there is a finite size correction.
The problem is that the nuclear self-energy is modified
by, and modifies as well, the finite size effect. To incor-
porate the correction (56) unambiguously, we must pre-
cisely specify the nuclear mean square charge radius. The
usual definition through the Sachs electric form factor

r2C
6

=
∂GE(q

2)

∂(q2)

∣∣∣∣
q2=0

(57)

is not correct at our precision level, because GE cannot
be uniquely defined in the presence of electromagnetic
interactions. Following Pachucki (1995) we propose a dif-
ferent definition using the forward scattering amplitude
described by

Tµν(q) = −i

∫
d4x ei q x ⟨t|T jµ(x) jν(0)|t⟩ , (58)

where t = (M, 0, 0, 0). We consider the behavior of the
dominant T 00 component at small q2 and p2 − M2 =
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FIG. 3 Feynman diagrams for the radiative corrections to the
forward Compton scattering off a nucleus.

(t+q)2−M2. For a pointlike particle without self-energy
corrections, one finds that

T 00 = Tr

[
γ0 1

/p−M
γ0 (γ0 + I)

4

]
+ (q → −q)

≈ 2M

p2 −M2
+ (q → −q) . (59)

For a finite size particle without self-energy corrections

γµ → Γµ = γµ F1(q
2) + i

σµν

2M
qν F2(q

2) , (60)

T 00 acquires a correction

∆T 00 ≈ 2M

p2 −M2
[G2

E(q
2)− 1] + (q → −q)

≈ 2M

p2 −M2
q2

r2C
3

+ (q → −q) , (61)

where GE = F1+
q2

4M2 F2. The self-energy corrections for
a pointlike particle coming from the diagrams in Fig. 3
are (Pachucki, 1995)

∆T 00 =
Z2 α

πM

q2

p2 −M2

(
10

9
+

4

3
ln

M2

M2 − p2

)
+(q → −q) .

(62)
We thus define r2C using the following equation, which
describes the low-energy behavior of the correction to
the forward scattering amplitude of a pointlike particle:

∆T 00 =
q2 M

p2 −M2

(
4Z2α

3πM2
ln

M2

M2 − p2
+

2

3
r2C

)
+ (q → −q) . (63)

We expect that for any nucleus the aforementioned log-
arithmic term will be the same because it is related only
to the fact that the nucleus has a charge; it does not
depend on other details like its spin. There is an arbi-
trariness in the choice of the constant term, i.e., what
belongs to the charge radius and what belongs to the nu-
clear self-energy. The proposed definition separates only
the logarithmic term from the charge radius; thus, the
associated correction to the energy has the form

E(n, l) =
2

3n3
(Z α)4 µ3 r2C δl0

+
4Z (Z α)5

3π n3

µ3

M2

[
ln

(
M

µ (Z α)2

)
δl0 − ln k0(n, l)

]
,

(64)

where the correction for P states beyond ln k0(n, l) goes
into the nuclear magnetic moment. The same formula
for the nuclear self-energy will be assumed for all nuclei,
and numerical results coming from the second line of Eq.
(64) are presented in Table I.

M. Muon two-loop form factors and vacuum polarization

This correction comes from the muon two-loop form
factors and the two-loop vacuum polarization µVP(2):

E(nS1/2) =
µ3

m2

(α
π

)2 (Z α)4

n3

(
4F ′

1(0) + F2(0)−
82

81

)
,

(65)

E(nP1/2) =
µ2

m

(α
π

)2 (Z α)4

n3

(
−1

3

)
F2(0) , (66)

where the muon two-loop form factors are (Barbieri et al.,
1973)

F ′
1(0) = − 3ζ(3)

4
− 4819

5184
− 49π2

432
+

1

2
π2 ln 2

+

[
1

9
ln2

m

me
− 29

108
ln

m

me
+

π2

54
+

395

1296
+O

(me

m

)]
(67)

and

F2(0) =
3ζ(3)

4
+

197

144
+

π2

12
− 1

2
π2 ln 2

+

[
1

3
ln

m

me
− 25

36
+O

(me

m

)]
. (68)

The terms in square brackets in Eqs. (67) and (68) come
from the closed electron loop and thus are dominant. Nu-
merical results for all muonic atoms of interest are pre-
sented in Table I.

N. Pure recoil ∼ (Z α)6

The (Z α)6 contribution to the energy of a bound sys-
tem of two particles is expanded in the mass ratio m/M .
The nonrecoil term coincides with the Dirac energy and
thus vanishes in the 2P1/2 − 2S1/2 difference. The lead-
ing term is linear in the mass ratio and is given by
(Jentschura and Pachucki, 1996; Pachucki and Grotch,
1995)

δEL = −m2

M

(Z α)6

8

(
1

3
+ 4 ln 2− 7

2

)
, (69)

which results in a relatively small correction; see Table I.
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O. Radiative recoil ∼ α (Z α)5

The α (Z α)5 contribution to the energy is given by
a contact interaction and is thus proportional to ϕ2(0).
We expand the coefficient in powers of the muon-nucleus
mass ratio m/M . The nonrecoil term was already ac-
counted for in Sec. III.G; the next term in the mass ratio
expansion is the radiative recoil correction (Eides et al.,
2001; Pachucki, 1995),

δEL =
µ3

mM

α (Z α)5

8
1.364 49 , (70)

which includes µSE(1) and µVP(1).

P. Hadronic vacuum polarization

To estimate the effect of the hadronic vacuum polar-
ization (hVP), we assume “the most realistic value” ac-
cording to Karshenboim and Shelyuto (2021) (“Scatter”
in their Table 4). Using as a reference the energy shift
due to µVP(1) [the second term in Eq. (45)], we write the
hVP contribution as

E(n, l) =
µ3

m2

α

π

(Z α)4

n3

(
− 4

15

)
γhad δl0 . (71)

Equation (71) differs from the µVP(1) term by a factor
of γhad = 0.6746(160), thus giving an appreciable effect
that should be included in the same way in muonic and
electronic atoms to obtain consistent nuclear charge radii.
The corresponding numerical values are shown in Table I.

Q. Combined electron and hadronic vacuum polarization

We represent this correction as the aforementioned co-
efficient γhad times the correction due to µVP(1) com-
bined with eVP(1) from Sec. III.H.

IV. FINITE NUCLEAR SIZE CONTRIBUTION

All corrections in this section are proportional to the
mean square charge radius and thus have the form C r2C .

