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We report an investigation of the self-energy screening effects for the g factor of the ground state
of Li-like ions. The leading screening contribution of the relative order 1/Z is calculated to all
orders in the binding nuclear strength parameter Zα (where Z is the nuclear charge number and α
is the fine-structure constant). We also extend the known results for the Zα expansion of the QED
screening correction by deriving the leading logarithmic contribution of order α5 lnα and obtaining
approximate results for the α5 and α6 contributions. The comparison of the two approaches yields a
stringent check of consistency of the two calculations and allows us to obtain improved estimations
of the higher-order screening effects.

I. INTRODUCTION

Measurements of the bound-electron g factor in light
H-like ions have recently reached the fractional accuracy
of few parts in 10−11 [1–3]. In a combination with ad-
vanced theoretical calculations, these measurements pro-
vided the most accurate determination of the electron
mass as well as one of the best tests of the bound-state
quantum electrodynamic (QED) theory. Extensions of
these tests towards heavier H-like ions are anticipated
in the future. The main obstacle for such extensions is
presently on the theory side, caused by the insufficiently
known two-loop QED effects [4–6].

Accurate experiments were performed also on the g fac-
tors of Li-like ions [7–9]. They provided sensitive tests
of the QED theory of the electron-correlation and rela-
tivistic nuclear recoil effects, probing QED beyond the
external-field approximation. Recently, the experiments
were extended further to B-like ions [10], providing the
first g-factor measurement for the non-zero orbital angu-
lar momentum states. In future, a combination of the
g-factor measurements in different charge states of the
same element has a potential to provide an independent
determination of the fine-structure constant α [11, 12].

In order to match the experimental precision, theo-
retical investigations of atomic g factors should be per-
formed to all orders in the nuclear binding strength con-
stant Zα (where Z is the nuclear charge number and
α is the fine-structure constant). Such calculations are
often very demanding and require taking into consider-
ation numerous effects [13, 14]. A number of highly so-
phisticated calculations were performed during the past
decade, most notably, the calculations of the self-energy
and vacuum-polarization screening corrections [15, 16],
the two-photon exchange correction [17], and the nuclear
recoil effect [18]. Despite the achieved progress, further
investigations are needed in order to match the experi-
mental precision for light Li-like ions.

In calculations performed to all orders in Zα, the
electron-electron interaction is accounted for by pertur-

bation theory, with the expansion parameter 1/Z. The
leading term of this expansion ∝ 1/Z0 corresponds to
the hydrogenic approximation, i.e., the approximation
of non-interacting electrons. The higher-order terms
∝ 1/Z1, 1/Z2, etc. are induced by the electron-electron
interaction. The modification of the hydrogenic correc-
tions by the electron-electron interaction is often referred
to as the screening effect. In the present work we inves-
tigate the effect of the screening of the QED corrections,
which presently induces one of the largest uncertainties
in the theoretical predictions of g factors of light Li-like
ions [9, 19].
First calculations of the QED screening effect [20, 21]

included only the leading term of the Zα expansion and
were applicable just for the lightest ions. The forth-
coming investigations [14, 22, 23] approximately included
contributions of higher orders in Zα, but the accuracy of
these approximation was rather low, leading to errors of
the screening effects ∼10% for medium-Z ions.
The first full-scale QED calculation of the self-energy

and vacuum-polarization screening effects was accom-
plished in Refs. [15, 16]. These calculations accounted
for the leading screening corrections of the relative order
∝ 1/Z rigorously and the higher-order effects ∝ 1/Z2+

approximately. Still, the numerical uncertainty of these
calculations ∼1-2% was not sufficient for matching the
experimental precision in the low-Z region. Moreover,
the results were reported only for four ions, thus not al-
lowing to perform a consistency check between the all-
order and the Zα-expansion calculations.
The main goal of the present work is to perform an

independent calculation of the self-energy screening cor-
rection for the g factor of the ground state of Li-like ions.
We aim to cross-check the previously publishes results,
to improve the numerical accuracy, and to perform a
detailed analysis of consistency of the all-order numer-
ical approach against the Zα-expansion calculations. To
achieve this, we extend the existing Zα-expansion results
by deriving the leading logarithmic contribution of order
α5 lnα and obtaining approximate results for the α5 and
α6 contributions. Combining the two methods, we ob-
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tain improved estimations for the higher-order screening
effects ∝ 1/Z2+ and increase the accuracy of the theo-
retical description of the QED screening effects in light
Li-like ions.
The relativistic units (h̄ = c = m = 1) and the Heav-

iside charge units (α = e2/4π, e < 0) will be used
throughout this paper.

II. g FACTOR

The linear Zeeman shift of the energy of an atomic
state v can be written as

δEv = g µ0B µv , (1)

where µ0 = |e|/(2m) is the Bohr magneton, B = |B| is
the external magnetic field, g is the g factor of the atomic
state, and µv is the angular-momentum projection on the
direction of the magnetic field. In the present work we
assume that the nucleus has zero spin, so that all inter-
action with the magnetic field comes from the electrons.
The relativistic interaction of an electron with the mag-

netic field is represented by an operator

Vmag(r) = −eα ·A(r) =
|e|
2
B (r ×α)z , (2)

where A(r) = (B × r)/2 is the vector potential and we
choose the z axis to be directed along B. Expressing the
energy shift caused by Vmagn in terms of the g factor and
fixing the angular-momentum projection of the atomic
state as µv = 1/2, we introduce the effective operator
responsible for the g factor as

Vg = 2 (r ×α)z . (3)

The matrix element of the operator Vg between two
Dirac wave functions is evaluated as

〈n1|Vg|n2〉 = (−1)j1−µ1 C 1 0
j2 µ2,j1 −µ1

P (n1n2) , (4)

where j and µ are the total angular momentum and its
projection, respectively, Cjm

j1µ1,j2µ2
is the Clebsch-Gordan

coefficient, and the radial integral P is given by

P (n1n2) = 2
−κ1 − κ2√

3
C1(−κ2, κ1)

×
∫ ∞

0

dr r3
[
gn1

(r) fn2
(r) + fn1

(r) gn2
(r)

]
.

(5)

Here, κ is the relativistic angular momentum quantum
number, CL(κa, κb) is the reduced matrix element of the
normalized spherical harmonics (see, e.g., Eq. (C10) of
Ref. [24]), and g(r) and f(r) are the upper and the lower
radial components of the Dirac wave function defined as
in Ref. [24].

For the point-like nucleus, the diagonal matrix element
of Vg with hydrogenic Dirac wave functions can be eval-
uated analytically as

〈v|Vg |v〉 =
κv

2jv(jv + 1)

(
2κv

εv
m

− 1
)
, (6)

where εv is the Dirac energy. In particular, for the case
relevant for this work of v being the 2s state,

〈2s|Vg|2s〉 =
2

3

(√
2γ + 2 + 1

)
, (7)

where γ =
√
1− (Zα)2.

III. GENERAL FORMULAS

We now turn to the general formulas describing the
self-energy screening correction to the g factor of a Li-
like ion. We will assume that the electronic configura-
tion has the form of one valence electron state (denoted
by v) over a closed shell of core electron states (denoted
by c). The derivation of the formulas was first presented
in Ref. [16] within the formalism of the two-time Green
function method [25]. In the present work, we will re-
formulate this problem in order to suit our calculational
approach.
We start with introducing two operators which will be

building blocks in the following formulas. The first one
is the electron-electron interaction operator I(ω), defined
as

I(ω, r1, r2) = e2 αµ
1α

ν
2 Dµν(ω, r12) , (8)

where αµ = (1,α) are the Dirac matrices, r12 = r1 − r2,
and Dµν(ω, r12) is the photon propagator. In the present
work we use the Feynman gauge, in which the photon
propagator takes the simplest form,

Dµν(ω, r12) = gµν
ei

√
ω2+iǫ r12

4πr12
, (9)

where r12 = |r12| and ǫ is a positive infinitesimal addi-
tion.
The one-loop self-energy (SE) operator Σ(ε) is defined

by its matrix elements with the one-electron wave func-
tions |a〉 and |b〉,

〈a|Σ(ε)|b〉 = i

2π

∫ ∞

−∞
dω

∑

n

〈an|I(ω)|nb〉
ε− ω − uεn

, (10)

where the sum over n is carried out over the complete
spectrum of the Dirac equation (implying the summation
over the discrete part of the spectrum and the integration
over the continuum part of the spectrum) and u = 1− iǫ.
We will split the total self-energy screening correction

into four parts as

∆gsescr = ∆gpo +∆gvr,Zee +∆gvr,scr +∆gdvr , (11)

with the individual contributions defined in the remain-
ing of this Section.



