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We derive a complete expression for the nonrecoil quantum electrodynamic α6m correction to the
Lamb shift, the fine and hyperfine structure of light N -electron atoms. The derivation is performed
in the framework of nonrelativistic quantum electrodynamics. The obtained formulas generalize
previous ones derived for the specific cases of the helium atom, and the fine and hyperfine structure
of lithium, and pave the way for improving the theory of light atoms with three and more electrons.

Accurate theoretical predictions of transition energies
in simple atoms are used for high-precision tests of the
Standard Model of fundamental interactions, and deter-
minations of fundamental constants and of nuclear pa-
rameters. The highest theoretical precision is achieved
for the simplest systems, like the hydrogen and the
hydrogen-like ions [1]. However, comparison of the hy-
drogen theory with the existing experimental data is
presently limited by the uncertainty from two conflict-
ing values of the proton charge radius [2].

Modern theoretical descriptions of few-electron atoms
gradually approach the level of accuracy of the hydrogen
theory [3], with higher potential for discovery of new ef-
fects. It is because there are several transitions which
have narrow linewidth. In particular, the calculation of
the α6m2/M correction in helium [4, 5] allowed us to
extract the difference of the nuclear charge radii of two
helium isotopes, revealing inconsistencies between differ-
ent experimental transition energies [6], which remain to
be explained. Furthermore, the ongoing project of the
complete calculation of the α7m effects will allow the de-
termination of the absolute value of the helium nuclear
charge radius [7].

For atoms with three and more electrons, the
dominant uncertainty of the theoretical energy levels
presently comes from uncalculated quantum electrody-
namic (QED) effects of order α6m. This correction
was derived and calculated numerically for helium in
Refs. [8, 9] and later for helium-like ions in Ref. [10].
The goal of the present investigation is to extend the
derivation of Refs. [8, 9] to the general case of an atom
with an arbitrary number of electrons, which will open
the way towards numerical calculations of these effects in
light atoms, such as lithium, beryllium, boron, and the
corresponding isoelectronic sequences.

I. NRQED EXPANSION

In order to calculate energy levels of a light atom
we employ the so called nonrelativistic QED (NRQED),
which is an effective quantum field theory that gives the
same predictions as the full QED in the region of small

momenta, i.e., those of the order of the characteristic
electron momentum in the atom.

The basic assumption of the NRQED is that the
bound-state energy E can be expanded in powers of the
fine-structure constant α,
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The coefficients of this expansion E(i) depend implicitly
on the electron-to-nucleus mass ratio m/M and may con-
tain finite powers of lnα. These coefficients may be fur-
ther expanded in powers of m/M ,
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)2
E(i,2) + . . . . (2)

According to NRQED, the expansion coefficients in
Eqs. (1) and (2) can be expressed as expectation values of
some effective Hamiltonians with the nonrelativistic wave
function. The derivation of these effective Hamiltonians
is the central problem of the NRQED approach.

The leading term of the NRQED expansion, E(2), is
of order α2m and is just the nonrelativistic energy as
obtained from the Schrödinger equation. The next term,
E(4), is the leading relativistic correction of order α4m
and is given by the expectation value of the Breit Hamil-
tonian H(4). The next term represents the leading QED
effect of order α5m, derived many years ago by Araki
and Sucher [11, 12].

The subject of the present work is the next correction
of order α6m, which will be considered in the non-recoil
limit, E(6,0). For the helium atom, this correction was
derived and calculated numerically by one of us (K.P.)
[8, 9], see also the recent review [3]. For lithium, the
α6m effects were so far calculated for the fine and hyper-
fine structure [13, 14]. In this work we generalize those
studies and present derivation of complete formulas for
the α6m effects valid for arbitrary states of a general
N -electron atom.

We represent the α6m correction to the energy level
of an atom as a sum of three parts,

E(6,0) = E
(6)
Lamb + E

(6)
fs + E

(6)
hfs . (3)
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The first term E
(6)
Lamb (“Lamb shift”) is the correction to

the nLS centroid energy (n denotes the principal quan-
tum number, L and S are the angular momentum and
the spin of the state under consideration). Energy cen-
troid ELamb is defined as weighted average over the fine
levels

ELamb(nLS) =

∑
J(2J + 1)E(nLSJ)

(2S + 1)(2L+ 1)
, (4)

where J is the total angular momentum of the electronic
state. In the presence of the nuclear spin I, each fine level
is in turn an average over the hyperfine levels, namely

E(nLSJ) =

∑
F (2F + 1)E(nLSJF )

(2I + 1)(2J + 1)
, (5)

where F is the total angular momentum of the whole

atom. The second term E
(6)
fs is a correction to the fine

structure, defined by the condition that its contribution
to the nLS centroid energy vanishes,

∑
J

(2J + 1)E
(6)
fs (nLSJ) = 0 . (6)

Finally, the third term E
(6)
hfs is a contribution to the hy-

perfine structure, defined by the condition that its con-
tribution to the nLSJ energy centroid vanishes,

∑
F

(2F + 1)E
(6)
hfs (nLSJF ) = 0 . (7)

We note that this definition of the hyperfine splitting
leads to the appearance of nuclear-spin dependent con-
tributions in the Lamb shift and in the fine structure
(through second-order effects), see Ref. [15] for details.
Such corrections are of order α6m2/M and thus are not
relevant for the present investigation.

It should be mentioned that when considering the
structure of atomic levels, it is sometimes required to
treat several closely lying levels as quasi-degenerate
(rather than to consider each of them separately as an
isolated level), because of a strong mixing between them.
In particular, this is the case for the hyperfine structure
of the 2 3P level of 3He, studied in Ref. [15]. In such
cases, the scalar energy E in Eq. (1) needs to be replaced
by a matrix of an effective Hamiltonian constructed in a
subspace of quasi-degenerate states, and the energy levels
are determined by diagonalizing this matrix, see Ref. [15]
for details.

II. ENERGY CENTROID

The α6m correction to the energy centroid E
(6)
Lamb is

represented [8] as a sum of several terms,

E
(6)
Lamb =

〈 7∑
i=1

Hi +

2∑
i=1

HR,i +HH

〉
+
〈
H(4) 1

(E0 −H0)′
H(4)

〉
, (8)

where Hi are the effective α6m operators induced by
the virtual photon exchange between the particles, HR,i

are the operators representing the radiative corrections,
HH is the effective operator originating from the forward
three-photon scattering amplitude, and E0 and H0 are
the nonrelativistic energy and Hamiltonian for the in-
finitely heavy nucleus, respectively. The last term on the
right-hand side of Eq. (8) is the second-order correction
induced by the Breit Hamiltonian H(4),

H(4) = HA +HB +HC , (9)

where
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∑
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(10)

H
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Z

4

∑
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+
1

4

∑
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∑
a

1
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]
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(11)