A. Leading finite size r2
C

The definition of the rms charge radius r2C depends on
the nuclear spin and, in particular, there are different
definitions for a spin 1 particle, such as the deuteron, as
discussed by Jentschura (2011a). For a particle with spin
I and mass M , r2C can be defined through the effective
interaction with the electromagnetic field,

δH = eA0 − e

(
r2C
6

+
δI

8M2

)
∇⃗ · E⃗

−e

2

Q

I (2 I − 1)
(Ii Ij)(2) ∇jEi − µI

I
I⃗ · B⃗ , (72)

where µI and Q are the magnetic dipole and electric
quadrupole moments, and the Darwin-Foldy term δI has
been defined after Eq. (35). Namely, for a scalar particle
δ0 = 0, and for a spin-1/2 particle the Dirac equation
gives δ1/2 = 1. For a vector particle, we assume that the
charge radius is defined with respect to the Proca par-
ticle, namely, the point vector particle with g = 1 and
Q = 0, and this gives δ1 = 0 (Pachucki and Karshenboim,
1995). This convention coincides with the definition em-
ployed in nuclear physics (Filin et al., 2021), and affects
the relativistic recoil correction (see Sec. III.C), while the
finite nuclear size correction is

EFNS(n, l) =
2π

3
Z αϕ2(0) r2C =

2

3n3
(Zα)4 µ3 r2C δl0.

(73)
Apart from the spin dependence, the nuclear self-energy
affects the definition of rC . This is described in Sec. III.L,
where following Pachucki (1995) we propose using the
forward two-photon exchange amplitude for the precise
definition of the nuclear charge radius.

B. One-loop electron vacuum polarization with r2
C

(a) (b)

e

µ µ

e

FIG. 4 One-loop electron vacuum polarization corrections to
the nuclear finite size. (a) Photon propagator correction. (b)
Wave function correction.

The leading QED correction to the finite size contri-
bution is due to the one-loop eVP and is described by
two terms (Pachucki, 1996), corresponding to the two di-
agrams in Fig. 4,

δEFNS =
r2C
6

[
⟨∇2V (1)⟩+ 8π Zαϕ(0) δϕ(0)

]
. (74)

The correction is proportional to r2C , and the coefficient
is presented in Table I.

C. Two-loop electron vacuum polarization with r2
C

This is a correction similar to the previous one but is
suppressed by an additional factor of α. Thus, it is al-
most negligible. It was calculated by Martynenko et al.
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(2014) for µD in their Eqs. (30)–(32), and by Krutov
et al. (2015) for µHe+ (items 18 and 19 in their Table
I). Because they neglected third-order perturbation the-
ory diagrams, we have added a conservative uncertainty
of 10% to their results. Finally, the result for µH was
obtained by rescaling it from µD.

V. NUCLEAR STRUCTURE CONTRIBUTIONS

The nuclear structure contributions beyond the finite
nuclear size are expanded in powers of the fine struc-
ture constant α, as with all other corrections. We call
the leading term of the order of (Z α)5 the two-photon
exchange (TPE). There are several corrections of higher
order in α, which are all considered in separate sections.
Moreover, we assume that the possible radiative correc-
tions on the nucleus line are all included in ETPE, with
the exception of the leading nuclear self-energy consid-
ered in Sec. III.L.

A. Two-photon exchange

The (Z α)5 TPE contribution in a muonic atom with
a nucleus of spin I is given by (Pachucki, 1999)

ETPE =− (Z e2)2

2
ϕ2(0)

∫
s

d4q

(2π)4 i

1

q4

×
[
Tµν − tµν(I,M)

]
tµν(m)

=− 2 (Z e2)2 ϕ2(0)
m

M

∫
s

d4q

(2π)4 i

× [T2 − t2(I,M)](q2 − ν2)− [T1 − t1(I,M)] (q2 + 2 ν2)

q4 (q4 − 4m2ν2)
,

(75)

where Tµν is the forward virtual Compton scattering am-
plitude, defined in Eq. (58), that can be expressed in
terms of two Lorentz invariant functions T1(ν,−q2) and
T2(ν,−q2)

Tµν =−
(
gµν − qµ qν

q2

)
T1

M

+

(
tµ

M
− ν

q2
qµ
)(

tν

M
− ν

q2
qν
)

T2

M
(76)

and where ν = q0 is the lab-frame photon energy. To
be consistent with the (Z α)5 recoil correction in Eq.
(54), we assume in Eq. (75) that tµν(I,M) corresponds
to the pointlike nucleus of spin I. For I = 1/2, tµν(M) ≡
tµν(1/2,M), and

tµν(M) = Tr

[
γµ 1

/p−M
γν γ0 + I

4

]
+ (q → −q) , (77)

with p = t + q. From Eq. (77) one obtains for a point
Dirac particle

t1(1/2,M) = − 4M2 ν2

q4 − 4M2 ν2
, (78)

t2(1/2,M) =
4M2 q2

q4 − 4M2 ν2
. (79)

For a point scalar particle one obtains

t1(0,M) = 1 , (80)

t2(0,M) =
4M2 q2

q4 − 4M2 ν2
, (81)

and for a Proca vector particle (Lee and Yang, 1962)

t1(1,M) = −2 ν2 (6M2 − q2)− q4

3 (q4 − 4M2 ν2)
, (82)

t2(1,M) =
2 q2(6M2 − q2)

3 (q4 − 4M2 ν2)
. (83)

The subscript s in the integral in Eq. (75) denotes an
additional subtraction of a 1/q5 singularity, which has
to be proportional to r2C , provided the subtraction of a
point nucleus with an appropriate spin is assumed.
We now make a digression regarding the pure recoil

(Z α)5 correction. It was originally calculated for the
point spin-1/2 nucleus. The difference between an arbi-
trary spin I and a spin-1/2 point nuclei of the same mass
is given by

δE =− 2 (Z e2)2 ϕ2(0)
m

M

∫
s

d4q

(2π)4 i

× [t2(I)− t2(1/2)](q
2 − ν2)− [t1(I)− t1(1/2)] (q

2 + 2 ν2)

q4 (q4 − 4m2ν2)
,

(84)

using the aforementioned t1,2 functions with the mass
argument implicit. This δE gives the term proportional
to I (2 I−1) in Eq. (54), which generalizes the pure recoil
correction to the case of spin I = 0, 1 point nuclei, while
for higher spins this integral diverges.
We now make a second digression. Tµν is a complete

forward virtual Compton scattering amplitude and thus
includes radiative corrections. Consequently, it has a
ln(M2 − p2) singularity at the threshold; see Eq. (63)
with p = t + q and t = (M, 0⃗). This singularity comes
from the nuclear self-energy, and thus the correspond-
ing ln q/q5 singularity should also be subtracted out in
Eq. (84). The last subtraction is not mentioned in any
calculation of the TPE correction from the scattering am-
plitudes, but it should because Tµν on the nucleus line
is a complete amplitude. Moreover, the presence of the
logarithmic singularity at threshold indicates the lack of
the possibility to separate Tµν into elastic and inelas-
tic contributions. However, we neglect this singularity
and disregard the associated difficulties in what follows
because the related effect is negligible at the current pre-
cision level.
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1. TPE in µH