3

A. Perturbed-orbital SE contribution

The perturbed-orbital SE contribution incorporates all terms that can be expressed as matrix elements of the
one-loop SE operator Σ(ε). It can be represented as a sum of two parts,

∆gpo = ∆gpo1 +∆gpo2 , (12)

where the first part contains matrix elements of the SE operator with a perturbed wave functions on one side, whereas
the second term has perturbed wave functions on both sides. The first term can be expressed as

∆gpo1 = 2 〈v|Σ(εv)|δpo1v〉+ 2 〈c|Σ(εc)|δpo1c〉 , (13)

where

|δpo1v〉 ≡ δ|vcvc〉 − δ|vccv〉 , |δpo1c〉 ≡ δ|cvcv〉 − δ|cvvc〉 , (14)

and

δ|abcd〉 =
∑

µcore

{
∑

n1n2

′

[
|n1〉〈n1|Vg|n2〉〈n2b|I(∆db)|cd〉

(εa − εn1
)(εa − εn2

)
+

|n1〉〈n1b|I(∆db)|n2d〉〈n2|Vg|c〉
(εa − εn1

)(εc − εn2
)

+
|n1〉〈b|Vg|n2〉〈n1n2|I(∆db)|cd〉

(εa − εn1
)(εb − εn2

)
+

|n1〉〈n1b|I(∆db)|cn2〉〈n2|Vg|d〉
(εa − εn1

)(εd − εn2
)

]

+
∑

n

′

[
− |n〉〈n|Vg|a〉〈ab|I(∆db)|cd〉

(εa − εn)2
− |n〉〈nb|I(∆db)|cd〉〈a|Vg |a〉

(εa − εn)2
− |a〉〈a|Vg|n〉 〈nb|I(∆db)|cd〉

(εa − εn)2

+
|n〉〈n|Vg|a〉〈ab|I ′(∆db)|cd〉

εa − εn
+

|n〉〈nb|I ′(∆db)|cd〉
(
〈d|Vg |d〉 − 〈b|Vg|b〉

)

εa − εn

+
|a〉〈ab|I ′(∆db)|nd〉〈n|Vg |c〉

εc − εn
+

|a〉〈ab|I ′(∆db)|cn〉〈n|Vg|d〉
εd − εn

]

+
1

2
|a〉 〈ab|I ′′(∆db)|cd〉

(
〈d|Vg |d〉 − 〈b|Vg|b〉

)}
, (15)

where a, b, c, and d are the one-electron states of the core or the valence electron. Here and in what follows,
∆ab = εa − εb, the prime on the summation symbol means that terms with vanishing denominator should be omitted
from the summation, and each prime in I ′(ω) and I ′′(ω) denotes the derivative over the energy argument. The
summation over µcore runs over the angular-momentum projections of the core electron states, µcore = ±1/2 for the
(1s)2 shell.

The second term in Eq. (12) is represented by

∆gpo2 = 2
∑

µc

[〈
δZeev

∣∣Σ(εv)
∣∣δscrv

〉
+
〈
δZeec

∣∣Σ(εc)
∣∣δscrc

〉]
, (16)

where µc denotes the angular-momentum projection of the core electron state c, the perturbed wave functions are
defined by

∣∣δZeea
〉
=

∑

n

′ |n〉〈n|Vg |a〉
εa − εn

,
∣∣δscra

〉
=

∑

n

′ |n〉
[
〈nb|I(0)|ab〉 − 〈nb|I(∆ab)|ba〉

]

εa − εn
, (17)

and (ab) = (vc) or (cv).

In the notations of Ref. [16], ∆gpo1 corresponds to the sum of the A, E, and G terms, and ∆gpo2 corresponds to
the B term. Formulas (12)-(17) were derived in Ref. [16] by the two-time Green’s function method [25]. They can be
also obtained by the standard Rayleigh-Schrödinger perturbation theory as demonstrated in Appendix A.
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B. Perturbed Zeeman-vertex contribution

The perturbed Zeeman-vertex contribution incorporates terms that can be expressed as non-diagonal matrix ele-
ments of the Zeeman vertex operator plus the corresponding reducible part. It is given by

∆gvr,Zee = 2
∑

µc

{〈
v
∣∣
[
ΛZee(εv) + Vg,vv Σ

′(εv)
]∣∣δv

〉
+
〈
c
∣∣
[
ΛZee(εc) + Vg,cc Σ

′(εc)
]∣∣δc

〉}
, (18)

where Vg,aa ≡ 〈a|Vg |a〉, Σ′(ε) denotes the derivative of the self-energy operator over the energy argument ε, and the
perturbed wave function is defined as

∣∣δa
〉

=
∑

n

′ |n〉
[
〈nb|I(0)|ab〉 − 〈nb|I(∆ab)|ba〉

]

εa − εn
− 1

2
|a〉〈ab|I ′(∆ab)|ba〉 , (19)

with (ab) = (vc) or (cv). The matrix element of the Zeeman vertex operator (with the corresponding reducible part)
is given by

〈
a
∣∣ΛZee(εa) + Vg,aa Σ

′(εa)
∣∣δa

〉
=

i

2π

∫ ∞

−∞
dω

∑

n1n2

〈an2|I(ω)|n1δa〉
[
〈n1|Vg|n2〉 − 〈n1|n2〉 〈a|Vg|a〉

]

(εa − ω − u εn1
)(εa − ω − u εn2

)
. (20)

In the notations of Ref. [16], ∆gvr,Zee corresponds to the sum of the C1+H1 terms and a part of the H3 term.

C. Perturbed screened-vertex contribution

The perturbed screened-vertex contribution is a part that can be expressed in terms of non-diagonal matrix elements
of the screened (i.e., two-electron) vertex operator plus the corresponding reducible part. We represent it as a sum of
the vertex and the reducible parts,

∆gvr, scr = ∆gver, scr +∆gred, scr . (21)

The vertex part is

∆gver, scr = 2
∑

PQ

(−1)P+Q
∑

µc

[〈
Pv Pc

∣∣Λscr

∣∣δQv Qc
〉
+
〈
Pv Pc

∣∣Λscr

∣∣Qv δQc
〉

+
1

2

〈
PvPc

∣∣Λscr.d

∣∣QvQc
〉 (

〈Qc|Vg|Qc〉 − 〈Pc|Vg |Pc〉
)]
. (22)

Here, P and Q are the permutation operators interchanging the valence and the core electrons, (PvPc) = (vc) or
(cv), (QvQc) = (vc) or (cv), (δQv Qc) = (δv c) or (δc v), (Qv δQc) = (v δc) or (c δv), (−1)P and (−1)Q are the sign
of the permutation P and Q, respectively, |δa〉 ≡ |δZeea〉 is the first-order perturbation of the wave function by the
magnetic potential as given in Eq. (17), and matrix elements of the two-electron vertex operator and its derivative
are defined by

〈ab|Λscr|cd〉 =
i

2π

∫ ∞

−∞
dω

∑

n1n2

〈an2|I(ω)|n1c〉 〈n1b|I(∆db)|n2d〉
(εa − ω − u εn1

)(εc − ω − u εn2
)
, (23)

〈ab|Λscr.d|cd〉 =
i

2π

∫ ∞

−∞
dω

∑

n1n2

〈an2|I(ω)|n1c〉 〈n1b|I ′(∆db)|n2d〉
(εa − ω − u εn1

)(εc − ω − u εn2
)
. (24)

The reducible part is defined as

∆gred, scr = 2
[
〈v|Σ′(εv)|δ̃v〉+ 〈c|Σ′(εc)|δ̃c〉

]
, (25)

where

|δ̃a〉 =
∑

µcore

{
|δa〉

[
〈ab|I(0)|ab〉 − 〈ab|I(∆ab)|ba〉

]
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+ |a〉
[
〈δab|I(0)|ab〉+ 〈aδb|I(0)|ab〉 − 〈δab|I(∆ab)|ba〉 − 〈aδb|I(∆ab)|ba〉

− 1

2
〈ab|I ′(∆ab)|ba〉

(
〈a|Vg|a〉 − 〈b|Vg|b〉

)]}
. (26)

Here, |δa〉 ≡ |δZeea〉 and (ab) = (vc) or (cv).
In the notations of Ref. [16], ∆gver, scr corresponds to the sum of the C2+H2+F terms, and ∆gred, scr corresponds

to a part of the H3 term.

D. Double-vertex contribution

The double-vertex contribution is comprised of the matrix element of the double-vertex operator plus the corre-
sponding reducible parts, all of them containing the third power of ω in the denominator. It is represented as

∆gdvr =
∑

PQ

(−1)P+Q
∑

µc

〈
PvPc

∣∣Λdvr

∣∣QvQc
〉
, (27)

where the operator Λdvr consists of four parts,

Λvr,dbl = 2Λdver + 2Λd.scr + Λd.Zee + Λdd.se . (28)

The first term in the sum is the double-vertex operator, which is defined by its matrix element as

2 〈ab|Λdver |cd〉 = 2
i

2π

∫ ∞

−∞
dω

∑

n1n2n3

〈an3|I(ω)|n1c〉 〈n1b|I(∆db)|n2d〉 〈n2|Vg|n3〉
(εa − ω − u εn1

)(εc − ω − u εn2
)(εc − ω − u εn3

)
. (29)

The second term is the derivative of the screened-vertex operator, whose matrix element is

2 〈ab|Λd.scr |cd〉 = 2 〈c|Vg|c〉
i

2π

∫ ∞

−∞
dω

∂

∂εc

∑

n1n2

〈an2|I(ω)|n1c〉 〈n1b|I(∆db)|n2d〉
(εa − ω − u εn1

)(εc − ω − u εn2
)
. (30)

The third term is the derivative of the Zeeman-vertex operator, which is

〈ab|Λd.Zee |cd〉 = 〈ab|I(∆db)|cd〉
i

2π

∫ ∞

−∞
dω

∂

∂εa

∑

n1n2

〈an2|I(ω)|n1a〉 〈n1|Vg|n2〉
(εa − ω − u εn1

)(εa − ω − u εn2
)
. (31)

The last term in Eq. (28) is the second derivative of the SE operator,

〈ab|Λdd.se |cd〉 = 〈a|Vg|a〉 〈ab|I(∆db)|cd〉
i

2π

∫ ∞

−∞
dω

∂2

∂2εa

∑

n

〈an|I(ω)|na〉
εa − ω − u εn

. (32)

In the notations of Ref. [16], the four terms in the right-hand-side of Eq. (28) correspond to the D, I2, I1, and I3
terms, respectively.

