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Abstract

We consider quantum electrodynamics (QED) corrections to the fine splitting E(2P3/2) − E(2P1/2)

in the Li atom. We derive complete formulas for the mα6 and mα7 lnα contributions and calculate

them numerically using highly optimized, explicitly correlated basis functions. The obtained results are in

agreement with the most recent measurement, helping to resolve discrepancies between former ones and

lay the foundation for investigation of QED effects in light, many-electron atoms.
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INTRODUCTION

The inclusion of relativistic effects and correlations between electrons in atomic systems gives

rise to some fundamental problems related to the many-electron Dirac equation. This equation has

to include two and more electron-positron pairs to be in accordance with Quantum Electrodynam-

ics (QED). From the numerical point of view it suffers from instabilities, like that in achieving the

correct nonrelativistic limit for the energy difference between states of the same orbital momentum

[1]. For example the relativistic calculation of the lithium 2P3/2 − 2P1/2 splitting has reached the

precision of only one significant digit so far [2].

For light atomic systems the best approach relies on nonrelativistic QED theory, where rela-

tivistic and QED effects are treated perturbatively, while the nonrelativistic Hamiltonian is solved

using explicitly correlated basis sets. This approach has been successfully applied to helium [3, 4],

lithium [5, 6], and beryllium atoms [7]. The helium fine structure is a very good example; it

was calculated to the mα7 order and currently serves as one of the most precise QED tests in

few-electron systems [8]. Conversely, theoretical results for lithium fine structure are much less

accurate, and the various experiments are not always in agreement with each other and with the

theory [11]. For example, long standing discrepancies in the isotope shift of the fine structure have

been resolved only recently, and it would appear that the results from previous experiments and

theoretical predictions were both incorrect [11, 12]. In this work we aim to significantly improve

theoretical prediction of the lithium fine structure 2P3/2−2P1/2 by the complete calculation of the

mα6 and mα7 lnα contributions. We derive closed formulas for QED corrections and perform

numerical calculations using explicitly correlated basis sets with Hylleraas and Gaussian func-

tions. Such calculations have been performed by Douglas and Kroll for the helium fine structure

of 3PJ levels in Ref. [14]. It took 40 years to extend their two-electron mα6 result to an atom with

three electrons, indicating that accurate calculations of QED effects in many electron systems is

a challenging task. Here, in addition we develop a general perturbative approach based on QED

theory, which can be used in an arbitrary few electron atomic and molecular systems, provided

one can solve the Schrödinger equation with the sufficient accuracy. No other approach developed

in the literature, allows one for consistent inclusion of relativistic and QED effects in light atomic

and molecular systems.
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LITHIUM FINE STRUCTURE

The fine structure Efs can be expanded in powers of the fine structure constant α

Efs = E
(4)
fs + E

(6)
fs + E

(7)
fs + . . . , (1)

where E(n)
fs is of the order of mαn. The leading order contribution E(4)

fs , including the all-order

electron g-factor, is obtained from the fine-structure Hamiltonian [13]

E
(4)
fs = 〈φ|H(4)

fs |φ〉 (2)

where

H
(4)
fs =

∑
a

Z α

4 r3a
~σa
[
(g − 1)~ra × ~pa

]
(3)

+
∑
a6=b

α

4 r3ab
~σa
[
g ~rab × ~pb − (g − 1)~rab × ~pa

]
and g is the electron g-factor, and we employ natural units ~ = c = m = 1. The wave function φ

in Eq. (2) is a solution of the nonrelativistic stationary Schrödinger equation corresponding to the

22P state

(H − E)φ = 0 (4)

where

H =
∑
a

~p 2
a

2
+ V

V =
∑
a

−Z α
ra

+
∑
b<a

α

rab
(5)

The higher-order relativistic correction E(6) is the subject of the present work. It can be expressed

as the sum of the first- and second-order terms

E
(6)
fs = 〈φ|H(4) 1

(E −H)′
H(4)|φ〉fs + 〈φ|H(6)

fs |φ〉, (6)

where [13]

H(4) = H
(4)
A +H

(4)
B +H

(4)
C (7)

H
(4)
A =

∑
a

{
−~p

4
a

8
+
π Z

2
δ3(ra)

}
(8)

+
∑
b<a

{
π δ3(rab)−

1

2
pia

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb

}
.