Returning to the calculation of TPE in Eq. (75), we
find that it is conventionally split into a Born and a po-
larizability part,

ETPE(µH) = EBorn + Epol . (85)

The Born contribution

EBorn = EFri + Erec (86)

in the infinite nuclear mass limit is given by

EFri = − π

3
ϕ2(0) (Z α)2 µ r3F , (87)

where rF is the Friar radius

r3F =

∫
d3r1

∫
d3r2 ρ(r1) ρ(r2) |r⃗1 − r⃗2|3 , (88)

and the remainder is given by the small recoil correction
Erec. The presence of µ instead of m in Eq. (87) is a
matter of convention, and this affects the definition of
the TPE recoil correction. For the polarizability part

Epol = Esub + Einel, (89)

one can use dispersion relations to express T1 and T2 in
terms of proton structure functions measured in electron-
proton scattering. In the case of T1, a once-subtracted
dispersion relation is needed, giving rise to the subtrac-
tion function T1(0,−q2), which cannot be measured di-
rectly, but has to be modeled or predicted from chiral per-
turbation theory (χPT), covariant (Alarcon et al., 2014;
Lensky et al., 2018), or heavy baryon (Birse and McGov-
ern, 2012; Peset and Pineda, 2014, 2015a,b). The inelas-
tic structure functions needed for the dispersive evalua-
tion are known only for the proton, deuteron, and helion,
although not in the entire kinematic region, especially for
the deuteron and helion; thus, a different approach will
have to be employed for nuclei other than the proton.
In the case of the 2S state of µH, the Friar contribution

EFri = −0.021 1(2) meV (90)

is obtained using the recent Friar radius r3F(p) =
2.310(26) fm3 from Lin et al. (2022). Their work is a
dispersive fit of nucleon form factors based on data in
both the spacelike and timelike regions. Note that the
dispersive analyses of the proton form factor (Belushkin
et al., 2007; Lorenz et al., 2015; Mergell et al., 1996) pre-
dicted the smaller proton charge radius rp = 0.84 fm
before the µH Lamb shift measurement. These analyses
have improved since then, taking into consideration new
data from, for example, the Mainz (Bernauer et al., 2010)
and Jefferson Lab (JLab) (Xiong et al., 2019) electron-
proton scattering measurements. For a recent review of

the history and the theoretical framework of the disper-
sive form factor analyses, see Lin et al. (2021).
The recoil correction was considered by Karshenboim

et al. (2015), who obtained

Erec = 0.000 03(5) meV. (91)

A similar result recently obtained by Tomalak (2022)

Erec = 0.000 05(1) meV, (92)

was based on the proton form factor parametrization of
Borah et al. (2020), who used the small proton charge
radius from the µH Lamb shift as a constraint.
In total the Born contribution amounts to

EBorn = −0.021 1(2)meV. (93)

This prediction not only is more precise but also differs
from older values: EBorn = −0.018 6(16)meV (Toma-
lak, 2019) and EBorn = −0.024 7(16)meV (Birse and Mc-
Govern, 2012). To explain this, we note that Birse and
McGovern (2012) and Tomalak (2019) used proton form
factor parametrizations that corresponded to a large rp.
Since the value of the latter is correlated with the re-
sulting EBorn, a consistent TPE evaluation should use a
form factor parametrization that results in a small rp, as
argued by Karshenboim (2014). While Tomalak (2019)
used a procedure suggested by Karshenboim (2014) and
Karshenboim et al. (2015) to correct for the large radius
of the A1 parametrization (Bernauer et al., 2010, 2014),
the comparison to Eq. (93) indicates that the suggested
correction might not be sufficiently accurate.
The subtraction contribution was considered in various

works (Birse and McGovern, 2012; Gorchtein et al., 2013;
Lensky et al., 2018; Peset and Pineda, 2014; Tomalak and
Vanderhaeghen, 2016), and we take the value

Esub = 0.004 6(24) meV (94)

from the most recent prediction in the framework of χPT
(Lensky et al., 2018). As prevously mentioned, the q2

dependence of the T1(0,−q2) subtraction function, which
is related to the magnetic dipole polarizability, has not
been experimentally constrained, and its uncertainty is
the largest among all contributions to the µH Lamb shift.
Last, for the inelastic contribution

Einel = −0.012 7(5) meV (95)

we take a value of Carlson and Vanderhaeghen (2011).
As a final result for the TPE with the subtracted point
proton, we obtain

ETPE(µH, 2S) = −0.029 2(25) meV , (96)

with the uncertainty dominated by the one from the sub-
traction term. Note that, given the present uncertainties
of the Friar and polarizability contributions, the recoil
correction is negligible in the case of µH.
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2. TPE in µD

In the case of µD, the first data-driven dispersive
evaluation of the TPE correction was performed by
Carlson et al. (2014) with the result ETPE(µD, 2S) =
−2.011(740) meV, but with an inconsistent subtraction
of the point deuteron tµν . They set GC = 1 and
GM = GQ = 0 for a point deuteron, whereas they should
have set GC = GM = 1 and GQ = 0, which would cor-
respond to G1 = G2 = 1 and G3 = 0 (in their notation)
because the (Z α)5 recoil correction in Eq. (54) was cal-
culated assuming these values for the elastic form factors
of the point deuteron. The same formalism as was used
by Carlson et al. (2014) was employed in several more
recent works (Acharya et al., 2021; Lensky et al., 2022b).
To make it consistent with Eq. (54), it is sufficient to
modify the elastic contribution of Carlson et al. (2014),
as shown in Appendix A. The numerical effect of this
modification turns out to be small (∼ −0.000 04 meV)
and thus can be neglected.