H
(4+)
C =

1

4

∑
a<b

∑
b

(g
2

)2(~σa ~σb
r3ab

− 3
~σa · ~rab ~σb · ~rab

r5ab

)
,

(12)

where g denotes the electron g-factor, d = 3 − 2ε is the
extended space dimension, δd(r) is the Dirac delta func-
tion in d dimensions and [x]ε stands for d-dimensional
form of expression x. In the above, the spin-independent
part of the Breit Hamiltonian HA is written in d dimen-
sions, since it leads to divergent terms ∼ 1/(d − 3) in
the second-order correction. The spin-dependent parts
of H(4) are written in d = 3 as they do not lead to any

singularities. The upper index in H
(4+)
B and H

(4+)
C indi-

cates that these operators are of order α4m but contain,
in addition, some higher-order terms due to the presence
of anomalous magnetic moment. For further calculations
we will also need the g → 2 limit of these operators,

HX ≡ lim
g→2

H
(4+)
X (13)

with X = B,C.
The derivation of the effective α6m operators Hi is

described in Appendix A. It is performed in d = 3 − 2ε
dimensions, following the approach developed in Ref. [8].
The results are
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∑
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∑
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∑
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b
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2
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∑
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H7 = H7a +H7c ,
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∑
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where
[
. , .
]

and
{
. , .
}

denote the commutator and the an-
ticommutator, respectively, and V is the nonrelativistic
potential,

V = −
∑
a

[
Z

ra

]
ε

+
∑
a<b

∑
b

[
1

rab

]
ε

. (15)

In the case of a two-electron atom, the operators Hi agree
with those derived for helium in Ref. [8].

The effective operator originating from the forward
three-photon scattering amplitude is deduced from the
results derived in Ref. [16] for parapositronium, which
yields

HH = −
(

1

ε
+ 4 lnα

)∑
a<b

∑
b

π

4
δd(rab) +H ′

H , (16)

where

H ′
H =

(
−39ζ(3)

π2
+

32

π2
− 6 ln 2 +

7

3

)∑
a<b

∑
b

π

4
δ3(rab)

(17)

and ζ is Riemann zeta function.
Radiative corrections to order α6m are represented by

the following one-loop and two-loop effective operators,
which have been obtained originally for hydrogen and
positronium spectra,

HR,1 =

(
472

96
− 2 ln 2

)∑
a

πδ3(ra) (18)

+

(
6ζ(3)

π2
− 697

27π2
− 8 ln 2 +

1099

72

)∑
a<b

∑
b

πδ3(rab) ,

HR,2 =

(
− 9ζ(3)

4π2
− 2179

648π2
+

3 ln 2

2
− 10

27

)∑
a

πδ3(ra)

+

(
15ζ(3)

2π2
+

631

54π2
− 5 ln 2 +

29

27

)∑
a<b

∑
b

πδ3(rab) .

(19)

Both the first-order and second-order terms in Eq. (8)
contain divergences, which need to be separated out and
cancelled algebraically. We perform this in two steps.
First, we identify divergences in the second-order correc-
tions (last term in the right-hand side of Eq. (8)) and
separate them out in terms of some effective first-order
operators by the transformation (B2) as is described in
detail in Appendix B. Second, we algebraically cancel
singular terms proportional to 1/ε. This is done with
help of various identities in d dimensions listed in Ap-
pendix C.

After performing all reductions and cancellations of
singularities we get the final result

E
(6)
Lamb = EQ + E′

H + Esec + ER1 + ER2

− lnα
〈∑
a<b

∑
b

πδ3(rab)
〉
, (20)

where EQ =
〈
HQ

〉
and E′

H =
〈
H ′
H

〉
. The first term in

Eq. (20), EQ, incorporates first-order operators remain-
ing after the cancellation of divergences. With help of
the identity σija · σ

ij
b = 2~σa · ~σb, we obtain the following
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formula for HQ in terms of 45 operators Qi listed in Ta-
ble I. These operators are similar to those derived in [8]
with two differences: (i) there are extra three-electron
operators which are grouped together with correspond-

ing similar one- and two-electron operators, and (ii) de-
pendence on spin in form of product of σ matrices is now
included in definition of Q operators. The result is

HQ = −E
3
0

2
− E0Z

16
Q1 +

Q2

8
+
Z(1− 2Z)

16
Q3 +

3Z

32
Q4 +

Z

16
Q5 −

Z

8
Q6 +

Q7

24
+
Q8

8
− Q9

96
+
E2

0 + 2E(4)

4
Q10

−E0

32
Q11 +

Q12

32
+
Q13

32
+
E0Z

2

4
Q14 + E0Z

2Q15 +
3Z3

2
Q16 +

Z3

2
Q17 −

E0Z

2
Q18 − Z2Q19 −

Z

32
Q20

−Z
2

4
Q21 +

Z

4
Q22 +

Z

2
Q23 −

Z

32
Q24 −

Q25

2
+
Q26

96
− Z2

8
Q27 −

Z

4
Q28 +

Q29

8
+
Z2

8
Q30 +

Z2

8
Q31

+
Q32

32
+
Q33

64
+
Z

4
Q34 −

Q35

4
+
Q36

192
+
Q37

4
− Z

4
Q38 +

Q39

4
− E0

8
Q40 −

Z

4
Q41 +

Q42

8
+
Q43

4

+
Q44

8
+

3

16
Q45 . (21)

Here, E(4) =
〈
H(4)

〉
is the expectation value of Breit

Hamiltonian, and E0 = E(2) is the nonrelativistic energy.
In the case of operatorQ12, the expectation value of 1/r3ab
is calculated in the sense of the following limit〈

1

r3

〉
= lim
a→0

∫
d3rφ2(r)

[
1

r3
Θ(r − a)

+ 4πδ3(r)(γ + ln a)

]
. (22)

In the case of Q36, the matrix element is only condi-
tionally convergent, so one has to integrate first over the
angles and then over the radial rab variable.
Esec in Eq. (20) incorporates what is left of the second-

order correction after separation of divergences. It is
given by

Esec= 〈HAR
1

(E0 −H0)′
HAR〉+ 〈HB

1

(E0 −H0)
HB〉

+ 〈HC
1

(E0 −H0)
HC〉 , (23)

where HAR is defined by Eq. (B2) and its action on a
trial function φ is given by,

HAR|φ〉 =

[
− 1

2
(E0 − V )2 +

1

4

∑
a<b

∑
b

~∇2
a
~∇2
b

− Z

4

∑
a

~ra · ~∇a
r3a

+
1

2

∑
a<b

∑
b

∇ia
(
δij

rab
+
riabr

j
ab

r3ab

)
∇jb

]
|φ〉 ,

(24)

with omitting δ3(rab) from differentiation. It is because
δ3(rab) in the original HA in Eq. (10) cancels out with

that from ~∇2
a
~∇2
b differentiation.

III. FINE STRUCTURE CORRECTIONS

The fine-structure α6m correction E
(6)
fs has the form

similar to that for the Lamb shift,

E
(6)
fs =

〈
H

(6)
fs

〉
+
〈
H(4) 1

(E0 −H0)′
H(4)

〉
fs

+ E
(6)
fs,amm .