3



H
(4)
B =

∑
a

Z

4 r3a
~σa · ~ra × ~pa (9)

+
∑
a6=b

1

4 r3ab
~σa
(
2~rab × ~pb − ~rab × ~pa

)
.

H
(4)
C =

∑
b<a

σia σ
j
b

4 r3ab

(
δij − 3

riab r
j
ab

r2ab

)
(10)

and where H(6)
fs is an effective Hamiltonian of order mα6. H(4)

B above coincides with H(4)
fs in Eq.

(3) for g = 2. The first derivation of H(6)
fs was performed for helium fine structure by Douglas

and Kroll in [14] using the Salpeter-like approach. Numerical evaluation of this splitting has

been performed to a high degree of precision in [15] and [16]. In this work we obtain H(6)
fs for

lithium fine structure using a different approach, where nonrelativistic expansion is performed in

the beginning at the Lagrangian level [17].

In order to further improve theoretical predictions, the higher-order mα7 contribution is not

neglected but instead is approximated by the numerically dominating logarithmic part. This part is

obtained from the analogous result for helium fine structure [16, 18] by dropping the σi σj terms

because they do not contribute for states with total electron spin S = 1/2,

E
(7)
fs,log = 〈H(7)

fs,log〉+ 2
〈
H

(4)
B

1

(E0 −H0)′
H

(5)
log

〉
(11)

H
(5)
log = α2 ln[(Z α)−2]

[
4Z

3

∑
a

δ3(ra)−
7

3

∑
b<a

δ3(rab)

]
(12)

H
(7)
fs,log = α2 ln[(Z α)−2]

[
Z

3

∑
a

i ~pa × δ3(ra) ~pa · ~σa

−3

4

∑
b6=a

i ~pa × δ3(rab) ~pa · ~σa
]
. (13)

The neglected higher-order corrections are the nonlogarithmic mα7 term and the finite nuclear

mass corrections to the mα6 contribution. Corresponding uncertainties are 40 kHz and 15 kHz,

what together with numerical uncertainties leads to about 6 ppm accuracy in the Li fine structure.

SPIN-ORBIT HAMILTONIAN OF ORDER mα6

Various approaches are possible to derive mα6 correction, and here we use a variant of non-

relativistic QED, where the effective NRQED Lagrangian is obtained by the Foldy-Wouthuysen
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(FW) transformation of a Dirac equation.

HD = ~α (~p− e ~A) + eA0 (14)

HFW = ei S (HD − i ∂t) e−i S

= HD + i[S,HD]− ∂S

∂t
+ . . .

FW transformation at the level of leading relativistic corrections is well described in many text-

books. At higher orders however, it is not unique [17], and we take advantages of this flexibility

to simplify the further derivation of mα6 operators. The HFW obtained is

HFW = eA0 +
1

2

(
~π2 − e~σ · ~B

)
− 1

8

(
~π4 − e~σ · ~B ~π2 − ~π2 e~σ · ~B

)
−1

8

(
e~∇ · ~E‖ + e~σ ·

(
~E‖ × ~p− ~p× ~E‖

))
+
e2

2
~σ · ~E‖ × ~A

+
i e

16
[~σ( ~A× ~p− ~p× ~A) , p2] +

e2

8
~E2
‖ +

3

32

{
p2 , ~E‖ × ~p · ~σ

}
+

5

128
[p2, [p2, e A0]]− 3

64

{
p2 , ∇2(eA0)

}
+
p6

16
(15)

where ~E‖ = −~∇A0 and ~π = ~p− e ~A. HFW can be used to derive H(4) as well as H(6) [17]. Here

we rederive H(6)
fs with the use of HFW in Eq. (15). Let Ea denote the static electric field at the

position of particle a

e ~Ea ≡ −∇aV = −Z α ~ra
r3a

+
∑
b6=a

α
~rab
r3ab

(16)

The vector potential at the position of particle a, which is produced by all other particles, is

eAia ≡
∑
b6=a

α

2 rab

(
δij +

riab r
j
ab

r2ab

)
pjb +

α

2

(
~σb × ~rab

)i
r3ab

, (17)