A remark regarding the dispersion relation formalism is
in order. The subtraction function T1(0,−q2) is treated
differently in composite nuclei than in µH. In a data-
driven approach, the dominant purely nuclear response
in electron-nucleus scattering can be separated from the
response of the individual nucleons, leading to a finite-
energy sum rule for the nuclear part of T1(0,−q2), as
shown by Gorchtein (2015). As an alternative to using
data, one often utilizes the nuclear response functions
calculated from a theory of nuclear interactions. In this
case, there is also as a rule no need for a subtraction, at
least when the theory does not yet resolve the structure of
the individual nucleons. That said, the small subtraction
contribution due to the individual nucleons inherits all of
the difficulties of the µH case.

Most recent works use chiral effective field theories
(χEFT) of nuclear interactions (Epelbaum et al., 2009,
2020; Hammer et al., 2020; Machleidt and Entem, 2011)
to evaluate the deuteron structure functions instead of
using experimental input, due to the lack of quality data;
see the discussion given by Acharya et al. (2021). Lensky
et al. (2022a,b) analyzed pionless effective field theory
(/πEFT) and χEFT predictions and pointed out that the
deuteron charge form factor parametrization by the JLab
t20 Collaboration (Abbott et al., 2000) does not describe
the deuteron well enough in the low q2 region, i.e., in the
region without data. The latter parametrization was em-
ployed by Carlson et al. (2014) and Acharya et al. (2021)
to evaluate the elastic TPE. Accordingly, we update the
elastic part of Acharya et al. (2021) by taking the value
−0.4456(18) meV from Table II of Lensky et al. (2022b),
a result stemming from a χEFT calculation of GC (Filin
et al., 2021). For the inelastic part of Acharya et al.
(2021) we take the arithmetic mean of their two results
−(1.511 + 1.519)/2 meV and finally add their hadronic

contribution −0.028 meV to obtain

ETPE(µD, 2S) = [−0.446(2)− 1.515(15)− 0.028(2)] meV

= − 1.990(15) meV . (97)

The most recent calculation by Lensky et al. (2022a,b)
used /πEFT amplitudes for the forward virtual Compton
scattering off the deuteron (Lensky et al., 2021) to obtain
a similar sum of three contributions

ETPE(µD, 2S) = [−0.446(8)− 1.509(16)− 0.032(6)] meV

= − 1.987(20) meV , (98)

which is in perfect agreement with Eq. (97). Another
recent calculation (Emmons et al., 2021) used /πEFT
with pointlike nucleons to evaluate the deuteron inelastic
structure functions. This calculation obtained the inelas-
tic part of ETPE [−1.574(80) meV] with a larger central
value (as a result of treating the nucleons as pointlike)
but also a larger uncertainty, making it consistent with
the other evaluations.
Regarding the direct calculation of ETPE from the nu-

clear theory, one can use an effective Hamiltonian, ei-
ther phenomenological or rooted in χEFT, and derive
the TPE correction. The first such calculations were
performed by Leidemann and Rosenfelder (1995). Later,
a much improved method was introduced in Pachucki
(2011) and expanded on by Hernandez et al. (2014) and
Pachucki and Wienczek (2015), and Ji et al. (2018), re-
sulting in the following formula for the TPE contribution:

ETPE = Enucl1 + Enucl2 + Epol + . . . , (99)

Enucl1 = − π

3
mα2ϕ2(0)

[
Z R3

F (p) + (A− Z)R3
F (n)

]
,

(100)

Enucl2 = − π

3
mα2ϕ2(0)

Z∑
i,j=1

⟨ϕN ||r⃗i − r⃗j |3|ϕN ⟩ , (101)

Epol = − 4π α2

3
ϕ2(0)

∫
ET

dE

√
2µ

E
|⟨ϕN |d⃗ |E⟩|2,

(102)

where the Coulomb distortion correction is considered
separately in Sec. V.B since it is of (Z α)6 order. Here
Enucl1 is a sum of TPE contributions from each individ-
ual nucleon, Enucl2 is due to TPE with different nucleons,
and Epol is the leading nuclear polarizability correction
originating from the low-energy TPE and is given by the
matrix elements of the electric dipole operator e d⃗ be-
tween the nuclear ground state |ϕN ⟩ and excited states
|E⟩, with ET the lowest excitation energy. Note that Eq.
(100) is proportional to m instead of µ, thus differing
from the convention in Eq. (87). The parameters RF (p)
and RF (n) are the effective proton and neutron radii,
which include the complete TPE with the corresponding
nucleon. The value for the proton is obtained from ETPE
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in µH,

R3
F (p) = 2.876(246) fm3, (103)

and for the neutron the value was calculated by Tomalak
(2019),

R3
F (n) = 0.712(223) fm3. (104)

There are many more small corrections in the effective
Hamiltonian approach for the calculation of the TPE con-
tribution in µD; they are denoted by dots in Eq. (99), and
were separately calculated by two groups: (i) Pachucki
(2011) and Pachucki and Wienczek (2015) and (ii) Her-
nandez et al. (2018, 2019, 2014) and Ji et al. (2018).
Using the aforementioned values of RF (p) and RF (n),
we update the calculation of Pachucki and Wienczek
(2015) by changing the single-nucleon contributions [see
Eqs. (45) and (46) in their paper] to δPE = −0.034(3)
meV and δNE = −0.008(3) meV. Their total ETPE thus
becomes

ETPE(µD, 2S) = −1.961(20) meV. (105)

Considering more elaborate calculations by the second
group (Ji et al., 2018), we note that the point deuteron
(Z α)5 recoil correction was not properly subtracted but
do not expect this to be significant. Therefore, we take
their δATPE = [−1.675(15) − 0.262] meV (with the sub-
tracted Coulomb distortion) and add the nucleon contri-
bution δNTPE = δPE + δNE to obtain

ETPE(µD, 2S) = − 1.979(15) meV, (106)

which is in agreement with the updated value in Eq.
(105). As a final value we take the mean value of Eqs.
(97), (98), (105), and (106) and keep the largest uncer-
tainty

ETPE(µD, 2S) = −1.979(20) meV (107)

to account for possible systematic uncertainties in all of
these determinations; see the discussion in Sec. VI.

3. TPE in µHe+

A calculation of ETPE in µ3He+ using the experi-
mentally measured inelastic structure functions was per-
formed by Carlson et al. (2017), but with large uncer-
tainties. Much greater accuracy is achieved by direct
nuclear structure calculations using Eqs. (99)–(102). In
the case of µ3He+ and µ4He+, calculations of ETPE were
performed by Ji et al. (2018, 2013) and Nevo Dinur
et al. (2016). We start with their results, which were
denoted by δTPE by Ji et al. (2018) in their Table 7, sub-

tract the Coulomb distortion corrections δ
(0)
C (µ3He+) =

1.010 meV and δ
(0)
C (µ4He+) = 0.536 meV, and up-

date the single-nucleon contributions using Eqs. (103)

and (104): δNZem+ δNpol = −0.647(55) meV for µ3He+ and

δNZem + δNpol = −0.738(63) meV for µ4He+. This gives

ETPE(µ
3He+, 2S) =− 16.38(31) meV, (108)

ETPE(µ
4He+, 2S) =− 9.76(40) meV, (109)

where the improvement in the accuracy with respect to
the original results of Ji et al. (2018) is due to the updated
single-nucleon contributions.