(25)
The first term is given by the expectation value of the

spin-dependent α6m Hamiltonian H
(6)
fs , whereas the sec-

ond term is the second-order perturbative correction in-
duced by the Breit Hamiltonian. The subscript “fs” in〈
. . .
〉
fs

indicates that only the spin-dependent part of the
correction should be taken. The last term is the anoma-
lous magnetic moment (’amm’) correction to the fine-
structure from the amm-corrected Breit Hamiltonian, see
Eqs. (11) and (12). This correction arises from the fact
that the g-factor contains higher-order terms in α.

The Hamiltonian H
(6)
fs for helium atom was first ob-

tained by Douglas and Kroll [17] in the framework of the
Salpeter equation and later re-derived in a more simple
way using the effective field theory in Refs. [18, 19]. In

this work we use the general expression for H
(6)
fs valid for

the N -electron atom which was derived in [20],

H
(6)
fs =

∑
a

{
3

16
p2a e

~Ea × ~pa · ~σa +
1

4

(
2 p2a ~pa · e ~Aa + p2a ~σa · ∇a × e ~Aa

)
+

1

2
~σa · e ~Ea × e ~Aa

+
i e

16

[
~Aa × ~pa · ~σa − ~σa · ~pa × ~Aa , p2a

]
+

1

2
e2 ~A 2

a

}
+
∑
b6=a

∑
a

{
− i π

8
~σa · ~pa × δ3(rab) ~pa
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TABLE I. Definitions of operators Qi, ~Pab = ~pa + ~pb, ~pab = 1
2
(~pa − ~pb),

Q1

∑
a 4πδ3(ra)

Q2

∑
a<b

∑
b 4πδ3(rab)

Q3

∑
b 6=a

∑
a 4πδ3(ra)/rb

Q4

∑
b 6=a

∑
a 4πδ3(ra) p2b

Q5

∑
b<c,b 6=a

∑
c 6=a

∑
a 4πδ3(ra)/rbc

Q6

∑
a<b

∑
b

∑
c 4πδ3(rab)/rc

Q7

∑
a<b

∑
b 4π δ3(rab)P

2
ab

Q8

∑
c 6=a,b

∑
a<b

∑
b 4π δ3(rab) p

2
c

Q9

∑
a<b

∑
b(3 + ~σa · ~σb)~pab 4πδ3(rab) ~pab

Q10

∑
a<b

∑
b 1/rab

Q11

∑
a<b

∑
b(31 + 5~σa · ~σb)1/r

2
ab

Q12

∑
a<b

∑
b(23 + 5~σa · ~σb)1/r

3
ab

Q13

∑
a<b

∑
b

∑
c<d

∑
d,ab 6=cd(31 + 5~σa · ~σb)1/(r

2
abrcd)

Q14

∑
a 1/r2a

Q15

∑
a<b

∑
b 1/(rarb)

Q16

∑
a<b<c 1/(rarbrc)

Q17

∑
b 6=a

∑
a 1/(r2arb)

Q18

∑
a<b

∑
b

∑
c 1/(rabrc)

Q19

∑
a<b

∑
b

∑
c<d

∑
d 1/(rabrcrd)

Q20

∑
a<b

∑
b

∑
c(23 + 5~σa · ~σb)1/(r

2
abrc)

Q21

∑
a<b

∑
b

∑
c 1/(rabr

2
c)

Q22

∑
a<b

∑
b

∑
c<d

∑
d,ab6=cd

∑
e 1/(rabrcdre)

Q23

∑
a<b

∑
b ~ra · ~rab/(r3ar2ab)

Q24

∑
a<b

∑
b(13 + 5~σa · ~σb)~ra · ~rab/(r3ar3ab)

Q25

∑
c6=a,b

∑
a<b

∑
b ~rac · ~rab/(r

3
acr

2
ab)

Q26

∑
c6=a,b

∑
a<b

∑
b(21 + 15~σa · ~σb + 16~σb · ~σc)~rac · ~rab/(r3acr3ab)

Q27

∑
a<b

∑
b r

i
ar

j
b(riabr

j
ab − 3δijr2ab)/(r

3
ar

3
brab)

Q28

∑
c6=a,b

∑
a<b

∑
b r

i
ar

j
cb(r

i
abr

j
ab − 3δijr2ab)/(r

3
ar

3
cbrab)

Q29

∑
c6=a,b

∑
d6=a,b

∑
a<b

∑
b r

i
acr

j
db(r

i
abr

j
ab − 3δijr2ab)/(r

3
acr

3
dbrab)

Q30

∑
b6=a

∑
a p

2
b/r

2
a

Q31

∑
a ~pa/r

2
a ~pa

Q32

∑
a<b

∑
b(47 + 5~σa · ~σb)~pa/r

2
ab ~pa

Q33

∑
c6=a,b

∑
a<b

∑
b(31 + 5~σa · ~σb)~pc/r

2
ab ~pc

Q34

∑
a<b

∑
b

∑
c p

i
a(δijr2ab + riabr

j
ab)/(r

3
abrc)p

j
b

Q35

∑
c6=a,b

∑
a<b

∑
b p

i
ap

2
c(δijr2ab + riabr

j
ab)/r

3
abp

j
b

Q36

∑
a<b

∑
b(−3 + ~σa · ~σb)P

i
abP

j
ab(3r

i
abr

j
ab − δijr2ab)/r

5
ab

Q37

∑
c6=a,b

∑
a<b

∑
b p

i
a(δijr2ac + riacr

j
ac)(δ

jkrbc + rjbcr
k
bc)/(r

3
acr

3
bc)p

j
b

Q38

∑
a<b

∑
b p

k
b r

i
a/r

3
a(δjkriab/rab − δikrjab/rab − δijrkab/rab − riabr

j
abr

k
ab/r

3
ab)p

j
b

Q39

∑
c6=a,b

∑
a<b

∑
b p

k
b r

i
ac/r

3
ac(δ

jkriab/rab − δikrjab/rab − δijrkab/rab − riabr
j
abr

k
ab/r

3
ab)p

j
b

Q40

∑
a<b

∑
b p

2
ap

2
b

Q41

∑
a<b

∑
b

∑
c p

2
a/rcp

2
b

Q42

∑
a<b

∑
b

∑
c<d

∑
d,ab6=cd p

2
a/rcdp

2
b

Q43

∑
a<b

∑
b ~pa × ~pb/rab~pa × ~pb

Q44

∑
a<b

∑
b p

k
ap

l
b(−δjlriabrkab/r3ab − δikrjabr

l
ab/r

3
ab + 3riabr

j
abr

k
abr

l
ab/r

5
ab)p

i
ap

j
b

Q45

∑
a<b<c p

2
ap

2
bp

2
c
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+
1

4

(
−i
[
~σa ×

~rab
rab

,
p2a
2

]
e ~Eb +

[
p2b
2
,

[
~σa ×

~rab
rab

,
p2a
2

]]
~pb

)
+

1

32
(~σa × ~pa)i

[
pia,

[
1

rab
, pjb

]]
(~σb × ~pb)j

+
1

64
σiaσ

j
b

[
p2a,

[
p2b ,

riabr
j
ab

r3ab

]]}
. (26)

Here, e ~Ea denotes the static electric field at the position
of particle a

e ~Ea ≡ −~∇aV = −Z α~ra
r3a

+
∑
b 6=a

α
~rab
r3ab

(27)

and eAia is the vector potential at the position of particle
a, which is produced by all other particles,

eAia ≡
∑
b 6=a

[
α

2 rab

(
δij +

riab r
j
ab

r2ab

)
pjb +

α

2

(
~σb × ~rab

)i
r3ab

]
.