IV. DIVERGENCIES

General formulas for the individual contributions pre-
sented in the previous Section contain divergencies, both
of the ultraviolet (UV) and infrared (IR) kind. The UV
divergencies appear in contributions containing the first
and the second power of ω in the denominator(s) inside
the radiative photon loop. According to the standard
procedure [26], UV divergencies are covariantly regular-
ized by isolating one or two first terms of the expan-
sion of the bound-electron propagators in terms of the
interaction with the binding nuclear field. These terms

are calculated in momentum space within the dimen-
sional regularization, whereas the remainder is calculated
in coordinate space using the partial-wave expansion of
the bound-electron propagators. The UV divergencies
are identified in terms of one-loop renormalization con-
stants and cancelled when all individual contributions
are added together. The cancellation of UV divergencies
was demonstrated in Ref. [16] and does not need to be
repeated here. In practical calculations, it is sufficient
just to replace the free SE operator and the free one-loop
vertex operator by their renormalized expressions.

We now turn to the IR divergencies, which have not
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been discussed in detail in Ref. [16]. These divergencies
occur when the denominators of the electron propagators
inside the radiative photon loop vanish at ω → 0. As we
will show below, the IR divergencies originate from terms
of the form

Jβ ≡ i

2π

∫ ∞

−∞
dω

〈ab|I(ω)|ab〉
(−ω + i0)β

, (33)

with β ≥ 2. In the present investigation, we will en-
counter IR divergent terms with β = 2 and β = 3.
It should be noted that the term with β = 1 (appear-
ing, e.g., in the one-loop SE matrix element) is IR safe.
In order to show this, it is sufficient to rotate the left
half of the ω integration contour on the right half-axis,
(−∞, 0) → (∞− i0,−i0), where the small addition −i0
indicates that this part lies on the lower bank of the cut
of the photon propagator. On the upper bank of the
cut of the photon propagator,

√
ω2 = ω, whereas on the

lower bank,
√
ω2 = −ω. Therefore,

J1 =
iα

2π

∫ ∞

0

dω
〈ab|α1µα

µ
2

(
eiωx12 − e−iωx12

)
|ab〉

−ω + i0
,

(34)

which is obviously converging at ω → 0.
In order to evaluate the IR divergent integrals J2 and

J3, we regularize the divergencies by introducing a fi-

nite photon mass µ in the photon propagator, evaluate
the integral over ω analytically, and separate out the µ-
dependent divergent terms, as described in Ref. [27]. The
results for the IR divergent integrals (omitting terms van-
ishing in the limit µ→ 0) are given by

J2 =
α

π

(
ln
µ

2
+ γ

)
+
α

π
〈ab|α1µα

µ
2 lnx12|ab〉 , (35)

J3 =
α

4µ
− α

4
〈ab|α1µα

µ
2 x12|ab〉 , (36)

where γ is Euler’s constant.
We now demonstrate the cancellation of the IR diver-

gencies in the sum (11). It is convenient to express the
IR-divergent parts of individual contributions in the form

∆gi,IR =
∑

PQ

(−1)P+Q
∑

µc

〈PvPc|Λi,IR|QvQc〉 , (37)

where i runs over the contributions described in Sec. III.
The perturbed-orbital SE contribution (12) does not con-
tain any IR divergences. In the perturbed Zeeman-vertex
contribution (18), IR divergencies intrinsically present in
the vertex and reducible parts cancel each other, so that
the total expression is finite and does not require a sepa-
rate treatment. The other contributions in Sec. III con-
tain IR divergencies, identified as follows:

〈ab|Λver,scr,IR|cd〉 =
α

π

(
ln
µ

2
+ γ

)
2

[
〈ab|I(∆db)|c δZeed〉+

1

2
〈ab|I ′(∆db)|c d〉

(
〈d|Vg |d〉 − 〈b|Vg|b〉

)]
, (38)

〈ab|Λver,red,IR|cd〉 =
α

π

(
ln
µ

2
+ γ

)
(−2)

×
[
〈δZeea b|I(∆db)|c d〉+ 〈a δZeeb|I(∆db)|c d〉+

1

2
〈ab|I ′(∆db)|c d〉

(
〈d|Vg |d〉 − 〈b|Vg|b〉

)]
, (39)

〈ab|Λdver,IR|cd〉 =
α

4µ
2 〈ab|I(∆)|cd〉 〈c|Vg |c〉+

α

π

(
ln
µ

2
+ γ

)
2 〈ab|I(∆)|δZeec d〉 , (40)

〈ab|Λd.scr,IR|cd〉 =
α

4µ
(−2) 〈ab|I(∆)|cd〉 〈c|Vg |c〉 , (41)

〈ab|Λd.Zee,IR|cd〉 =
α

4µ
(−2) 〈ab|I(∆)|cd〉 〈a|Vg |a〉 , (42)

〈ab|Λdd.se,IR|cd〉 =
α

4µ
2 〈ab|I(∆)|cd〉 〈a|Vg |a〉 . (43)

It can be easily seen that the sum of all IR contributions (38) - (43) vanishes. In actual calculations, the IR-divergent
contributions were isolated by introducing point-by-point subtractions in the integrand and then evaluated analytically
according to Eqs. (35) and (36). Specifically, the matrix element of the double-vertex operator (29) is represented as
(without the IR part accounted for by Eq. (40))

2 〈ab|Λdver|cd〉 = 2
i

2π

∫ ∞

−∞
dω

{
∑

n1n2n3

〈an3|I(ω)|n1c〉 〈n1b|I(∆db)|n2d〉 〈n2|Vg|n3〉
(εa − ω − u εn1

)(εc − ω − u εn2
)(εc − ω − u εn3

)

−
∑

µa′µc′µc′′

〈ac′|I(ω)|a′c〉 〈a′b|I(∆db)|c′′d〉 〈c′′|Vg|c′〉
(−ω + i0)3
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−
∑

µa′µc′ ,n2 6=c

〈ac′|I(ω)|a′c〉 〈a′b|I(∆db)|n2d〉 〈n2|Vg|c′〉
(−ω + i0)2(εc − εn2

)

}

− α

2

∑

µa′µc′µc′′

〈ac′|α1µα
µ
2 x12|a′c〉 〈a′b|I(∆db)|c′′d〉 〈c′′|Vg |c′〉

+
2α

π

∑

µa′µc′ ,n2 6=c

〈ac′|α1µα
µ
2 lnx12|a′c〉 〈a′b|I(∆db)|n2d〉 〈n2|Vg |c′〉

(εc − εn2
)

, (44)

where a′ and c′ (c′′) denote the electron states that differ from a and c only by the angular-momentum projection,
µa′ and µc′ (µc′′), correspondingly.

V. COMPUTATION OF INDIVIDUAL

CONTRIBUTIONS

A. Perturbed-orbital SE contribution

The calculation of the perturbed-orbital SE contribu-
tions, given by Eqs. (13) and (16), is naturally reduced
to a computation of non-diagonal matrix elements of the
SE operator. In the present work, we use the numerical
approach developed in Ref. [28], which has an important
advantage of a rapid convergence of the partial-wave ex-
pansion. The perturbed wave functions in Eqs. (13) and
(16) were calculated with help of the finite basis-set for
the Dirac equation constructed with B-splines [29]. We
do not use the dual kinetic balance (DKB) method [30]
in the present work, since our calculations are performed
with the point nuclear model, for which the DKB ap-
proach is not applicable.
The calculation of the perturbed-orbital SE contri-

butions is simplified by the fact that the matrix ele-
ment of the SE operator is diagonal in the relativistic
angular-momentum quantum number κ and the angular-
momentum projection µ of the external wave functions,

〈a|Σ(ε)|b〉 = δκaκb
δµaµb

(
. . .

)
, (45)

where (. . .) does not depend on the angular-momentum
projections. Therefore, Eq. (13) involves the perturbed
wave functions of just one angular symmetry. Eq. (16)
contains a summation over several angular symmetries of
the perturbed wave functions (three in the general case
but just two in our case). We also note that the perturbed
wave functions |δpoa〉 and |δscra〉 contain imaginary parts
which contribute when combined with the imaginary part
of the SE operator.
For actual calculations of Eq. (16), it is convenient to

move the summation over µc into the definition of one
of the perturbed wave functions. For the first matrix
element in Eq. (16), this can be done immediately. In
order to do this in the second matrix element, we fix
the angular-momentum projection of the c state in the
magnetic perturbed wave function as µc = 1/2,

∣∣δZeec
〉

→
∑

n

′ |n〉〈n|Vg|c, µc = 1/2〉
εc − εn

, (46)

and move the summation over µc into the definition of
|δscrc〉, together with the appropriate factor sµc

that
carries the dependence of the magnetic matrix element
〈n|Vg|c〉 on µc,

∣∣δscrc
〉

→
∑

µc

sµc

∑

n

′ |n〉
[
〈nv|I(0)|cv〉 − 〈nv|I(∆cv)|vc〉

]

εc − εn
,

(47)

where

sµc
= (−1)µc−1/2 C10

jnµc,jc−µc

[
C10

jn1/2,jc −1/2

]−1

. (48)

In this way, we reduce the number of matrix elements of
the SE operator to be computed by half.
In order to check our numerical procedure for compu-

tation of the perturbed wave functions in Eqs. (13) and
(16), we replace the self-energy operator by the vacuum-
polarization potential, Σ(ε) → VVP, thus reproducing
the corresponding vacuum-polarization screening correc-
tions, calculated previously in Refs. [16, 23].