B. Coulomb distortion correction

Among corrections of higher order in α, the largest one
is the Coulomb distortion correction, which comes from
the expansion in the ratio of the muon binding energy to
the nuclear excitation energy and is enhanced by a factor
of ln(Z α)2,

δCE =
Z4 α6 µ4

6

∫
ET

dE

E

[
1

6
+ ln

(
2µ (Z α)2

E

)]
× |⟨ϕN |d⃗ |E⟩|2 . (110)

Since the first term 1/6 in square brackets is much smaller
than the logarithm, it is sometimes neglected (Ji et al.,
2018). This correction was calculated in a manner simi-
lar to the leading nuclear polarizability correction in Eq.
(102) [see Ji et al. (2018) for details], with the numerical
values presented in Table I.

C. Three-photon exchange

In the nonrecoil limit, the elastic three-photon ex-
change (3PE) contribution can be obtained by solving
the Dirac equation with a finite size nucleus. The corre-
sponding relative O(α2) correction to the finite size effect
can be represented as (Pachucki et al., 2018)

E
(6)
FNS(2S) =− (Z α)6 m3 r2C

1

12

[
ln(mrC2 Z α) + γE − 31

16

]
+ (Z α)6 m5 r4C

1

18

[
ln(mrC1 Z α) + γE +

5

2

]
+ (Z α)6 m5 r4CC

1

480
, (111)

E
(6)
FNS(2P1/2) = (Z α)6 m

(
m2 r2C
64

+
m4 r4CC

480

)
, (112)

where r4CC = ⟨r4⟩ is the fourth moment of the charge
density, the effective nuclear charge radii rC1 and rC2

encode the high-momentum contributions, and γE is the
Euler constant. For the exponential distribution of the
nuclear charge rCC/rC = 1.257 433, rC1/rC = 1.090 044,
and rC2/rC = 1.068 497. The inelastic contribution is
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difficult to estimate. The only known result is for µD
(Pachucki et al., 2018), where it was found to partially
cancel the elastic part. Therefore, for other composite
nuclei we assume that the total 3PE in the nonrecoil
limit is just a half of the elastic part, with the uncertainty
being the other half.

D. Electron vacuum polarization with TPE

The eVP(1) correction to the TPE contribution is

δETPE =− (Z e2)2

2
ϕ2(0)

∫
s

d4q

(2π)4 i

1

q4

[
Tµν − tµν(I,M)

]
× tµν(m)

[
−2 ω̄(1)(q2/m2

e) + 2
δϕ(0)

ϕ(0)

]
,

(113)

where δϕ is as defined in Eq. (52), ω̄(1) is as defined in
Eq. (32), and the subscript s in the integral denotes an
additional subtraction of the finite size that is the same
as in Eq. (75). The eVP(1) correction to the elastic
part in the nonrecoil limit, namely, to the Friar term,
was obtained by Karshenboim et al. (2018). Their re-
sults were 0.000 4, 0.007 1, 0.212, and 0.139 meV for the
Lamb shifts in µH, µD, µ3He+, and µ4He+, respectively.
However, these results are incomplete because the eVP(1)

correction to the inelastic part is unknown. Therefore, we
do not use these results, and instead calculate the eVP(1)

corrections to the leading contributions to ETPE, namely,
Enucl1, Enucl2, and Epol in Eqs. (99)–(102). The details
are presented in Appendices B, C, and D, respectively.
This largely completes the evaluation of the eVP(1) cor-
rection with TPE.

In particular, for µH there is only the eVP(1) correction
with TPE on the proton, which amounts to

δETPE(µH) = 0.000 6(1) meV (114)

for the Lamb shift; see Eq. (B5). For µD, the resulting
correction to the Lamb shift is the sum of the single-
nucleon eVP(1) with TPE from Eq. (B5) and the eVP(1)

polarizability correction from Kalinowski (2019),

δETPE(µD) = 0.027 5(4) meV, (115)

for the Lamb shift. This is in agreement with the calcula-
tion of the eVP(1) correction to TPE recently performed
by Lensky et al. (2022a,b), which gave 0.0274(3) meV.
Finally, for µ3He+ and µ4He+ we add δEnucl1 from Eq.
(B5), δEnucl2 from Eq. (C11), and δEpol from Eq. (D3)
to obtain

δETPE(µ
3He+) = 0.266(24) meV , (116)

δETPE(µ
4He+) = 0.158(12) meV (117)

for the Lamb shift. These results are shown in Table I.

E. Muon self-energy and vacuum polarization with TPE

This correction is given by

δETPE =− (Z e2)2

2
ϕ2(0)

∫
d4q

(2π)4 i

1

q4

[
Tµν − tµν(I,M)

]
×
[
tradµν (m)− 2 ω̄(1)(q2/m2) tµν(m)

]
, (118)

where tradµν is the muon self-energy correction to the point-

like tµν and ω̄(1) is the one-loop muon vacuum polar-
ization; see Eq. (32). An analytic expression for tradµν is
known (Pachucki, 1995), so this correction can in prin-
ciple be calculated for µH and µD using the experimen-
tally or theoretically determined nuclear amplitudes T1

and T2. For µHe+, the most convenient approach is the
direct calculation using the nuclear theory with an effec-
tive Hamiltonian; cf. Eq. (99). However, such a calcula-
tion has not yet been performed. The correction in Eq.
(118) has thus far been calculated (Faustov et al., 2017;
Karshenboim et al., 2018) in the elastic limit for an in-
finitely heavy nucleus with the use of different models for
the charge distribution. In Appendix E, we recalculate
this correction using the exponential charge distribution
to obtain results in agreement with Faustov et al. (2017)
and Karshenboim et al. (2018). Moreover, we note that
this contribution is dominated by the mean square charge
radius with the radiatively corrected muon density at the
nucleus. Therefore, the inelastic contribution is not ex-
pected to be significant, and we estimate the relative un-
certainties of our results in Eq. (E12) at 10%.