(28)

It is convenient to expressH
(6)
fs in terms of the elementary

spin-dependent operators Ri listed in Table II,

H
(6)
fs = − 3

16
ZR1 +

3

16
R2 −

3

8
R3 −

1

2
R4 −

Z

4
R5 −

Z

4
R6

+
1

4
R7 +

1

4
R8 +

1

8
R9 −

1

8
R10 −

1

4
R11 −

1

4
R12

− 1

8
R13 +

Z

4
R14 −

Z

4
R15 +

3

4
R16 −

1

4
R17 −

1

4
R18

+
1

4
R19 −

1

4
R20 +

Z

4
R21 −

1

4
R22 −

1

8
R23 −

1

8
R24

+
1

16
R25 −

1

32
R26 −

3

32
R27 . (29)

These operators are corresponding to operators derived
previously for lithium in [23]. In particular, operators
R1 − R20 correspond to operators Q1 − Q20 derived in
that paper with the exception of R13 and R16. Operator
R13 corresponds to D2 in [23] and operators R21 − R24

correspond to P1 − P4, albeit in slightly different form.
The remaining operators R25 − R27 along with R16 are
equivalent to two-spin Douglas-Kroll operators [17].

The second-order term in Eq. (25) can be represented
as〈
H(4) 1

(E0 −H0)′
H(4)

〉
fs

= 2
〈
HA

1

(E0 −H0)′
[
HB +HC

]〉
+
〈[
HB +HC

] 1

(E0 −H0)′
[
HB +HC

]〉
,

(30)

where HA, HB , and HC are parts of the Breit Hamilto-
nian given by Eq. (10) and the g → 2 limit of Eqs. (11),
and (12), respectively.

Unlike the α6m correction to the Lamb shift, all α6m
fine-structure corrections are finite and do not require
any regularization. Numerical calculations of the α6m
effect to the helium fine structure were performed first
by Lewis and Serafino [21] and more recently by other
authors [18, 22]. For Li and Be+, analogous calculations
were carried out in Refs. [14, 23].

IV. HYPERFINE STRUCTURE

The α6m corrections to the hyperfine structure was
calculated for helium in Ref. [15]. Later, this treatment
was extended to lithium in Ref. [13]. Here we reformulate
results obtained in these studies in a general form valid
for an N -electron atom.

The α6m corrections to the hyperfine splitting has the
same structure as the other α6m corrections considered
in the previous sections, namely,

E
(6)
hfs =

〈
H

(6)
hfs

〉
+ 2

〈
H(4) 1

(E0 −H0)′
H

(4)
hfs

〉
+ E

(6)
hfs,amm ,

(31)

where H
(6)
hfs is the effective α6m operator proportional to

the nuclear spin I, H(4) is the Breit Hamiltonian, and

H
(4)
hfs is the nuclear-spin dependent α4m correction to

the Breit Hamiltonian, and E
(6)
hfs,amm is induced by the

electron amm correction to H
(4)
hfs .

The nuclear-spin dependent correction to the Breit
Hamiltonian, with inclusion of the electron amm effects,
is given by

H
(4+)
hfs = −

∑
a

[
e ~pa · ~A(~ra) +

e

2

g

2
~σa · ~B(~ra)

]
, (32)

where ~A and ~B correspond to the magnetic field of the
nucleus,

e ~A(~r) = −Z α gN
2M

~I × ~r

r3
, (33)

eBi(~r) = −Z α gN
2M

8π

3
δ3(r) Ii

+Z α
gN
2M

1

r3

(
δij − 3

rirj

r2

)
Ij . (34)

Here, ~I denotes the nuclear spin operator, M is nuclear
mass, and gN is the nuclear g-factor defined as

gN =
M

Zmp

µ

µN

1

I
, (35)

where mp is the proton mass, µ is the nuclear magnetic
moment, and µN = |e|/(2mp) is the nuclear magneton.

One can express H
(4)
hfs in a more explicit form,

H
(4+)
hfs = ε

∑
a

(
g

2
~I · ~σa ha + ~I · ~ha +

g

2
Ii σja h

ij
a

)
,(36)

where ε = (m/M) gN/2 and ha operators are

ha =
4Z

3
π δ3(ra) , (37)
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TABLE II. Definitions of the fine-structure α6m operators Ri.

R1

∑
a ~σa p

2
a

~ra
r3a

× ~pa

R2

∑
b 6=a

∑
a ~σa p

2
a

~rab

r3
ab

× ~pa

R3

∑
b 6=a

∑
a ~σa p

2
a

~rab

r3
ab

× ~pb

R4

∑
b 6=a

∑
a ~σa p

2
b

~rab

r3
ab

× ~pb

R5

∑
b 6=a

∑
a ~σa

1
rab

~ra
r3a

× ~pb

R6

∑
b 6=a

∑
a ~σa

~ra×~rab

r3a r3
ab

(~rab · ~pb)
R7

∑
b 6=a

∑
c6=a

∑
a ~σa

1
rac

~rab

r3
ab

× ~pc

R8

∑
b 6=a

∑
c6=a

∑
a ~σa

~rab×~rac

r3
ab

r3ac
(~rac · ~pc)

R9

∑
b 6=a

∑
a i ~σa p

2
a

1
rab

~pa × ~pb

R10

∑
b 6=a

∑
a i ~σa p

2
a

~rab

r3
ab

× (~rab · ~pb) ~pa
R11

∑
c 6=b

∑
b 6=a

∑
a ~σa

1
rbc

~rab

r3
ab

× ~pc

R12

∑
c 6=b

∑
b 6=a

∑
a ~σa

~rab×~rbc
r3
ab

r3
bc

(~rbc · ~pc)
R13

∑
b 6=a

∑
a i ~σa ~pa × πδ3(rab)~pa

R14

∑
b 6=a

∑
a ~σa

1
rab

~rb
r3
b
× ~pa

R15

∑
b 6=a

∑
a ~σa

~rb×~rab

r3
b
r3
ab

(~rab · ~pa)

R16

∑
b 6=a

∑
a σ

i
aσ

j
b p

2
a

riabr
j
ab

r5
ab

R17

∑
c 6=b

∑
b 6=a

∑
a ~σa

1
rab

~rbc
r3
bc

× ~pa

R18

∑
c6=b

∑
b 6=a

∑
a ~σa

~rab×~rbc
r3
ab

r3
bc

(~rab · ~pa)