B. Perturbed Zeeman-vertex contribution

The perturbed Zeeman-vertex contribution, defined by
Eq. (18), can be considered as a non-diagonal generaliza-
tion of the Zeeman-vertex correction for the hydrogenlike
atom, specifically, ∆gvr given by Eq. (12) of Ref. [31].
The only difference of Eq. (18) as compared to the hy-
drogenic case is that the reference-state wave function
on the right-hand side of the matrix element is replaced
by the perturbed wave function |δa〉 given by Eq. (19).
It should be mentioned that the perturbed wave func-
tion has contributions from several angular symmetries
(three in the general case but only two in our case of
κv = κc = −1) and an imaginary part, which contributes
to the final result.
Similarly to the perturbed-orbital SE contribution, it

is convenient to move the summation over the angular-
momentum projection of the core electron µc in Eq. (18)
into the definition of the perturbed wave function. For
the first matrix element 〈v| . . . |δv〉, it can be done im-
mediately. For the second matrix element 〈c| . . . |δc〉,
some manipulations are needed. Specifically, we observe
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that the dependence of the vertex matrix element on
the angular-momentum projections of the external wave
functions can be factorized out as

〈
c
∣∣ΛZee(εc)

∣∣c′
〉
= (−1)jc−µc C 1 0

jc′µc′ , jc −µc

(
. . .

)
, (49)

where (. . .) does not depend on the angular-momentum
projections. Therefore, we can fix the momentum pro-
jection µc = 1/2 in the matrix element and redefine the
perturbed wave function as

|δc
〉
→

∑

µc

sµc
|δc

〉
, (50)

where sµc
is given by Eq. (48).

The numerical evaluation of the perturbed Zeeman-
vertex contribution is similar to the calculation of the
diagonal matrix elements for the hydrogenic atoms, de-
scribed in details in Refs. [31, 32]. Specifically, the whole
contribution is separated into three parts,

∆gvr,Zee = ∆g
(0)
vr,Zee +∆g

(1)
vr,Zee +∆g

(2+)
vr,Zee , (51)

where the superscript indicates the number of interac-
tions with the binding Coulomb potential in the elec-
tron propagators. The first two terms in the right-hand-
side of the above equation are evaluated in momentum
space, without any partial-wave expansion. Only the
last term containing two and more interactions with the
Coulomb field is calculated in coordinate space. Thanks

to the separation of the one-potential term ∆g
(1)
vr,Zee, the

partial-wave expansion of the remainder ∆g
(2+)
vr,Zee con-

verges rapidly and can be calculated to high accuracy.

The contributions ∆g
(0)
vr,Zee and ∆g

(1)
vr,Zee need some gen-

eralization as compared to the diagonal case because of
different angular symmetries of the perturbed wave func-
tion; the corresponding formulas were already derived in
our calculation of the self-energy correction to the mag-
netic shielding [33, 34].
We note that as long as we calculate the vertex and

the reducible part together and use an appropriate ω-
integration contour (consisting of the low- and high-
energy parts), the integrand in Eq. (20) has a smooth
small-ω behaviour. The would-be IR divergences in the
vertex and reducible parts are cancelled numerically at a
given ω in this approach. Alternatively, the contribution
with εn1

= εn2
= εa can be separated out and evalu-

ated analytically with help of formulas from Sec. IV. We
checked the equivalence of both methods in order to test
the consistency of our numerical procedure.
We mention here some of the further cross-checks of

the numerical procedure made in order to eliminate pos-
sible errors: (i) by replacing |δa〉 → |a〉 in Eq. (20) we
reproduced known results for the vertex and reducible
diagonal matrix elements for the 1s and 2s hydrogenic
states [31]; (ii) by replacing ΛZee(εa)+Vg,aa Σ

′(εa) → Vg
in Eq. (20) we reproduced known results for the one-
photon exchange correction to the g factor, both in co-
ordinate and momentum space.

C. Perturbed screened-vertex contribution

The perturbed screened-vertex contribution, repre-
sented by Eqs. (21)-(26), is similar to the screened vertex
and reducible corrections to the Lamb shift calculated in
Refs. [35–37]. The general scheme of evaluation remains
the same as for the Lamb shift. Specifically, the ver-
tex contribution is separated into the free (0) and many-
potential (1+) parts,

∆gver,scr = ∆g(0)ver,scr +∆g(1+)
ver,scr . (52)

The free vertex part contains only free electron propa-
gators; it is renormalized and calculated in momentum
space. The many-potential part contains one and more
interactions with the binding Coulomb field; it is calcu-
lated in coordinate space using the partial-wave expan-
sion of the electron propagators. For the reducible contri-
bution, we separate the zero-potential and one-potential
contributions,

∆gred,scr = ∆g
(0)
red,scr +∆g

(1)
red,scr +∆g

(2+)
red,scr . (53)

The zero- and one-potential contributions are calculated
in momentum space. The separation of the one-potential
contribution improves the convergence of the partial-
wave expansion in the many-potential reducible contri-
bution.
The computation of the many-potential part is very

similar to that for the Lamb-shift case. We introduce
perturbed wave functions defined by Eqs. (17) and (26)
and calculate them by using the finite basis-set method
[29]. Note that several different symmetries of the per-
turbed wave functions contribute to the the final result
(three in the general case but just two in our case).
Contrary to the many-potential part, the evaluation of

the free part turned out to be different from our previous
calculations for the Lamb shift [35, 36]. The difference is
that for the Lamb shift, analytical formulas for the basic
angular integrals were derived using averaging over the
angular-momentum projections of the valence state. In
the g-factor calculations, the angular-momentum projec-
tion of the valence-electron state is fixed. Moreover, we
need to account for the case when the angular symmetry
of the perturbed wave function is different from the angu-
lar symmetry of the reference state. For this reason, we
developed a generalized procedure for performing angu-
lar integrations in the momentum space. The evaluation
of the free screened-vertex matrix elements is described
in Appendix C.
Our numerical calculations of the many-potential ver-

tex and reducible parts were performed using the analyt-
ical representation of the Dirac-Coulomb Green function
in terms of the Whittaker functions. Integrations over
the radial variables were carried out by the numerical
approach described in detail in the recent review [27].
The partial-wave expansion was extended up to |κ| = 30;
the remaining tail of the expansion was estimated by a
polynomial fitting in 1/|κ|.
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We mention here several cross-checks of the compu-
tational procedure made in order to eliminate possible
errors: (i) we checked that in the diagonal case, our cal-
culations reproduce known results for the Lamb shift [35];
(ii) we also checked that by replacing the radiatively cor-
rected vertex by the plain vertex we reproduce known
results for the one-photon exchange correction to the g
factor, both in coordinate and momentum space. Specif-
ically, as a part of this test, we checked that the replace-
ment ΓR,µ → γµ in Eq. (C1) yields the matrix element
of the electron-electron interaction operator I(∆) in the
coordinate-momentum representation.

D. Double-vertex contribution

The computation of the double-vertex contribution is
the most complicated part of the calculation. We start
our discussion with the last three terms in the right-hand
side of Eq. (28). These terms are induced by derivatives
of the Zeeman-vertex, screened-vertex, and self-energy
operators. Each of these operators were already exam-
ined, so we need only to evaluate the derivative. In actual
calculations, we find it convenient to convert the deriva-
tive ∂/(∂εa) to ∂/(∂ω) and to apply integration by parts,
moving the derivative to the photon propagator. Specif-
ically, we use the following identities,

∫ ∞

−∞
dω

∂

∂εa

∑

n1n2 6=a

〈an2|I(ω)|n1a〉 〈n1|Vg |n2〉
(εa − ω − u εn1

)(εa − ω − u εn2
)

=

∫ ∞

−∞
dω

∑

n1n2 6=a

〈an2|I ′(ω)|n1a〉 〈n1|Vg|n2〉
(εa − ω − u εn1

)(εa − ω − u εn2
)
,

(54)

and

∫ ∞

−∞
dω

∂2

∂2εa

∑

n6=a

〈an|I(ω)|na〉
εa − ω − u εn

=

∫ ∞

−∞
dω

∂

∂εa

∑

n6=a

〈an|I ′(ω)|na〉
εa − ω − u εn

=

∫ ∞

−∞
dω

∑

n6=a

〈an|I ′′(ω)|na〉
εa − ω − u εn

. (55)

The advantage of using the above formulas is that the
derivative over the photon propagator can be easily eval-
uated analytically, contrary to the derivative over the
electron propagator. An additional bonus from this
transformation is that the behaviour of the transformed
integrand is smoother in the low-ω region.
All double-vertex contributions (29)-(32) contain the

third power of ω in the denominator and thus are con-
vergent in the ultraviolet region. Therefore, in principle,
one does not need to separate out the zero-potential con-
tributions in them. However, we find it advantageous to
do so, since this subtraction improves the convergence of

the partial-wave expansion drastically in the low-Z re-
gion.
Specifically, we separate out the contributions of the

free-electron propagators from the last three terms on
the right-hand side of Eq. (28) and evaluate them in
momentum space, without any partial-wave expansion.
Formulas for these zero-potential contributions are eas-
ily obtained by differentiation of the corresponding ex-
pressions for the zero-potential Zeeman-vertex, screened-
vertex, and self-energy operators. A comparison of the
numerical results obtained in the high-Z region with and
without the subtraction was employed as a useful check
of our numerical procedure. In the low-Z region, the
convergence of the partial-wave expansion becomes in-
creasingly slower. Even with the subtraction, we had to
extend the partial-wave expansion up to |κmax| = 60,
in order to reach the desired numerical accuracy. The
computation was carried out with help of the analytical
representation of the Dirac-Coulomb Green function [27].
The evaluation of the matrix elements of the double-

vertex operator (29) is the most computationally inten-
sive part. The straightforward approach is to compute
it as it stands, after separating IR divergencies accord-
ing to Eq. (44). However, this turns out to be applicable
only in the high-Z region; for lower Z, the convergence of
the partial-wave expansion becomes excruciatingly slow.
The standard way to accelerate the convergence would
be to separate out the zero-potential double-vertex con-
tribution and to calculate it in momentum space, which
is a very cumbersome task. Fortunately, this is not re-
ally needed. It turns out that the convergence of the
partial-wave expansion can be greatly accelerated if one
separates out only a relatively simple part of the full zero-
potential contribution; this is the approach used in the
present work.