VI. SUMMARY

If the nuclei were pointlike particles, the 2S−2P Lamb
shift in light muonic atoms would be sensitive to the hVP,
as the muon g− 2 is. A theoretical understanding of nu-
clear structure at the relevant level of precision remains,
despite recent steady progress, a challenging matter. As
a result, the theoretical predictions for the energy spec-
tra of muonic atoms are currently a factor of 10 to ∼ 100
times less accurate than what would be obtained in the
pointlike limit; therefore, the sensitivity to new physics
in measurements in light muonic atoms is at present lim-
ited.

The uncertainty of theoretical calculations are at
present dominated by the hadronic and nuclear contribu-
tions rather than the QED terms, which can be obtained
with much higher accuracy. Focusing on such dominant
contributions, it is useful to distinguish between single-
nucleon and few-nucleons uncertainties. The fact that
the structure of the single nucleon is not well known is
affecting terms such as Enucl1 in Eq. (99) and generates
the entire uncertainty of ENS in µH. Presently such the-
oretical uncertainty for µH is of the order of the current
experimental uncertainty. Using only χPT makes it dif-
ficult to match the projected new measurements, which
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plan to achieve a factor of 5 improvement in the empir-
ical uncertainty. However, there are promising develop-
ments in the data-driven approach (Tomalak and Van-
derhaeghen, 2016), and lattice QCD calculations could
achieve the needed precision in the future; see (Fu et al.,
2022) for the first calculation of the TPE contribution
in µH. Furthermore, Hagelstein and Pascalutsa (2021)
showed that the TPE contribution can be obtained us-
ing an alternative subtraction at T1(iQ,Q2), which holds
advantages for EFT and lattice QCD calculations.
The uncertainties related to the few-nucleon dynam-
ics start at µD and move to heavier muonic atoms.
They are due to the model dependence intrinsic to the
parametrization of nuclear interactions. Calculations
have been performed using different nuclear potentials
to allow for an estimate of the associated model depen-
dence (Ji et al., 2018, 2013; Nevo Dinur et al., 2016).
When the study is restricted to interactions developed
within χEFT, an order-by-order analysis in the chiral
expansion is necessary to estimate the uncertainty in-
troduced in the truncation of the expansion. To date
this has been achieved only for µD (Hernandez et al.,
2018, 2014) and work is in progress for µ3He+ and
µ4He+ (Li Muli and Bacca, 2023). Reducing such un-
certainty is difficult and can be done only either by in-
creasing the order of the χEFT expansion or by explor-
ing other ways of fitting the χEFT low-energy constants
at the present order. Even if we were able to reduce
these errors, there are other sources of uncertainty, such
as corrections to Eq. (99) including higher-order polariz-
abilities and unknown corrections to the nuclear electric
dipole operator (Hernandez et al., 2019; Li Muli et al.,
2022; Wienczek et al., 2014).

When the uncertainties stemming from single-nucleon
and few-nucleon dynamics are compared for µD and
µHe+ the two are are found to be comparable in size
even though the absolute contribution of terms stemming
from the few-nucleon dynamics is larger; see Table 7 of (Ji
et al., 2018). Finally, another important source of uncer-
tainty in µHe+ ion is the unknown inelastic part of the
three-photon exchange correction; see Sec. V.C.

In view of these uncertainties, the comparison of the
nuclear rms charge radii between muonic and electronic
atoms would be interesting. Recent results using hy-
drogen spectroscopy (Beyer et al., 2017; Bezginov et al.,
2019; Brandt et al., 2022; Fleurbaey et al., 2018; Grinin
et al., 2020), although not yet conclusive, tend to be in
agreement with the µH value. The absolute determina-
tion of nuclear radii from the optical spectroscopy of nor-
mal atoms, other than hydrogen, has thus far not been
successful. The only attempt from the measurement of
the 23S − 23P transition in 4He (Patkóš et al., 2021),
although in agreement with the µ4He+ determination, is
much less accurate due to the high complexity of QED
effects in systems consisting of more than one electron.
On the other side, the optical spectroscopy of the one-

electron He+ ion has not yet been accomplished (Her-
rmann et al., 2009; Krauth et al., 2020).
The proton rms radius rp extracted from the µH Lamb

shift (see Table I) is by far the most accurate. Therefore,
one can use this rp for the most accurate determination
of the Rydberg constant from the 1S−2S hydrogen spec-
troscopy, for the most accurate determination of the rms
deuteron charge radius rd from the H-D isotope shift in
the 1S − 2S transition, or recently for the most accurate
determination of the electron-proton mass ratio from the
precise spectroscopy of the HD+ molecule. The Lamb
shift measurements in all other muonic atoms, although
they do not lead to improvements in tests of fundamen-
tal physics, can give valuable information about electro-
magnetic properties of nuclei. Namely, we recall that
the energy shift due to the finite nuclear size is propor-
tional to the nuclear charge radius (EFNS = Cr2C). It
turns out that the weighted isotope shift in muonic atoms
EL(D)/CD − EL(H)/CH, where the corresponding coeffi-
cients C are given in Table I, can be used for the deter-
mination of the difference of squared nuclear charge radii
with a higher precision than the individual charge radii
due to partial cancellations of uncertainties, resulting in

r2d − r2p|muonic = 3.820 0(7)exp(30)theo fm2 . (119)

Equation (119) is in perfect agreement with the value
obtained from the electronic H-D isotope shift in the 1S−
2S transition (Parthey et al., 2010), resulting in a much
more accurate determination (Pachucki et al., 2018),

r2d − r2p|electronic = 3.820 7(3) fm2 . (120)

This indicates that we have a good understanding of the
electromagnetic properties of the deuteron. An analo-
gous comparison can be performed for the 3He-4He iso-
tope shift, for which we obtain

EL(
4He+)

C4He+
− EL(

3He+)

C3He+
= 0.258 5(30) fm2 + r2α − r2h,

(121)

where we took advantage of the partial cancellation of un-
certainties in the nuclear structure contribution ENS. A
recent measurement of the Lamb shift in µ3He+ (Schuh-
mann et al., 2023) gave

r2h − r2α|muonic = 1.063 6(6)exp(30)theo fm
2 (122)

The value (122) deviated by 3.6σ from from the recent
measurement of the 3He - 4He isotope shift in 23S1−21S0

transition (van der Werf et al., 2023)

r2h − r2α|electronic = 1.075 7(15) fm2 (123)