R19

∑
b 6=a

∑
a i ~σa p

2
b

1
rab

~pa × ~pb

R20

∑
b 6=a

∑
a i ~σa p

2
b

~rab

r3
ab

× (~rab · ~pa) ~pb

R21

∑
b 6=a

∑
a σ

i
aσ

j
b

rjar
i
ab

r3ar
3
ab

R22

∑
b 6=a

∑
c6=a

∑
a σ

i
aσ

j
b

rjacr
i
ab

r3acr
3
ab

R23

∑
b 6=a

∑
a i σ

i
aσ

j
b p

2
a

riab

r3
ab
pja

R24

∑
b 6=a

∑
c6=a

∑
a σ

i
aσ

j
b

rjacr
i
bc

r3acr
3
bc

R25

∑
b 6=a

∑
a i σ

i
aσ

j
b p

2
a

1
r3
ab

(
δikrjab + δjkriab − 3

riabr
j
ab

rkab

r2
ab

)
pkb

R26

∑
b 6=a

∑
a σ

i
aσ

j
b

1
r3
ab
pjap

i
b

R27

∑
b 6=a

∑
a(~rab/r

5
ab) × (~rab × ~pa · ~σa) ~pb · ~σb

~ha = Z
~ra × ~pa
r3a

, (38)

hija = − Z

2

1

r3a

(
δij − 3

ria r
j
a

r2a

)
. (39)

We start the derivation of α6m operators with the

Breit-Pauli Hamiltonian HBP of the atomic system in
the external magnetic field,

HBP =
∑
a

Ha +
∑
a<b

∑
b

Hab , (40)

where

Ha =
~π2
a

2m
− Z α

ra
− e

2m
~σa · ~Ba −

~π4
a

8m3
+
π Z α

2m2
δ3(ra) +

Z α

4m2
~σa ·

~ra
r3a
× ~πa +

e

8m3

(
~σa · ~Ba ~π2

a + ~π2
a ~σa · ~Ba

)
, (41)

Hab =
α

rab
+
π α

m2
δ3(rab)−

α

2m2
πia

(
δij

rab
+
riab r

j
ab

r2ab

)
πjb +

α

4m2r3ab

[
~σa · ~rab × (2~πb − ~πa)− ~σb · ~rab × (2~πa − ~πb)

]
+

α

4m2

σia σ
j
b

r3ab

(
δij − 3

riab r
j
ab

r2ab

)
, (42)

where ~π = ~p − e ~A. Magnetic fields ~A and ~B induced by the nuclear magnetic moment are given in Eqs. (33) and
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(34). The relativistic correction to the hyperfine interaction is obtained from the relativistic terms in the Breit-Pauli
Hamiltonian HBP,

H
(6)
hfs =

∑
a

Z α

4m2
~σa ·

~ra
r3a
×
[
−e ~A(~ra)

]
+

e

8m3

(
~σa · ~Ba ~p 2

a + ~p 2
a ~σa · ~Ba

)
+
∑
b6=a

∑
a

α

4m2r3ab
~σa · ~rab ×

[
−2 e ~A(~rb) + e ~A(~ra)

]
+

e

4m3

∑
a

[
~p 2
a ~pa · ~A(~ra) + ~pa · ~A(~ra) ~p 2

a

]
−
∑
b 6=a

∑
a

α

2m2
pia

(
δij

rab
+
riab r

j
ab

r3ab

)[
− eAj(~rb)

]
. (43)

Using ~A and ~B from Eqs. (33) and (34), the effective α6m hfs operator H
(6)
hfs is [13, 15]

H
(6)
hfs = ε

∑
a

(
~σa · ~I Pa − ~I · ~Pa + σja I

i P ija
)
, (44)

Pa =
Z2

6

1

r4a
− Z

12

{
p2a , 4π δ3(ra)

}
+
∑
b6=a

Z

6

~rab
r3ab
·
(

2
~rb
r3b
− ~ra
r3a

)
, (45)

~Pa =
Z

2
p2a
~ra
r3a
× ~pa +

∑
b 6=a

Z

2

~rb
r3b
×
(

1

rab
~pa +

~rab
r3ab

(~rab · ~pa)

)
, (46)

P ija = − Z

4

(
Z

3ra
+ p2a

)(
3
riar

j
a

r5a
− δij

r3a

)
+
∑
b6=a

Z

4

(
3
rjab
r3ab

ria
r3a
− δij ~rab

r3ab
· ~ra
r3a

)
. (47)

Both the first-order and second-order terms in Eq. (31)
are divergent and need to be regularized and transformed
to an explicitly finite form. In order to do so, it is conve-
nient to rewrite the hfs correction to the energy in terms
of the hyperfine constant A defined as

Ehfs = ~I · ~J A , (48)

where ~J is the total electronic angular momentum. Using

the notation Hhfs = ~I · ~Hhfs, we express A as

A =
1

J (J + 1)

〈
~J · ~Hhfs

〉
. (49)

The expansion of A in α is of the form

A = ε

∞∑
n=4

αnA(n) , (50)

where we are interested in the α6m correction, A(6). Due
to symmetry of the intermediate states in the second-
order matrix elements, the A, B, and C parts of the hfs

Hamiltonian H
(4)
hfs give nonvanishing contributions only

when coupled to the corresponding A, B, and C parts of
the Breit Hamiltonian H(4). So, the total result for A(6)

can be expressed as

A(6) = A
(6)
AN +A

(6)
B +A

(6)
C +A

(6)
R , (51)

where

A
(6)
AN =

2

J (J + 1)

〈∑
a

~J · ~σa ha
1

(E0 −H0)′
HA

〉

+
1

J (J + 1)

〈∑
a

~J · ~σa Pa − ~J · ~Pa + σjaJ
iP ija

〉
,

(52)

A
(6)
B =

2

J (J + 1)

〈∑
a

~J · ~ha
1

(E0 −H0)′
HB

〉
, (53)

A
(6)
C =

2

J (J + 1)

〈∑
a

J i σja h
ij
a

1

(E0 −H0)′
HC

〉
,

(54)

A
(6)
R =

1

J (J + 1)

4π Z2

3

〈∑
a

~J · ~σa δ3(ra)

〉(
ln 2− 5

2

)
,

(55)

and where A
(6)
R is radiative correction known for the hy-

drogen atom [24].
We now separate divergencies from the above expres-

sions. This is done with help of the following identities

4π δ3(ra) = 4π [δ3(ra)]r −
∑
a

{
2

ra
, E0 −H0

}
, (56)

HA = H̃AR +
1

4

∑
a

{
Z

ra
, E0 −H0

}
. (57)

The regularized operators [δ3(ra)]r and H̃AR have ex-
actly the same expectation value as the non-regularized
operators δ3(ra) and HA if the expectation values are
calculated with the eigenstates of the Schrödinger Hamil-
tonian H0. The difference between HAR in Eq. (24) and

H̃AR in Eq. (57) is that in the latter case only electron-
nucleus Dirac delta δ3(ra) needs to be regularized while
in the former case we regularize also electron-electron
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delta δ3(rab). By applying the above identities, we make

both the first and second-order matrix elements in A
(6)
AN

separately finite. The result is

A
(6)
AN = A

(6)
A +A

(6)
N , (58)

A
(6)
A =

2

J (J + 1)

〈∑
a

~J · ~σa haR
1

(E0 −H0)′
H̃AR

〉
, (59)

A
(6)
N =

1

J (J + 1)