Specifically, we introduce the subtraction term ∆g
(s)
dver

which we obtain from ∆gdver by applying the following
prescriptions: (i) all bound-electron propagators are re-
placed by the free electron propagators, (ii) only the di-
rect contribution is taken (PvPc = vc and QvQc = vc),
(iii) only the Coulomb part of the electron-electron in-
teraction is taken (I(∆) → α/r12). We note that under
these restrictions the contribution in which the radiative
loop is attached to the core-electron line vanishes after
the summation over the angular-momentum projections
of the core electrons, so that only the contribution with
the radiative loop attached to the valence electron line
survives.
The subtraction term defined in this way is represented

in momentum space as (see Sec. III of Ref. [31])

∆g
(s)
dver= 4im

∫
dp1 dp2 dl

(2π)6
Vcore(l)

×ψv(p1)
[
Λ

(0)
dver(p1, l, p2)×∇lδ

3(q)
]
z
ψv(p2) ,

(56)

where q = p1 − l − p2, Vcore is the Fourier-transformed
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potential of the charge density of the core electrons,

Vcore(p) = 2
4πα

p2

∫ ∞

0

dz z2 j0(pz)
[
g2c (z) + f2

c (z)
]
,

(57)

and Λ
(0)
dver is the free double-vertex operator defined as

Λ
(0)
dver(p1, l, p2)= −4πiα

∫
d4k

(2π)4
γσ

p/1 − k/+m

(p1 − k)2 −m2
γ0

× p/1 − k/− l/+m

(p1 − k − l)2 −m2
γ

p/2 − k/+m

(p2 − k)2 −m2
γσ .

(58)

Here, p1, l, and p2 are 4-vectors with a fixed time compo-
nent, p1 = (εv,p1), l = (εv, l), p2 = (εv,p2), p/ = pµγ

µ,
and γµ = (γ0,γ) are the Dirac matrices.
We now observe that the subtraction term (56) can

be obtained from the one-potential vertex contribution
given by Eq. (43) of Ref. [31], by replacing the nuclear
Coulomb potential VC(q) = −4πZα/q2 with the poten-
tial of the core charge density Vcore(q). We, therefore,
just use the formulas derived in Sec. IIIB of Ref. [31] in
order to compute the double-vertex subtraction contri-
bution (56) in momentum space.
The remainder represented by the difference ∆gdver −

∆g
(s)
dver was calculated in coordinate space using the

partial-wave expansion of the electron propagators. The
low–energy part of the remainder was computed using
the finite basis-set method. The high-energy part of the
remainder was evaluated with the analytical representa-
tion of the Dirac Green function. The radial integrations
were computed by the numerical approach described in
detail in the review [27].
The number of partial waves included into the compu-

tation varied from |κmax| = 50 in the high- and medium-
Z region to |κmax| = 75 for Z ≤ 10. In order to cross-
check our numerical procedure, we calculated the low-
energy part of the remainder in two ways, using the
analytical representation of the Green function and the
finite-basis set B-spline representation.

VI. NRQED EXPANSION

Within the nonrelativistic quantum electrodynamics
(NRQED), the bound-electron g factor of light atoms
is represented by an expansion in powers of the fine-
structure constant α. The leading QED contribution to
the bound-electron g factor is of order α3 and comes from
the anomalous magnetic moment of the electron. The
corresponding contribution was derived by Hegstrom [38]
and calculated in Refs. [19–21]. In the present work we
calculate the leading logarithm of the next-order contri-
bution, α5 lnα.
The α5 lnα QED contribution can be easily obtained

as a straightforward generalization of the corresponding
result for the hydrogenic ions derived in Ref. [39]. So,

TABLE I. Numerical results for the Fermi (spin-factorized)
matrix element of the δ function operator for the ground state
of Li-like ions, in a.u.

Z 〈
∑

a
δ3(ra)〉F

3 0.231 249 661 (10)
4 0.994 525 337 (20)
5 2.504 853 26 (15)
6 4.998 567 10 (10)
7 8.713 793 95 (8)
8 13.889 046 88 (8)
9 20.762 960 7 (2)
10 29.574 218 2 (2)
11 40.561 523 7 (2)
12 53.963 593 0 (8)
13 70.019 147 6 (2)
14 88.966 913 0 (2)

the QED contribution to the bound-electron g factor of
light atoms is

δgQED =
α3

π

〈∑

a

Q(3)
a

〉
F

+ α5Z
32

9
ln
[
(Zα)−2

] 〈∑

a

δ3(ra)
〉
F
, (59)

were a numerates the electrons in the atom, the operator

Q
(3)
a is given by Eq. (7) of Ref. [19], and 〈.〉F denotes the

so-called Fermi (spin-factorized) radial matrix element,
defined for an arbitrary one-electron operator H as (see
Ref. [19] for details)

〈
ψ
∣∣∑

a

Haσa

∣∣ψ
〉
=

∑

a

〈
φ
∣∣Ha

∣∣φ
〉
F
2S , (60)

where ψ is the full wave function of the reference state
(i.e., the antisymmetrized product of the spacial and the
spin functions), φ is the spacial part of the wave function,
and S =

∑
a σa is the spin operator.

The matrix elements of Qa were calculated for the
ground state of Li-like ions in Ref. [19] and fitted to the
1/Z-expansion form as

〈∑

a

Q(3)
a

〉
F
=

1

24
Z2 − 274

2187
Z

+ 0.070 41 + 0.0017
1

Z
+ . . . . (61)

The Fermi matrix element of the δ function are cal-
culated in the present work and listed in Table I. We
represent the results in a form of the 1/Z expansion as

〈∑

a

δ3(ra)
〉
F
=
Z3

8π

(
1− 2.6557

1

Z
+ 0.914

1

Z2
+ . . .

)
.

(62)

The result (59) can be extended further by observing
that all terms in the α expansion for hydrogenic atoms
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proportional to the expectation value of the δ function
can be immediately generalized to the many-electron case
by the substitution 〈δ3(r)〉 → 〈∑a δ

3(ra)〉F . We, there-
fore, obtain the following approximate representation for
the radiative QED contribution to the bound-electron g
factor of light atoms,

δgQED ≈ α3

π

〈∑

a

Q(3)
a

〉
F
+ α5Z

〈∑

a

δ3(ra)
〉
F

×
[
32

9
ln
[
(Zα)−2

]
+ a40 + (Zα) a50

]
, (63)

where a40 and a50 are the hydrogenic coefficients
for the 2s state, a40,se(2s) = −10.707 716 [39],
a40,vp(ns) = −16/15 [40], a50,se(ns) = 23.282 005 [41],
and a50,vp(ns) = 127π/216 [40, 42], with subscripts
“se” and “vp” labelling contributions originating from
the self-energy and vacuum-polarization, correspond-
ingly. The hydrogenic coefficient a40(ns) is weakly n-
dependent (a 5% difference between the 1s and 2s states),
so we expect the unknown screening contribution to it to
be within 10-20%. The next-order coefficient a50 is n-
independent, so the corresponding result for few-electron
atoms is exact.

VII. RESULTS AND DISCUSSION

Numerical results of our all-order calculation of the
self-energy screening correction to the g factor of the
ground (1s)22s state of Li-like ions are presented in Ta-
ble II. Our calculation is performed for the point nucleus.
We note significant numerical cancellations between in-
dividual contributions, present throughout the whole Z
region. For Z = 82, our result is in perfect agreement
with that of Ref. [16] but significantly more accurate.
In order to analyze our all-order numerical results for

the self-energy screening correction, it is convenient to
separate out its leading α and Z dependence, by intro-
ducing the function G(Zα) as follows

∆gsescr = α2(Zα)G(Zα) . (64)

The Zα expansion of the function G follows from the
results obtained in Sec. VI,

G(Zα) = g30 + (Zα)2
[
g51 ln(Zα)

−2 + g50 + (Zα) g60 + . . .
]
,

(65)

where the leading coefficient g30 = −274/(2187π) =
−0.039 880 . . ., g51 = −2.6557/(8π) × (32/9) =
−0.3757, g50 ≈ −2.6557/(8π) × (−10.708), and g60 =
−2.6557/(8π) × 23.282. Fig. 1 shows the comparison
of the all-order numerical results for the scaled function
G(Zα) with the predictions based on the Zα-expansion
(65). We conclude that our all-order results converge
to the prediction of the Zα-expansion as Z → 0. We
also observe that the inclusion of the approximate higher-
order contributions g50 and g60 significantly improves the

agreement between the all-order and Zα-expansion re-
sults. The deviation of the all-order results from the
Zα-expansion in the low-Z region is consistent with an
additional contribution to g50, δg50 ≈ 0.2.
So far we addressed the self-energy screening correc-

tion of the relative order 1/Z as compared to the leading,
one-electron contribution. The complementary vacuum-
polarization screening correction was calculated previ-
ously in Ref. [16] and recently reproduced in Ref. [23].
In order to complete the calculation of the QED screen-

ing effects, we need also to estimate the contribution of
the higher-order screening ∝ 1/Z2+. For low-Z ions, this
can be done immediately with help of the NRQED for-
mula (63). Such approach, however, would result in large
uncertainties for high-Z ions. In order to avoid this, we
devised an estimate which is equivalent to the one ob-
tained from Eq. (63) in the low-Z region but applicable
also for high-Z ions. Specifically, we estimate the QED
screening correction of order 1/Z2 as

g
(1/Z2)
QED ≈ α3

[
0.022412+

(Zα)2

8π

c2
c1
H(1)(Zα)