We point out, however, that the other isotope shift mea-
surements in 23P1 − 23S1 transition have thus far not
been conclusive, because they are in contradiction with
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each other (Pachucki et al., 2017); see also van der Werf
et al. (2023). Therefore, we postpone drawing conclu-
sions until measurements of the 23P1−23S1 transition in
3,4He are confirmed.
Finally, our determination of the proton, the deuteron,

and the α particle charge radii differs from the original
ones given by Antognini et al. (2013b), Pohl et al. (2016),
and Krauth et al. (2021) (see Table I), especially for the
deuteron, while that for the helion charge radius (Schuh-
mann et al., 2023) is based on our calculations presented
here. The main reason for these differences is the neglect
of the eVP(1) correction to the TPE and the inelastic
3PE in the original determination. Moreover, the large
uncertainties in ENS indicate that a more accurate cal-
culation of the electromagnetic nuclear structure of light
nuclei is necessary to explore the great potential of the
precision muonic atom spectroscopy.
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Appendix A: Subtraction of the point deuteron amplitude

In this appendix we specify the changes to the covari-
ant dispersive formalism of Carlson et al. (2014) that
were necessary to account for the subtraction of the point
deuteron amplitude described in Sec. V.A. As explained
there, Carlson et al. (2014) assumed that g = 0 for the
pointlike deuteron, whereas the definition of the latter as
a Proca particle means that g = 1. To compensate for
this difference, one needs to modify Eq. (16) of Carlson
et al. (2014), which describes the elastic contribution of
the TPE in terms of the elastic deuteron form factors as
follows:

Eel =
mα2

M(M2 −m2)
ϕ(0)2

∞∫
0

dQ2

Q2

×
{
2

3

[
G2

M − 1
]
(1 + τ)γ̂1(τ, τl)−

2

3
(τ − τl)

γ1(τl)√
τl

−
[
G2

C − 1

τ
+

2

3

[
G2

M − 1
]
+

8

9
τG2

Q

]
γ̂2(τ, τl)

+ 16M2M −m

Q
G′

C(0)

}
, (A1)

where Q2 = −q2, τ = Q2/(4M2), τl = Q2/(4m2), and
the weighting functions are defined as they were by Carl-
son et al. (2014),

γ̂1,2(x, y) =
γ1,2(x)√

x
− γ1,2(y)√

y
, (A2a)

γ1(x) = (1− 2x)
√
1 + x+ 2x3/2, (A2b)

γ2(x) = (1 + x)3/2 − x3/2 − 3

2

√
x. (A2c)

Note the second term in the curly brackets in Eq. (A1)
that is generated by the nonpole part of the point
deuteron amplitude, and that the Thomson term still
needs to be subtracted from the nonpole amplitude as
it was by Carlson et al. (2014). The numerical effect of
the extra subtraction terms in Eq. (A1) on ETPE(µD, 2S)
does not depend on the elastic deuteron form factors and
turns out to be small, namely, −0.000 038 meV.

Appendix B: eVP(1) correction with TPE on single nucleons

In this appendix we give an improved estimate for the
eVP(1) correction to the TPE between the muon and in-
dividual nucleons [cf. Eqs. (100) and (113)],

δEnucl1 =− π

3
mα2ϕ2(0)

[
Z δ[R3

F (p)] + (A− Z) δ[R3
F (n)]

]
+ 2

δϕ(0)

ϕ(0)
Enucl1 . (B1)

For the Born TPE with an eVP(1) insertion, we use the
nucleon form factor parametrizations from Borah et al.
(2020). For the nucleon polarizability contribution with
an eVP(1) insertion, we use the leading-order χPT pre-
diction plus the contribution of the ∆(1232) intermediate
state (with the latter equal for p and n); see Alarcon et al.
(2014); Lensky et al. (2022b, 2018). Our total results for
TPE with eVP(1) insertion are

δ[R3
F (p)] = 0.053(10) fm3 , (B2)

δ[R3
F (n)] = 0.017(10) fm3 . (B3)

The wave function correction was taken from Table 13 of
Karshenboim and Shelyuto (2021),

2
δϕ(0)

ϕ(0)
=

α

π


1.404 3 for µH
1.452 3 for µD
2.181 8 for µ3He+

2.192 0 for µ4He+ .

(B4)
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Adding all up, we find the total eVP(1) correction to TPE
with individual nucleons,

δEnucl1(2S) =


−0.000 6(1) meV for µH
−0.001 0(2) meV for µD
−0.016(2) meV for µ3He+

−0.018(3) meV for µ4He+ .

(B5)

Appendix C: eVP(1) correction with TPE on different
nucleons

This derivation is based on Pachucki and Wienczek
(2015). We now consider the muonic matrix element P
for the nonrelativistic two Coulomb exchange

P =

〈
ϕ

∣∣∣∣ α

|r⃗ − r⃗a|
1

(H0 − E0 + E)

α

|r⃗ − r⃗b|

∣∣∣∣ϕ〉, (C1)

where E is the nuclear excitation energy. Using the
on-mass-shell approximation and subtracting the point
Coulomb exchange, Eq. (C1) becomes

P =α2 ϕ2(0)

∫
d3k

(2π)3

(
4π

k⃗ 2

)2(
E +

k⃗ 2

2µ

)−1

×
(
ei k⃗·(r⃗a−r⃗b) − 1

)
. (C2)

We now calculate the expansion coefficients in powers of
E. There are two characteristic integration regions: |⃗k| ∼√
Em and |⃗k| ∼ m. In the first integration region, where

|⃗k| is small, one performs an expansion of the exponent

in powers of k⃗ · (r⃗a − r⃗b). The leading quadratic term is
the electric dipole contribution

Plow = 4π
3 α2ϕ2(0)

√
2µ
E r⃗a · r⃗b , (C3)

which gives Epol in Eq. (102). In the second integration

region, where |⃗k| ∼ m is large, one performs an expansion
in powers not exactly of E but of the total nuclear energy
Ẽ,

Ẽ = E +
k⃗ 2

2M
. (C4)

The first expansion term after integration over k⃗ is

Phigh =
π

3
mα2 ϕ2(0) |r⃗a − r⃗b|3 (C5)

and the corresponding correction to the energy is Enucl2

in Eq. (101).
To obtain the eVP(1) correction to Enucl2, we modify

one of the Coulomb propagators in Eq. (C2), subtract
the finite size with the leading polarizability

δP =α2 ϕ2(0)

∫
d3k

(2π)3

(
4π

k⃗ 2

)2
2m

k⃗ 2

[
−2 ω̄(1)(−k⃗ 2/m2

e)
]