〈∑
a

~J · ~σa
Z

6

{
1

ra

∑
b

p4b − 4π δ3(ra) p2a +
∑
b6=a

~rab
r3ab
·
(

2
~rb
r3b
− ~ra
r3a

)
+ 4π Z

∑
b 6=a

(
δ3(ra)

rb
− δ3(rb)

ra

)

− 2

ra

∑
b>c

∑
c

4π δ3(rbc) + 4
∑
b>c

∑
c

pib
1

ra

(
δij

rbc
+
ribc r

j
bc

r3bc

)
pjc − 4π Z δ3(ra)

〈∑
b

1

rb

〉
+

8

ra

〈
HA

〉}
− ~J · ~Pa + σjaJ

iP ija

〉
, (60)

where haR is obtained from ha by the replacement δ3(ra) → [δ3(ra)]r. The above expression for A
(6)
N still contains

auxiliary singularities appearing on the level of individual operators. In order to remove them, we repeatedly use the
Schrödinger equation, obtaining the identity〈

1

ra

∑
b

p4b − 4π δ3(ra) p2a

〉
=

〈
− 2

∑
b6=a

~rab
r3ab
· ~ra
r3a

+
4

ra

(
(E0 − V )2 − Z2

r2a

)
− 2

∑
b>c

∑
c

p2b
1

ra
p2c + 2Z ~pa

1

r2a
~pa

+

(
8π δ3(ra) +

4Z

r2a

)(∑
b6=a

p2b
2

+ V +
Z

ra
− E0

)〉
. (61)

After this transformation, all matrix elements are finite and can be calculated numerically.

As in the case of the Lamb shift and the fine structure, it is convenient to rewrite A
(6)
N in terms of a set of elementary

operators Ti defined in Table III:

J(J + 1)A
(6)
N =

Z

6

〈
− Q10 T1 − 2T2 − Z T3 + T4 + 2T5 − Z T6 + (8E(4) + 4E2

0)T7 + 4E0Z T8 + 8E0Z T9

−8E0 T10 + 4Z2 T11 + 4Z2 T12 − 4Z T13 − 8Z T14 + 4T15 − 3T16 + 2T17 + 2Z T18 + 4T19 − 2T20 + 2Z T21

−3 (T22 + T23 + T24)− Z

2
T25 −

3

2
T26 +

3

2
T27

〉
. (62)

V. CONCLUSION

In this work we derived the complete expressions for
the α6m QED corrections to the Lamb shift, the fine and
hyperfine structure of light N -electron atoms. The ob-
tained formulas generalize previous expressions derived
for the specific cases of the helium atom [8, 9] and the
fine and hyperfine structure of lithium [13, 14]. The ob-
tained formulas pave the way for improving of theory of
light few-electron atoms, first of all, lithium and beryl-
lium atoms.
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Appendix A: Derivation of operators Hi

In this section we describe the derivation of the mα6

operators Hi for the energy centroids. The starting point
is the Foldy-Wouthuysen (FW) Hamiltonian derived in
Refs. [4,20]:

HFW = eA0 +
π2

2m
− e

4m
σij Bij − π4

8m3
+

e

16m3

{
σij Bij , p2

}
− e

8m2

(
~∇ · ~E‖ + σij

{
Ei‖, p

j
})

+
e2

2m2
σij Ei‖A

j
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TABLE III. Definitions of the hyperfine-structure α6m operators Ti.

T1

∑
a
~J · ~σa 4πδ3(ra)

T2

∑
b<c

∑
c

∑
a
~J · ~σa 4πδ3(rbc)/ra

T3

∑
b 6=a

∑
a
~J · ~σa 4πδ3(ra)/rb

T4

∑
b 6=a

∑
a
~J · ~σa 4πδ3(ra)p2b

T5

∑
b<c

∑
c

∑
a
~J · ~σa 4πδ3(ra)/rbc

T6

∑
b6=a

∑
a
~J · ~σa 4πδ3(rb)/ra

T7

∑
a
~J · ~σa 1/ra

T8

∑
a
~J · ~σa 1/r2a

T9

∑
b6=a

∑
a
~J · ~σa 1/(rarb)

T10

∑
b<c

∑
c

∑
a
~J · ~σa 1/(rarbc)

T11

∑
b6=a

∑
c6=a

∑
a
~J · ~σa 1/(rarbrc)

T12

∑
b6=a

∑
a
~J · ~σa 1/(r2arb)

T13

∑
b<c

∑
c

∑
a
~J · ~σa 1/(r2arbc)

T14

∑
b<c

∑
c

∑
d6=a

∑
a
~J · ~σa 1/(rarbcrd)

T15

∑
b<c

∑
c

∑
d<e

∑
e

∑
a
~J · ~σa 1/(rarbcrde)

T16

∑
b6=a

∑
a
~J · ~σa

~rab

r3
ab

· ~ra
r3a

T17

∑
b 6=a

∑
a
~J · ~σa

~rab

r3
ab

· ~rb
r3
b

T18

∑
b 6=a

∑
a
~J · ~σa p

2
b/r

2
a

T19

∑
b<c

∑
c

∑
a
~J · ~σa p

i
b (δij/rbc + ribcr

j
bc/r

3
bc)/ra p

j
c

T20

∑
b<c

∑
c

∑
a
~J · ~σa p

2
b/ra p

2
c

T21

∑
a
~J · ~σa ~pa/r

2
a ~pa

T22

∑
a
~J · p2a ~ra

r3a
× ~pa

T23

∑
b 6=a

∑
a
~J · ~rb

rabr
3
b
× ~pa

T24

∑
b 6=a

∑
a
~J · ~rb

r3
b
× ~rab

r3
ab

(~rab · ~pa)

T25

∑
a J

iσj
a(3riar

j
a/r

2
a − δij)/r4a

T26

∑
a J

iσj
ap

2
a (3riar

j
a/r

2
a − δij)/r3a

T27

∑
b 6=a

∑
a J

iσj
a (3rjabr

i
a − δij~rab · ~ra)/(r3ar

3
ab)

+
i e

16m3
[σij {Ai, pj} , p2] +

e2

8m3
~E2
‖ +

3 e

32m4
{p2 , σij Ei‖ p

j}+
5

128m4
[p2, [p2, eA0]]

− 3

64m4

{
p2 , ∇2(eA0)

}
+

1

16m5
p6 , (A1)

where ~E‖ = −~∇A0 and

σij =
1

2i

[
σi, σj

]
, Bij = ∂iAj − ∂jAi . (A2)

Following the approach of Ref. [20] we derive the effective operators Hi as follows.