]
, (66)

where the first term in the brackets comes from the
1/Z expansion of 〈Qa〉 in Eq. (63), c1 = −2.6557 and
c2 = 0.914 are the coefficients of the 1/Z expansion of
〈
∑

a δ(ra)〉F in Eq. (62), and H(1) is the 1/Z1 higher-
order remainder extracted from the all-order results ob-
tained in this work. Specifically, we define H(1) by rep-
resenting the all-order results for the self-energy and
vacuum-polarization screening of relative order 1/Z as

g
(1/Z)
QED = α2 (Zα)

[
− 274

2187π
+

(Zα)2

8π
H(1)(Zα)

]
. (67)

We also devise an alternative estimation of the 1/Z2

QED screening contribution, based on the one-electron

QED results. Specifically, we introduce the 1/Z0 higher-
order remainder function H(0), by representing the all-
order results for the one-electron self-energy and vacuum-
polarization of the 2s state as

g
(1/Z0)
QED =

α

π
+ α (Zα)2

[
1

24π
+

(Zα)2

8π
H(0)(Zα)

]
.

(68)

After that, our second approximation for the 1/Z2 QED
screening correction is obtained as

g
(1/Z2)
QED ≈ α3

[
0.022412+

(Zα)2

8π

c2
c0
H(0)(Zα)

]
, (69)

where c0 = 1 is the first coefficient of the 1/Z expansion
(62).
The QED screening effects of order 1/Z3 and higher are

relevant only for the lightest ions and can be accounted
for in the leading order of the α expansion,

g
(1/Z3+)
QED =

α3

π

〈∑

a

Q(3)
a

〉(3+)

F
, (70)
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TABLE II. Self-energy screening correction to the g factor of the ground state of Li-like ions, for the point nucleus, in units of
10−6.

Z po vrzee vrscr d.Zee d.scr dd.se dver Total

6 1.3974 (2) −1.4021 (2) −6.2588 (1) 17.1449 (5) 13.3450 (2) −13.9006 (1) −10.4237 (3) −0.0979 (7)
8 1.8551 (2) −1.8651 (2) −7.8317 (1) 21.1762 (2) 16.5302 (2) −17.2682 (1) −12.7307 (2) −0.1341 (5)
10 2.3088 (3) −2.3259 (2) −9.2930 (2) 24.8517 (1) 19.4483 (2) −20.3670 (1) −14.7945 (2) −0.1715 (5)
12 2.7588 (3) −2.7851 (2) −10.6671 (1) 28.2509 (1) 22.1588 (1) −23.2561 (1) −16.6711 (5) −0.2109 (7)
14 3.2055 (3) −3.2431 (2) −11.9695 (1) 31.4263 (1) 24.7013 (2) −25.9750 (1) −18.3974 (4) −0.2520 (6)
18 4.0917 (2) −4.1584 (2) −14.4012 (1) 37.2484 29.3892 (2) −31.0088 (1) −21.4996 (6) −0.3388 (7)
20 4.5325 (2) −4.6170 (2) −15.5459 (2) 39.9462 (1) 31.5731 (2) −33.3620 (1) −22.9113 (4) −0.3844 (6)
24 5.4126 (1) −5.5391 (2) −17.7206 (1) 45.0071 (1) 35.6896 (1) −37.8097 (2) −25.5197 (2) −0.4797 (4)
32 7.1871 (1) −7.4256 (1) −21.7175 (3) 54.1335 43.1770 (1) −45.9303 (2) −30.1107 (1) −0.6864 (4)
40 9.0175 (1) −9.4104 (2) −25.3893 (3) 62.3769 50.0049 (3) −53.3559 (2) −34.1613 −0.9177 (5)
54 12.4894 (1) −13.2895 (1) −31.3949 (2) 75.6765 61.1161 (3) −65.4552 (3) −40.5563 −1.4139 (5)
70 17.1547 (1) −18.7634 (1) −38.1666 (3) 90.3570 (2) 73.4067 (4) −78.8834 (4) −47.3792 −2.2741 (7)
82 21.3885 (2) −24.0242 (1) −43.6095 (4) 101.7123 82.8012 (4) −89.2703 (5) −52.3435 −3.3455 (8)

−3.3a

92 25.5694 (2) −29.5452 (2) −48.6985 (4) 111.8057 90.9525 (3) −98.4813 (5) −56.3789 −4.7763 (8)

a Glazov et al., 2010 [16] .
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FIG. 1. The self-energy screening correction to the g factor
of Li-like ions, in terms of the scaled function G(Z), defined
by Eq. (64). The solid line and filled dots (red) represent the
numerical all-order (in Zα) results obtained in this work. The
dotted line corresponds to the contribution of the leading Zα-
expansion term g30. The dashed line (green) corresponds to
the contribution of two first terms of the Zα expansion, g30
and g51. The dashed-dotted line (blue) shows the contribution
of all known terms in Eq. (65).

where the matrix element contains all terms of its 1/Z
expansion starting with 1/Z3,

〈∑

a

Q(3)
a

〉(3+)

F
=
〈∑

a

Q(3)
a

〉
F

−
( 1

24
Z2 − 274

2187
Z + 0.070 41

)
.

(71)

Table III summarizes our results for the individual

QED screening contributions for the ground state of Li-
like ions. The column “SE(pnt)” lists results for the self-
energy screening correction of the relative order 1/Z for
the point nuclear model, taken from Table II.

The column “SE(fns)” presents our results for the
shifts of the point-nucleus correction due to the finite
nuclear size. It was calculated by taking the correspond-
ing hydrogenic correction for the 2s state, obtained as in
Ref. [43], and scaling it by 〈δ3(r)〉 → 〈∑a δ

3(ra)〉F . We
assumed an uncertainty of 25% of this approximation.
This correction is relevant only for high-Z ions; its un-
certainty is negligible on the level of the total theoretical
uncertainty.

The column “VP” lists results for the vacuum-
polarization screening correction of the relative order
1/Z, as calculated in Ref. [23]. The uncertainty of
this part comes from uncalculated higher-order contribu-
tions in the so-called magnetic-loop vacuum-polarization.
It was estimated by multiplying the results for the
magnetic-loop correction obtained in the free-loop ap-
proximation (see Ref. [23] for details) by the factor of
2 (Zα)2.

The column “h.o.” presents results for the QED
screening correction of the relative order 1/Z2+. They
were obtained as a half-sum of the two approximations
given by Eqs. (66) and (69) plus the higher-order screen-
ing contribution given by Eq. (70). The quoted uncer-
tainty was obtained as twice the difference between the
two approximations.

In Table III we compare our final theoretical values for
the QED screening effect with previous results obtained
by Glazov, Volotka and co-authors [9, 17]. We mention
that our present approach is equivalent to theirs for the
1/Z part of the QED screening effects but differs in esti-
mating the higher-order 1/Z2+ screening contributions.
In our approach, we base our estimate on the NRQED
results, whereas Refs. [9, 17] approximately accounted
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for the higher-order screening by using various screen-
ing potentials. We observe the general consistency of the
two calculations. This consistency is a rather strict test,
because of delicate numerical cancellations between the
individual terms required to get the final result. Still,
the estimated error bars of the two calculations do not
overlap in most cases, the deviation being on the level of
2-3 σ. This indicates that further work is needed in order
to fully cross-check the QED screening calculations.
In Table IV we present a compilation of all known bind-

ing corrections to the g-factor of the ground state of Li-
like silicon, 28Si11+. As compared to the analogous table
in our previous investigation [19], the one-loop QED ef-
fects of the relative order 1/Z and 1/Z2+ and the nuclear
recoil contributions were updated. The screened QED ef-
fects are calculated in the present work, whereas the nu-
clear recoil corrections of relative orders 1/Z0, 1/Z1, and
1/Z2+ were calculated by Shabaev et al. [18]. It should
be mentioned that Shabaev et al. found a mistake in the
previous calculations of the recoil effect [20, 21], which
resulted in a small shift of theoretical values for this cor-
rection.
Our final theoretical value presented in Table IV is in

agreement with the previous theoretical results of Glazov
et al. [9] and Volotka et al. [17]. However, our result dis-
agrees with the recent experimental value [9] by about
five standard deviations. It is interesting that the the-
oretical predictions, with time, are moving away from
the experimental result, while steadily increasing in esti-
mated accuracy.
Considering the comparison of the present theoreti-

cal prediction for silicon with the latest theoretical re-
sult of Glazov et al. [9], we note two small deviations.
One is the difference of +0.005 (2) × 10−6 in the QED
screening effect, whereas the other is the difference of
−0.003 (3) × 10−6 in the 1/Z3+ electron-correlation ef-
fect. These two differences partially cancel each other,
resulting in the total difference of the two total theoret-
ical values of +0.002 (4)× 10−6, well within the quoted
error bars.
Commenting on the disagreement with the experi-

mental result for silicon, we note that not all effects
in the theoretical prediction has been confirmed by
independent calculations so far. Apart from the already
mentioned small inconsistencies between the two calcu-
lations of the QED screening correction and the 1/Z3+

electron-correlation effect, the two-photon exchange
QED effect has so far been calculated by one group only
[17]. The other contributions in the theoretical predic-
tion seem to be under a better control. In particular, the
nuclear recoil effect was recently calculated rigorously
within QED by Shabaev and co-workers [18]. They
found a mistake in the earlier calculation by Yan [20, 21].
After correcting this mistake, the extrapolation of Yan’s
results (as in Ref. [19]) yields a result for silicon that
agrees with that of Shabaev and co-workers up to few
parts in 10−10. So, this effect cannot be responsible for
the deviation from the experimental value.