×
{
ei k⃗·(r⃗a−r⃗b) − 1 +

[
k⃗ · (r⃗a − r⃗b)]

2/2
}
, (C6)

and use the large-|⃗k| behavior of ω̄(1),

ω̄(1)(−k⃗ 2/m2
e) ≈

α

3π

(
5− ln

k⃗ 2

m2
e

)
, (C7)

to obtain

δP = −4

9
mα3 ϕ2(0) |r⃗a− r⃗b|3

[ 5

12
+ln(me |r⃗a− r⃗b|)+γE

]
(C8)

The corresponding correction to the energy is

δEnucl2 = 2
δϕ(0)

ϕ(0)
Enucl2 −

∑
a,b

⟨δP ⟩

= Enucl2

[
2
δϕ(0)

ϕ(0)
− α

π

4

3

( 5

12
+ ln(me rL) + γE

)]
,

(C9)

where rL is defined by∑
a,b

⟨|r⃗a − r⃗b|3 ln |r⃗a − r⃗b|⟩ =
∑
a,b

⟨|r⃗a − r⃗b|3⟩ ln rL .

(C10)

To estimate δEnucl2, we assume that rL ≈ 2 rC , use

the result of Ji et al. (2018) for δ
(1)
R3 = Enucl2(2S) =

−8.625 meV and −3.580 meV for µ3He+ and µ4He+, re-
spectively, and obtain

δEnucl2(2S) =

{
−0.140 (21) meV for µ3He+

−0.060 (10) meV for µ4He+ ,

(C11)

where the relative uncertainties of 15% and 16% for
µ3He+ and µ4He+ result from the uncertainties of the
adopted values of Enucl2 and rL (2% and 15% for µ3He+;
5% and 15% for µ4He+) summed in quadrature.

Appendix D: eVP(1) correction with the leading
polarizability

The derivation is based on the work of Kalinowski
(2019). We now consider the leading polarizability in
Eq. (102) that comes from the TPE

Epol = − 4π α2

3
ϕ2(0)

∫
ET

dE |⟨ϕN |d⃗ |E⟩|2
√

2µ

E
.

(D1)

The eVP(1) correction modifies one of the photon prop-
agators, which leads to a complicated expression. When
the smallness of the parameter me/

√
E µ is taken into

account, the first two terms in its expansion are

δEpol =− 8α3

9
ϕ2(0)

∫
ET

dE |⟨ϕN |d⃗ |E⟩|2
√

2µ

E
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×

[
ln

(
2µE

m2
e

)
− 5

3
+

3π

2

√
m2

e

2µE

]

+ 2
δϕ(0)

ϕ(0)
Epol , (D2)

where the last term comes from the eVP(1) correction to
the wave function. Kalinowski (2019) obtained for µD
the value δEpol(2S) = −0.026 5(3) meV. Using the wave
function correction from Eq. (B5) and performing calcu-
lations with the Argonne v18 potential (Wiringa et al.,
1995), we obtain δEpol(2S) = −0.026 3 meV, which is in
agreement with the aforementioned result. Following the
calculation by Ji et al. (2018) of the leading polarizabil-
ity with including the Urbana IX three-body force, we
obtain (Li Muli and Bacca, 2023)

δEpol(2S) =

{
−0.110 (11) meV for µ3He+

−0.080 (6) meV for µ4He+ ,
(D3)

where the relative uncertainty for µ4He+ is 7%, dis-
tributed as follows: 3% from the missing multipoles,
5% from the nuclear model, and 4% from the numerical
evaluation. For µ3He+, the relative uncertainty is 10%,
which comes mostly from the missing multipoles (9%),
with smaller additional uncertainties of 2% from the nu-
clear model and 4% from the numerical evaluation.

Appendix E: µSE(1) + µVP(1) correction with the elastic
TPE

This derivation is based on the work of Pachucki
(1993). In the limit of an infinite mass nucleus, the elastic
TPE with µSE(1) + µVP(1) corrections and point-nucleus
subtraction reads

δETPE =
α

π

ϕ2(0)

m2

∫
d3p

(2π)3
(4π α)2

p4
f(p2)

[
ρ(p2)2 − 1

]
,

(E1)

where ρ is the nuclear charge form factor, f(p2) is the ra-
diatively corrected muon line at the momentum exchange
p0 = 0 [see Eq. (118)],

α

π
f(p2) =

1

2
trad00 +

4

p2
ω̄(1)(p2) , (E2)

and all momenta are in the muon mass units. f(p2) was
calculated by Pachucki (1993) using dispersion relations,

f(p2) = −
∫ ∞

0

d(q2)
fA(q2)

q2 + p2
, (E3)

with

fA(q2) =
q2

4

(
1

1 + q2
− JA

)
+

(
4

q2
+ 1

)
(JA − 1)

+ Θ(q − 2)

(
4

q2
+ 1

)(
1

q2
√

1− 4
q2

+

√
1− 4

q2

)

+
4

3
Θ(q − 2)

√
1− 4

q2
1

q2

(
1 +

2

q2

)
, (E4)

where the last term comes from µVP and

JA =
1

q

[
arctan(q)−Θ(q − 2) arccos

(
2

q

)]
. (E5)

Using Eq. (E3), one can transform δETPE into

δETPE =
α

π

ϕ2(0)

m2

(4π α)2

2π2

∫ ∞

0

d(q2) fA(q2) g(q) (E6)

where

g(q) =

∫ ∞

0

dp
1

p2 (q2 + p2)
[1− ρ(p)2] . (E7)

When one assumes a dipole parametrization of the elec-
tric form factor

ρ(p2) =
Λ4

(Λ2 + p2)2
, (E8)

g(q) becomes

g(q) =
π

16 q
h(q) , (E9)

where

h(q) =
Λ2

(Λ + q)4
+

4Λ

(Λ + q)3
+

19

2(Λ + q)2
+

35

2Λ(Λ + q)
.

(E10)

Finally, the correction to the energy

δETPE = α (Z α)2
ϕ2(0)

m2

∫ ∞

0

dq h(q) fA(q2) (E11)

is integrated numerically with Λ = 2
√
3λµ/rC , rp =

0.841 fm, rd = 2.127 fm, rh = 1.969 fm, and rα = 1.678
fm, to obtain

δETPE(2S) =


−0.000 4 meV for µH
−0.002 6(3) meV for µD
−0.077(8) meV for µ3He
−0.059(6) meV for µ3He ,

(E12)

where we have assumed a 10% uncertainty due to the
elastic approximation. These results are presented in Ta-
ble I.
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