1. H1

Term H1 is the relativistic correction to the kinetic energy. We evaluate it as

H1 =
1

16

∑
a

p6a =
1

16

{(∑
a

p2a

)3
− 3
(∑

a

p2a

)(∑
b<c

∑
c

p2bp
2
c

)
+ 3

∑
a<b<c

p2ap
2
bp

2
c

}
= HA

1 +HB
1 +HC

1 . (A3)

The individual parts are calculated as

HA
1 =

1

16

(∑
a

p2a

)3
=

1

4
(E0 − V )

∑
a

p2a (E0 − V ) =
1

2
(E0 − V )3 +

1

4

∑
a

(∇aV )2 , (A4)
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HB
1 = − 3

16

(∑
a

p2a

)(∑
b<c

∑
c

p2bp
2
c

)
= −3

8
(E0 − V )

(∑
b<c

∑
c

p2bp
2
c

)
=
∑
b<c

∑
c

{
− 3

8
p2b (E0 − V ) p2c +

3

16

[
p2b ,

[
p2c ,

[
1

rbc

]
ε

]]}
,

and

HC
1 =

3

16

∑
a<b<c

p2ap
2
bp

2
c . (A5)

2. H2

H2 is a correction due to the static electric interaction,

H2 =
∑
a

(
(∇aV )2

8
+

5

128
[p2a, [p

2
a, V ]]− 3

64

{
p2a , ∇2

aV
})

= HA
2 +HB

2 +HC
2 . (A6)

The first term is just

HA
2 =

∑
a

(∇aV )2

8
. (A7)

The second term is transformed as

HB
2 =

∑
a

5

128
[ p2a, [ p

2
a, V ]]

=
5

128

(∑
a

∑
b

[ p2a, [ p
2
b , V ]]−

∑
a6=b

∑
b

[ p2a, [ p
2
b , V ]]

)

= − 5

64

(
2
∑
a

(∇aV )2 +
∑
a<b

∑
b

[ p2a, [ p
2
b , V ]]

)
. (A8)

The third term is

HC
2 = − 3

32

∑
a

p2a∇2
aV = − 3

32

(∑
a

∑
b

p2a∇2
bV

−
∑
a 6=b

∑
b

p2a∇2
bV

)

= − 3

32

(∑
b

2(E0 − V )∇2
bV −

∑
a6=b

∑
b

p2a∇2
bV

)
.

(A9)

Using the identity

∇2
bV = 4π

[
Zδd(rb)−

∑
c6=b

δd(rbc)

]
, (A10)

we express it as

HC
2 = − 3

32

[∑
b

(
2(E0 − V )−

∑
a6=b

p2a

)
4πZδ3(rb)

−
∑
c6=b

∑
b

(
2(E0 − V )−

∑
a6=b

p2a

)
4πδ3(rbc)

]
.

(A11)

Taking into account that∑
a6=b

∑
c 6=b

∑
b

p2aδ
3(rbc)

=
∑
a

∑
b<c

∑
c

p2aδ
3(rbc) +

∑
a 6=b
a6=c

∑
b<c

∑
c

p2aδ
3(rbc)

=
∑
b<c

∑
c

2(E0 − V )δ3(rbc) +
∑
a 6=b
a6=c

∑
b<c

∑
c

p2aδ
3(rbc) ,

(A12)

we finally get

HC
2 = − 3

32

[∑
b

(
2(E0 − V )−

∑
a6=b

p2a

)
4πZδ3(rb)

−
∑
b<c

∑
c

(
2(E0 − V )−

∑
a6=b
a 6=c

p2a

)
4πδ3(rbc)

]
.

(A13)

3. H3

Term H3 represents another correction to the Coulomb
interaction between electrons, coming from higher-order
terms in the FW Hamiltonian. Corresponding operator
is

H3 =
∑
a<b

∑
b

1

64

[
− 4π∇2δd(rab) +

4

d(d− 1)
σija σ

ij
b

×
(

(d− 1)

d
~pa 4πδd(rab) ~pb − pia

[
1

r3ab

(
δij − 3

riabr
j
ab

r2ab

)]
ε

pjb

)]
.

(A14)

This term will be simplified using various identities later
on.
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4. H4

H4 corresponds to the relativistic correction due to the transverse photon exchange and is given by

H4 =
1

8

∑
a

[∑
b6=a

{
p2a , p

i
a

[
δij

rab
+
riab r

j
ab

r3ab

]
ε

pjb

}
+
σija σ

ij
b

2d

{
p2a , 4π δd(rab)

}]
= HA

4 +HB
4 . (A15)

The first term is transformed as

HA
4 =

1

4

∑
b6=a

∑
a

p2a p
i
a

[
δij

rab
+
riab r

j
ab

r3ab

]
ε

pjb

=
1

4

[∑
c

∑
a<b

∑
b

p2c p
i
a

[
δij

rab
+
riab r

j
ab

r3ab

]
ε

pjb −
∑
c6=a
c6=b

∑
a<b

∑
b

p2c p
i
a

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb

]

=
1

2

(∑
a<b

∑
b

pia (E0 − V )

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb −

1

2

[
pia,

[
pjb,

[
1

rab

]
ε

]][
δij

rab
+
riab r

j
ab

r3ab

]
ε

− 1

2

∑
c 6=a
c 6=b

∑
a<b

∑
b

p2c p
i
a

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb

)
. (A16)

The second term is finite and is evaluated as

HB
4 =

1

8d

∑
a

∑
b6=a

σija σ
ij
b p

2
a 4π δ3(rab) =

1

8d

(∑
a<b

∑
b

(∑
c

p2c −
∑
c6=a
c6=b

p2c
)
σija σ

ij
b 4π δ3(rab)

)

=
1

8d

(∑
a<b

∑
b

(
2(E0 − V )−

∑
c6=a
c6=b

p2c
)
σija σ

ij
b 4π δ3(rab)

)
. (A17)

5. H5

Term H5 is another correction to the transverse photon
exchange,

H5 =
∑
b 6=a

∑
a

σija σ
ij
b

2d

(
−1

2

[
~rab
r3ab

]
ε

· ~∇aV

+
1

16

[[
1

rab
, p2a

]
, p2a

])
= HA

5 +HB
5 . (A18)

The first term is calculated as

HA
5 = −

∑
b 6=a

∑
a

σija σ
ij
b

4d

[
~rab
r3ab

]
ε

· ~∇aV

= −
∑
a<b

∑
b

σija σ
ij
b

4d

{(
Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r3ab
− 2

[
1

r4ab

]
ε

−
∑
c6=a
c6=b

(
~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r3ab

}
, (A19)

whereas the second term is

HB
5 =

∑
b 6=a

∑
a

σija σ
ij
b

32d

[[[
1

rab

]
ε

, p2a

]
, p2a

]

=
∑
b 6=a

∑
a

σija σ
ij
b

32d

{∑
c

[[[
1

rab

]
ε

, p2a

]
, p2c

]
−
[[[

1

rab

]
ε

, p2a

]
, p2b

]}

= −
∑
a<b

∑
b

σija σ
ij
b

16d

{
− 2

(
Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r3ab

+ 4

[
1

r4ab

]
ε

+ 2
∑
c6=a
c 6=b

(
~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r3ab

+

[
p2a,

[
p2b ,

[
1

rab

]
ε

]]}
.