SUMMARY

We performed a calculation of the self-energy screening
effects for the g factor of the ground state of Li-like ions.
The contribution of the relative order 1/Z was calculated
rigorously within QED, to all orders in the binding nu-
clear strength parameter Zα. The higher-order screening
contribution ∝ 1/Z2+ was calculated approximately, us-
ing results for the coefficients of the α expansion obtained
in this work in the framework of nonrelativistic QED. In
the result, we were able to improve the theoretical ac-
curacy of the QED screening effects in light Li-like ions
and, as a consequence, the accuracy of the theoretical
prediction of the g factor of Li-like silicon. The total
theoretical result for Li-like silicon is in agreement with
previous theoretical calculations but differs by about five
standard deviations from the experimental result. We
conclude that further theoretical work is needed in order
to investigate small deviations between different theoret-
ical calculations and a much larger discrepancy with the
experimental result.
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Appendix A: Perturbation of the one-photon exchange correction

In this Section we consider the first-order perturbation of the one-photon exchange correction to the g factor of the
ground state of a Li-like ion by some potential U . The result can be used to derive formulas for the perturbed-orbital
self-energy and vacuum-polarization contributions.
The one-photon exchange correction to the g factor of a Li-like ion was derived in Ref. [13] (see also Ref. [45]) and

can be expressed in the following form,

∆g1ph = 2
∑

µc

[
Λ1ph(vcvc) + Λ1ph(cvcv)− Λ1ph(cvvc)− Λ1ph(vccv)

]
, (A1)

where the summation runs over the angular-momentum projection of the core electron states µc and

Λ1ph(abcd) =
∑

n6=a

〈a|Vg|n〉〈nb|I|cd〉
εa − εn

+
1

4
〈ab|I ′|cd〉

(
〈d|Vg |d〉 − 〈b|Vg|b〉

)
. (A2)

Here, I ≡ I(∆db) is the operator of the electron-electron interaction and the prime on I ′ denotes the derivative over
the energy argument.
We now consider the first-order perturbation of Λ1ph(abcd) induced by some potential U . One perturbs the external

wave functions, the electron propagator, and the energy argument of the electron-electron interaction operator I(∆)
with help of identities derived in Appendix B, specifically, Eqs. (B1), (B2) and (B5). The result is conveniently
represented as a sum of two parts,

δUΛ1ph(abcd) = Λirred(abcd) + Λred(abcd) . (A3)

The first part Λirred(abcd) contains all terms that do not vanish within the Breit approximation (i.e., do not contain
derivatives of the electron-electron interaction operator),

Λirred(abcd) =
∑

n1n2

′

{
〈a|U |n1〉 〈n1|Vg|n2〉 〈n2b|I|cd〉

(εa − εn1
)(εa − εn2

)
+

〈a|Vg |n1〉 〈b|U |n2〉 〈n1n2|I|cd〉
(εa − εn1

)(εb − εn2
)

+
〈a|Vg |n1〉 〈n1b|I|n2d〉 〈n2|U |c〉

(εa − εn1
)(εc − εn2

)
+

〈a|Vg|n1〉 〈n1b|I|cn2〉 〈n2|U |d〉
(εa − εn1

)(εd − εn2
)

+
〈a|Vg|n1〉 〈n1|U |n2〉 〈n2b|I|cd〉

(εa − εn1
)(εa − εn2

)

}
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−
∑

n

′

{
〈a|Vg|n〉 〈n|U |a〉 〈ab|I|cd〉

(εa − εn)2
+

〈a|Vg|n〉 〈nb|I|cd〉 〈a|U |a〉
(εa − εn)2

+
〈a|U |n〉 〈nb|I|cd〉 〈a|Vg |a〉

(εa − εn)2

}
. (A4)

The second part Λred(abcd) contains terms with derivatives of the electron-electron interaction,

Λred(abcd) =
∑

n

′ 〈a|Vg|n〉 〈nb|I ′|cd〉
εa − εn

(
〈d|U |d〉 − 〈b|U |b〉

)
+
∑

n

′ 〈a|U |n〉 〈nb|I ′|cd〉
εa − εn

(
〈d|Vg |d〉 − 〈b|Vg|b〉

)

+
∑

n

′ 〈a|U |n〉 〈n|Vg|a〉
εa − εn

〈ab|I ′|cd〉+ 1

4
〈ab|I ′′|cd〉

(
〈d|Vg |d〉 − 〈b|Vg|b〉

)(
〈d|U |d〉 − 〈b|U |b〉

)
. (A5)

The obtained formulas are equivalent to Eqs. (51)-(57) and (62)-(64) of Ref. [16] after the substitution U → U el
VP,

and to Eqs. (19)-(29) of Ref. [16] after the substitution U → Σ. Rewriting the above formulas in an equivalent way
and assuming U → Σ, we obtain expression for the perturbed-orbital self-energy corrections (12)-(17).

Appendix B: Perturbations of energy, wave function, and propagator

Let us consider the first-order perturbations of the energy, the wave function, and the electron propagator induced
by a potential U . The energy and the wave function obtain the corrections of the standard form,

δUεa = 〈a|U |a〉 , (B1)

δU |a〉 ≡ |δUa〉 =
∑

k 6=a

|k〉〈k|U |a〉
εa − εk

. (B2)

We now evaluate the first-order perturbation of the electron propagator with the reference-state contribution omitted
(i.e., the reduced Green function). Perturbing the intermediate-state wave functions |k〉 and energies εa and εk, we
obtain

δU

(∑

k 6=a

|k〉〈k|
εa − εk

)
=

∑

k 6=a

l 6=k

|k〉〈k|U |l〉〈l|
(εk − εl)(εa − εk)

+
∑

k 6=a

l 6=k

|l〉〈l|U |k〉〈k|
(εk − εl)(εa − εk)

+
∑

k 6=a

(
〈k|U |k〉 − 〈a|U |a〉

) |k〉〈k|
(εa − εk)2

. (B3)

Rearranging terms, we get

∑

k 6=a

l 6=k

|k〉〈k|U |l〉〈l|
(εk − εl)(εa − εk)

+
∑

k 6=a

l 6=k

|l〉〈l|U |k〉〈k|
(εk − εl)(εa − εk)

=
∑

l,k 6=a

l 6=k

|k〉〈k|U |l〉〈l|
(εk − εl)(εa − εk)

+
∑

l,k 6=a

l 6=k

|k〉〈k|U |l〉〈l|
(εl − εk)(εa − εl)

−
∑

k 6=a

|k〉〈k|U |a〉〈a|
(εk − εa)2

−
∑

k 6=a

|a〉〈a|U |k〉〈k|
(εk − εa)2

=
∑

l,k 6=a

l 6=k

|k〉〈k|U |l〉〈l|
(εa − εk)(εa − εl)

−
∑

k 6=a

|k〉〈k|U |a〉〈a|
(εk − εa)2

−
∑

k 6=a

|a〉〈a|U |k〉〈k|
(εk − εa)2

.

(B4)

Finally, we obtain

δU

(∑

k 6=a

|k〉〈k|
εa − εk

)
=

∑

l,k 6=a

|k〉〈k|U |l〉〈l|
(εa − εk)(εa − εl)

−
∑

k 6=a

|k〉〈k|U |a〉〈a|+ |a〉〈a|U |k〉〈k|
(εk − εa)2

− 〈a|U |a〉
∑

k 6=a

|k〉〈k|
(εa − εk)2

. (B5)

For completeness, we present here also the first-order perturbation of the full propagator,

δU

(∑

k

|k〉〈k|
εa − εk

)
=

∑

l,k

|k〉〈k|U |l〉〈l|
(εa − εk)(εa − εl)

− 〈a|U |a〉
∑

k

|k〉〈k|
(εa − εk)2

. (B6)
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Appendix C: Free screened vertex contribution

The matrix element of the zero-potential two-electron vertex operator can be written in the momentum space as
(cf. Eqs. (59) and (60) of Ref. [35]),

〈
ab
∣∣Λ(0)

scr

∣∣cd
〉
= α2

∫
dp dp′

(2π)6
ψa(p)A

µ
bd(∆db, q) ΓR,µ(p,p

′)ψc(p
′) , (C1)

where ψ = ψ†γ0, q = p− p′, ∆db = εd − εb, ΓR,µ(p,p
′) is the renormalized free vertex operator (see Appendix A of

Ref. [35]) and the 4-vector potential Aµ in the Feynman gauge is given by

Aµ
bd(∆, q) =

4π

q2 −∆2 − i0

∫
dz ψ†

b(z)α
µ ψd(z) e

−iq·z . (C2)

Performing the angular integration over ẑ for Aµ = (A0,A), we obtain (see Eqs.(143) and (144) of Ref. [46])

A0
bd(∆, q) =

16π2

q2 −∆2 − i0

∑

JM

i−JsdbJM YJM (q̂)P 1,bd
J (q) , (C3)