Using Eqs. (16,17) and following the derivation in Ref. [17], the higher-order contributions which

result from HFW in Eq. (15) are

H
(6)
fs =

∑
a

{
3

16
p2a e

~Ea × ~pa · ~σa +
e

4

(
2 p2a ~pa · ~Aa + p2a ~σa · ∇a × ~Aa

)
+
e2

2
~σa · ~Ea × ~Aa

+
i e

16

[
~Aa × ~pa · ~σa − ~σa · ~pa × ~Aa , p2a

]
+
e2

2
~A 2
a

}
+
∑
b6=a

{
−i π α

8
~σa · ~pa × δ3(rab) ~pa

+
α

4

(
−i
[
~σa ×

~rab
rab
,
p2a
2

]
e ~Eb +

[
p2b
2
,

[
~σa ×

~rab
rab
,
p2a
2

]]
~pb

)}
(18)
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Most of the terms in H(6)
fs are obtained in the nonretardation approximation, which corresponds to

replacing the electromagnetic fields in HFW for the particle a with fields that come from all other

particles, called b. The last two are exceptions. The first term under the sum over a and b comes

from a Coulomb interaction between electrons, where both electron vertices, instead of eA0, are

of the form −
[
e~∇ · ~E‖ + e~σ ·

(
~E‖ × ~p− ~p× ~E‖

)]
/8, and the second term comes from the single

transverse photon exchange with the electron vertices of the form −e ~p ~A− e~σ · ~B/2.

TABLE I:mα6 andmα7 lnα contributions to Li 2P fine splitting, in unitsmα6 andmα7 correspondingly,

1X is a projection operator into states of the type X , E(6)
fs is a sum of all preceding terms.

〈φ|H(6)
fs |φ〉 −0.202 1(16)

〈φ|H(4)
B

12So
E−H H

(4)
B |φ〉 0.293 49

〈φ|H(4)
B

14So
E−H H

(4)
B |φ〉 −0.295 94(2)

2 〈φ|H(4)
B

12P
(E−H)′ H

(4)
A |φ〉 0.195 3(17)

〈φ|H(4)
B

12P
(E−H)′ H

(4)
B |φ〉 0.539 7(5)

〈φ|H(4)
B

14P
E−H H

(4)
B |φ〉 −0.450 6(2)

〈φ|H(4)
C

14P
E−H H

(4)
C |φ〉 0.006 23

2 〈φ|H(4)
B

14P
E−H H

(4)
C |φ〉 0.020 90

〈φ|H(4)
B

12Do
E−H H

(4)
B |φ〉 −0.751 13(2)

〈φ|H(4)
B

14Do
E−H H

(4)
B |φ〉 0.733 27(2)

〈φ|H(4)
C

14Do
E−H H

(4)
C |φ〉 0.000 08

2 〈φ|H(4)
B

14Do
E−H H

(4)
C |φ〉 −0.000 01

〈φ|H(4)
C

14F
E−H H

(4)
C |φ〉 −0.002 13

E
(6)
fs 0.087 1(24)

〈φ|H(7)
fs,log|φ〉 −0.736 38

2 〈φ|H(4)
B

12P
(E−H)′ H

(5)
log |φ〉 1.783 9(4)

E
(7)
fs,log 1.047 5(4)
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The second-order contribution in Eq. (6) is split into parts coming from intermediate states of

the specified angular momentum and the spin. These parts are defined in Table I. Most of them

can be calculated as they stand. Only the matrix elements involving H(4)
A and δ3(ra) need special

treatment due to the high singularity of these operators.

SPIN REDUCTION OF MATRIX ELEMENTS

The wave function of the 2P state in the three-electron system is represented as

Φi =
1√
6
A
[
φi(~r1, ~r2, ~r3) [α(1) β(2)− β(1)α(2)]α(3)

]
, (19)

where A denotes antisymmetrization and φi(~r1, ~r2, ~r3) is a spatial function with Cartesian index i

that comes from any of the electrons coordinate, φi = ria φ. The normalization we assume is

1 =
∑
i

〈Φ′i|Φi〉

=
∑
i

〈
φ′ i(r1, r2, r3)|P [c123 φ

i(r1, r2, r3)]
〉

(20)

where P denotes a sum of all permutations of 1,2,3 subscripts. The 2P1/2 and 2P3/2 wave functions

are constructed using Clebsch-Gordon coefficients. Expectation values with these wave functions

can be reduced to spatial expectation values with algebraic prefactor for J = 1/2, 3/2, accord-

ingly; i.e. the first-order matrix elements take the form

〈Φ′|O|Φ〉 = {1, 1}
〈
φ′ i(r1, r2, r3)|QP [c123 φ

i(r1, r2, r3)]
〉

(21)