Abd(∆, q) =
16π2

q2 −∆2 − i0

∑

JLM

i1−LsdbJM YJLM (q̂)P 2,bd
JL (q) , (C4)

where q̂ ≡ q/|q|,

sdbLM =
(−1)jb−µb

√
4π

CLM
jdµd,jb−µb

, (C5)

YLm are the spherical harmonics, YJLM are the vector spherical harmonics,

YJLM (x̂) =
∑

mq

CJM
Lm,1q YLm(x̂) eq , (C6)

and eq are the spherical components of the unity vector. The radial integrals are defined as

P 1,bd
J (q) = CJ (κd, κb)

∫ ∞

0

dxx2jJ(qx)
(
gbgd + fbfd

)
, (C7)

P 2,bd
JL (q) =

∫ ∞

0

dxx2jL(qx)
[
gbfdSJL(κb,−κd)− fbgdSJL(−κb, κd)

]
, (C8)

where gi = gi(x) and fi = fi(x) are components of radial wave functions, jl(z) is the spherical Bessel function, and
the angular coefficients CJ (κ1, κ2) and SJL(κ1, κ2) are given by Eqs. (274)-(277) of Ref. [46].
In order to perform angular integrations over p̂1 and p̂2 in Eq. (C1), we use the following representation for the

vertex operator sandwiched between two Dirac wave functions [35]

ψa(p1) ΓR,0(p1,p2)ψc(p2) =
α

4π
ila−lc

[
Fac

1 χ†
κaµa

(p̂1)χκcµc
(p̂2) + Fac

2 χ†
−κaµa

(p̂1)χ−κcµc
(p̂2)

]
, (C9)

ψa(p1)ΓR(p1,p2)ψc(p2) =
α

4π
ila−lc

[
Rac

1 χ
†
κaµa

(p̂1)σχ−κcµc
(p̂2) +Rac

2 χ
†
−κaµa

(p̂1)σχκcµc
(p̂2)

+ (Rac
3 p1 +Rac

4 p2)χ
†
κaµa

(p̂1)χκcµc
(p̂2) + (Rac

5 p1 +Rac
6 p2)χ

†
−κaµa

(p̂1)χ−κcµc
(p̂2)

]
,

(C10)

where χκµ(p̂) are the spin-angular spinors. The one-loop vertex functions Fac
i = Fac

i (p1, p2, ξ) and Rac
i =

Rac
i (p1, p2, ξ) are given in Appendix A of Ref. [35], with q = |q|, p1 = |p1|, p2 = |p2|, and ξ = p̂1 · p̂2.
Now we perform integrations over all angular variables except for ξ in Eq. (C1), by using the following identity:

∫
dp̂1 dp̂2 F (p1, p2, ξ)G(p̂1, p̂2) =

∫ 1

−1

dξ F (p1, p2, ξ) g(ξ) , (C11)
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where F (p1, p2, ξ) and G(p̂1, p̂2) are arbitrary functions of the specified arguments, and

g(ξ) = 2π
∑

lm

Pl(ξ)

∫
dp̂1 dp̂2 Ylm(p̂1)Y

∗
lm(p̂2)G(p̂1, p̂2) , (C12)

where Pl are the Legendre polynomials. Using this identity, the matrix element of the free two-electron vertex can be
expressed [35] (see also Sec. 3.2 of Ref. [46]) as

〈ab|Λ(0)
scr |cd〉 =

α2

2π3

∫ ∞

0

dp1 dp2

∫ 1

−1

dξ
p21p

2
2

q2 −∆2
db − i0

×
∑

J

{
iJ−la+lc P 1

J (q, bd)
[
Fac

1 tlalc(J) + Fac
2 tlalc(J)

]

−
∑

L

iL−la+lc−1 P 2
JL(q, bd)

[
Rac

1 sσ
lalc

(JL) +Rac
2 sσ

lalc
(JL)

+ p1 Rac
3 sp1

lalc
(JL) + p2 Rac

4 sp2

lalc
(JL) + p1 Rac

5 sp1

lalc
(JL) + p2 Rac

6 sp2

lalc
(JL)

]}
, (C13)

where li = |κi + 1/2| − 1/2, li = |κi − 1/2| − 1/2. The angular factors tl1l2 , s
σ
l1l2

and spi

l1l2
are defined as follows:

tlalc(J) =
1

4π

∑

lm

Pl(ξ)

∫
dp̂1 dp̂2 Ylm(p̂1)Y

∗
lm(p̂2)

∑

M

sdbJM χ†
κaµa

(p̂2)YJM (q̂)χκcµc
(p̂1) , (C14)

sσlalc(JL) =
1

4π

∑

lm

Pl(ξ)

∫
dp̂1 dp̂2 Ylm(p̂1)Y

∗
lm(p̂2)

∑

M

sdbJM χ†
κaµa

(p̂2)σ · YJLM (q̂)χκcµc
(p̂1) , (C15)

spi

lalc
(JL) =

1

4π

∑

lm

Pl(ξ)

∫
dp̂1 dp̂2 Ylm(p̂1)Y

∗
lm(p̂2)

∑

M

sdbJM χ†
κaµa

(p̂2) p̂i · YJLM (q̂)χκcµc
(p̂1) . (C16)

The angular coefficients (C14)-(C16) appeared previously in the calculation of the two-loop self-energy (see
Eqs. (150) and (151) of Ref. [46]), but there they were averaged over the angular-momentum projections of the
reference states, which allowed to simplify expressions considerably. In the present work we evaluate these angular
coefficients in the general case. Using the standard Racah angular momentum algebra, we obtain the following results:

tlalc(J) =
1

4π

∑

ll1

Pl(ξ) c
J
l1l2

∑

mσ

sdbJM CJM
l1m1,l2m2

Cjaµa

lama,1/2 σ C
jcµc

lcmc,1/2σ R3(la,ma, l,m, l1,m1)R3(l,m, lc,mc, l2,m2) ,

(C17)

sσ
lalc(JL) =

1

4π

∑

ll1

Pl(ξ) c
L
l1l2

∑

mσaσc

sdbJM CJM
LmL,1q C

jaµa

lama,1/2σa
Cjcµc

lcmc,1/2σc

×
√
2 (−1)1/2−σc C1q

1/2−σc,1/2 σa
CLmL

l1m1,l2m2
R3(la,ma, l,m, l1,m1)R3(l,m, lc,mc, l2,m2) , (C18)

sp1

lalc
(JL) =

1√
12π

∑

ll1

Pl(ξ) c
L
l1l2

∑

mσq

sdbJM CJM
LmL,1q C

jaµa

lama,1/2σa
Cjcµc

lcmc,1/2σc

× CLmL

l1m1,l2m2
R4(la,ma, l,m, l1,m1, 1, q)R3(l,m, lc,mc, l2,m2) , (C19)

where

R3(l1,m1, l2,m2, l3,m3) =

∫
dx̂Y ∗

l1m1
(x̂)Yl2m2

(x̂)Yl3m3
(x̂) , (C20)

R4(l1,m1, l2,m2, l3,m3) =

∫
dx̂Y ∗

l1m1
(x̂)Yl2m2

(x̂)Yl3m3
(x̂)Yl4m4

(x̂) , (C21)
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and cLl1l2 are coefficients of the expansion of the spherical harmonics of ẑ ≡ ẑ1 − ẑ2 into spherical harmonics of ẑ1
and ẑ2 [47]

YLM (ẑ) =
L∑

l1,l2=0

l1+l2=L

cLl1l2

∑

m1m2

CLM
l1m1,l2m2

Yl1m1
(ẑ1)Yl2m2

(ẑ2) , (C22)

with

cLl1l2 =

√
4π(2L+ 1)!

(2l1 + 1)!(2l2 + 1)!

zl11 z
l2
2

zL
(−1)l2 . (C23)

The integrals of three and four spherical harmonics R3 and R4 are evaluated in terms of Clebsch-Gordan coefficients
by standard formulas [47].
For specific cases, the angular coefficients can be evaluated analytically, as it was done in Ref. [35]. In the present

work we prefer to evaluate all sums of Clebsch-Gordan coefficients numerically. The specific cases of J = 0 and J = 1
were simplified and evaluated separately.
We now consider the matrix element of the zero-potential two-electron vertex operator for the Coulomb gauge of

the exchanged photon. In this case the 4-vector potential Aµ = (A0, Ai) becomes

A0
bd(∆, q) =

4π

q2 − i0

∫
dz ψ†

b(z)ψd(z) e
−iq·z ,

Ai
bd(∆, q) =

(
δij −

qi qj
q2

) 4π

q2 −∆2 − i0

∫
dz ψ†

b(z)αj ψd(z) e
−iq·z . (C24)

In order to perform the angular integrations in the momentum integrations, we use the following representation

ψa(p1)
q
(
q · ΓR

)

q2
ψc(p2) =

α

4π
ila−lc

[
R̃ac

3 q χ†
κaµa

(p̂1)χκcµc
(p̂2) + R̃ac

5 q χ†
−κaµa

(p̂1)χ−κcµc
(p̂2)

]
, (C25)

where the functions R̃i are expressed in terms of functions Ri as follows:

R̃ac
3 =

1

q2

[
p22 Rac

1 − p21 Rac
2 +Rac

3

(
p21 − p12

)
+Rac

4

(
p12 − p22

)]
, (C26)

R̃ac
5 =

1

q2

[
− p21 Rac

1 + p22 Rac
2 +Rac

5

(
p21 − p12

)
+Rac

6

(
p12 − p22

)]
. (C27)

We observe that the matrix element in the Coulomb gauge involves the same angular coefficients (C14)-(C16) as in
the Feynman gauge.