〈Φ′|
∑
a

~σa · ~Qa|Φ〉 = {1,−1/2} i εijk
〈
φ′ i(r1, r2, r3)|

∑
a

Qj
aP
[
cFa123 φ

k(r1, r2, r3)
]〉

(22)

〈Φ′|
∑
a6=b

~σa × ~σb · ~Qab|Φ〉 = {1,−1/2} (−2 εijk)
〈
φ′ i(r1, r2, r3)|∑

ab=12,23,31

(Qj
ab −Q

j
ba)P

[
cF1
123 φ

k(r1, r2, r3)
]〉

(23)

The second-order matrix elements can also been reduced to the spatial ones, with different prefac-

tors similarly to those above.
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TABLE II: Symmetrization coefficients in spatial matrix elements

(k, l,m) cklm cF1
klm cF2

klm cF3
klm

(1, 2, 3) 2 0 0 2

(1, 3, 2) -1 1 -1 -1

(2, 1, 3) 2 0 0 2

(2, 3, 1) -1 -1 1 -1

(3, 1, 2) -1 1 -1 -1

(3, 2, 1) -1 -1 1 -1

NUMERICAL CALCULATIONS

The spatial function is represented as a linear combination of the Hylleraas [19]

φ = e−α1r1−α2r2−α3r3 rn1
23 r

n2
31 r

n3
23 r

n4
1 rn5

2 rn6
3 (24)

or of the Gaussian functions [20]

φ = e−α1r21−α2r22−α3r23−α12r212−α13r213−α23r223 (25)

In the Hylleraas basis we use 6 sectors with different values of nonlinear parameters wi and a

maximum value of Ω = n1 +n2 +n3 +n4 +n5 +n6 = 13, details are in [9, 10]. In Gaussian basis

we use N = 256, 512, 1024, and 2048 functions with well-optimized nonlinear parameters for

each basis function, separately. The accuracy achieved for nonrelativistic energies is about 10−13

in Hylleraas and 10−11 in Gaussian bases. The first-order matrix elements involving the Dirac

δ-function are calculated with Hylleraas basis; all other operators are calculated using Gaussians.

Numerical results for the extrapolated value of 〈H(6)
fs 〉 are presented in Table I, and the achieved

precision is about 10−3. The evaluation of second-order matrix elements is much more demand-

ing. They are obtained using the Gaussian basis, as follows. The resolvent 1/(E − H) for each

angular momentum is represented in terms of functions with the appropriate Cartesian prefactor.

Nonlinear parameters for intermediate states are optimized for each symmetric matrix element.

For the asymmetric matrix elements, the basis is combined from two corresponding symmetric

ones. The most computationally demanding matrix elements were these, which involve H(4)
A and
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H
(5)
log operators, and they are transformed to the regular form by the following transformations

H
(4)
A = [H

(4)
A ]r +

{∑
a

Z

4 ra
−
∑
b<a

1

2 rab
, E −H

}
, (26)

4π δ3(ra) = 4π [δ3(ra)]r −
{

2

ra
, E −H

}
. (27)

The resulting second order matrix elements became less singular and can readily be evaluated.

Numerical results for matrix elements are summarized in Table I. The achieved precision is of

order 10−3 and better; similarly to the first-order matrix elements. Moreover, we observed sig-

nificant cancellations between S = 1/2 and S = 3/2 intermediate states, and between the first-

and second-order terms. The final numerical result for the mα6 contribution E(6)
fs in Table I is

quite small but larger than the hydrogenic value 5/256 = 0.019531, as it should be. Regarding

the mα7 contribution, the second-order term is numerically dominant, and the contribution from

H
(7)
fs,log is more than twice smaller. Altogether, this correction is only 10 times smaller than the

mα6 contribution and is significant in comparison to the accuracy of experimental values.

SUMMARY

We have performed accurate calculations of the fine structure in Li using the nonrelativistic

QED approach. Relativistic and QED corrections are represented in terms of effective operators

and are calculated using a highly accurate nonrelativistic wave function. Numerical results are

summarized in Table III. The obtained theoretical predictions for the 6,7Li fine structure are in

an agreement with the recent experimental values of Ref. [11] and also with Refs. [21, 22], but

are in disagreement with all the other ones. This demonstrates the capability of NRQED theory

and the numerical approach based on explicitly correlated functions in achieving high-precision

predictions for energies and energy splittings in light, few-electron atoms.
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