(A20)
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6. H6

H6 comes from the double transverse photon exchange,

H6 =
∑
b 6=a

∑
c 6=a

∑
a

[
1

8
pib

(
δij

rab
+
riab r

j
ab

r3ab

)(
δjk

rac
+
rjac r

k
ac

r3ac

)
pkc

+
σijb σ

ij
c

8d

[
~rab
r3ab
· ~rac
r3ac

]
ε

]
= HA

6 +HB
6 , (A21)

where

HA
6 =

1

8

[∑
b6=a

∑
a

pia

(
δij

r2ab
+ 3

riab r
j
ab

r4ab

)
pia (A22)

+2
∑
c 6=a
c 6=b

∑
a<b

∑
b

pia

(
δij

rac
+
riac r

j
ac

r3ac

)(
δjk

rbc
+
rjbc r

k
bc

r3bc

)
pkb

]

(A23)

and

HB
6 =

1

8d

∑
a<b

∑
b

[
(σ2
a + σ2

b )

[
1

r4ab

]
ε

+ 2
∑
c 6=a,b

σijb σ
ij
c

~rab · ~rac
r3abr

3
ac

]

= =
1

4d

∑
a<b

∑
b

[
d(d− 1)

[
1

r4ab

]
ε

+
∑
c6=a,b

σijb σ
ij
c

~rab · ~rac
r3abr

3
ac

]
,

(A24)

where we have used the identity (σija )2 ≡ σ2
a = d(d− 1).

7. H7

Finally, the term H7 = H7a+H7c is the double retardation correction to the nonrelativistic single transverse photon
exchange, We evaluate the first part as

H7a =
∑
a<b

∑
b

−1

8

{
∇iaV

[
riab r

j
ab − 3 δij r2ab
rab

]
ε

∇jbV − i∇
i
aV

[
p2b
2
,

[
riab r

j
ab − 3 δij r2ab
rab

]
ε

]
pjb

+i pia

[[
riab r

j
ab − 3 δij r2ab
rab

]]
ε

,
p2a
2

]
∇jbV + pia

[
p2b
2
,

[[
riab r

j
ab − 3 δij r2ab
rab

]
ε

,
p2a
2

]]
pjb

}
= HA

7a +HB
7a +HC

7a .

(A25)

Here,

HA
7a = −1

8

∑
a<b

∑
b

∇iaV
[
riab r

j
ab − 3 δij r2ab
rab

]
ε

∇jbV

= −1

8

∑
a<b

∑
b

(
Zria
r3a
−
[
riab
r3ab

]
ε

−
∑
c6=a,
c6=b

riac
r3ac

)[
riab r

j
ab − 3 δij r2ab
rab

]
ε

(
Zrjb
r3b

+

[
rjab
r3ab

]
ε

+
∑
d 6=a,
d6=b

rjdb
r3db

)

= −1

8

∑
a<b

∑
b

{(
Zria
r3a
−
∑
c6=a,
c6=b

riac
r3ac

)
riab r

j
ab − 3 δij r2ab
rab

(
Zrjb
r3b

+
∑
d6=a,
d6=b

rjdb
r3db

)
− 2
(Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r2ab

+ 2

[
1

r3ab

]
ε

− 14πδ3(rab) + 2
∑
c 6=a
c6=b

(
~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r2ab

}
. (A26)

Furthermore,

HB
7a = −1

8

∑
a<b

∑
b

(−i)∇iaV
[
p2b
2
,

[
riab r

j
ab − 3 δij r2ab
rab

]
ε

]
pjb + i pia

[[
riab r

j
ab − 3 δij r2ab
rab

]
ε

,
p2a
2

]
∇jbV

= −1

8

∑
a<b

∑
b

[{(
Zria
r3a
−
∑
c 6=a,
c 6=b

riac
r3ac

)
pkb

(
δjk

riab
rab
− δik

rjab
rab
− δij r

k
ab

rab
−
riabr

j
abr

k
ab

r3ab

)
pkb

− pjb
1

r4ab
(δjk r2ab − 3rjabr

k
ab) p

k
b + (a↔ b)

}
− 2

[
1

r4ab

]
ε

+ 6πδ3(rab)

]
. (A27)
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Finally,

HC
7a = −1

8

∑
a<b

∑
b

pia

[
p2b
2
,

[[
riab r

j
ab − 3 δij r2ab
rab

]
ε

,
p2a
2

]]
pjb

=
1

8

∑
a<b

∑
b

pkap
l
b

[(
−δ

ilδjk

rab
+
δikδjl

rab
− δijδkl

rab
− δjlriabr

k
ab

r3ab
−
δikrjabr

l
ab

r3ab
+ 3

riabr
j
abr

k
abr

l
ab

r5ab

)]
ε

piap
j
b . (A28)

The term H7c is simply

H7c =
∑
a<b

∑
b

σija σ
ij
b

16d

[
p2a,

[
p2b ,

[
1

rab

]
ε

]]
. (A29)

Appendix B: Separation of singularities from
second-order correction

In this section we examine the second-order perturba-
tion correction induced by the Breit Hamiltonian

〈
H(4) 1

(E0 −H0)′
H(4)

〉
, (B1)

with H(4) = HA +HB +HC . The second-order correc-
tion induced by the spin-independent part of the Breit
Hamiltonian HA contains divergent ∼ 1/(d − 3) contri-
butions which need to be separated out in terms of ex-
pectation values of some (singular) first-order operators,
as explained below.

Following the approach of Ref. [8], we represent the
spin-independent part of the Breit Hamiltonian as

HA = HAR + {H0 − E0, Q} , (B2)

where

Q = −1

4

∑
a

[
Z

ra

]
ε

+
(d− 1)

4

∑
a<b

∑
b

[
1

rab

]
ε

. (B3)

The regularized operator HAR acts on the ket vector of

a trial function |φ
〉

as

HAR|φ〉 =

[
− 1

2
(E0 − V )2 +

1

4

∑
a<b

∑
b

~∇2
a
~∇2
b (B4)

−Z
4

∑
a

~ra · ~∇a
r3a

−
∑
a<b

∑
b

1

2
pia

(
δij

rab
+
riabr

j
ab

r3ab

)
pjb

]
|φ〉 .

Using Eq. (B2), the second-order correction induced by
HA can be rewritten as〈

HA
1

(E0 −H0)′
HA

〉
=
〈
HAR

1

(E0 −H0)′
HAR

〉
+X1 +X2 +X3 , (B5)

where

X1 =
〈
Q(H0 − E0)Q

〉
, X2 = 2

〈
HA

〉 〈
Q
〉
, X3 = −2

〈
HAQ

〉
.

(B6)

The second-order correction induced by HAR in Eq. (B5)
is finite for d = 3 and can be calculated numerically in
its present form. The other terms are transformed as

X1 =
1

2

〈
[Q, [H0 − E0, Q]]

〉
=

1

2

∑
a

〈
(∇aQ)2

〉
,(B7)

X2 = 2E(4)

〈
E0

2
+

1

4

∑
a<b

∑
b

1

rab

〉
. (B8)

The evaluation of the third term is more complicated.
We transform it as follows

X3 = −2

〈[
− 1

8

(∑
a

p2a

)2
+

1

4

∑
a<b

∑
b

p2a p
2
b +

Zπ

2

∑
a

δd(ra) + (d− 2)π
∑
a<b

∑
b

δd(rab)

− 1

2

∑
a<b

∑
b

pia

[
δij

rab
+
riabr

j
ab

r3ab

]
ε

pjb

]
Q

〉
=
〈
XA

3 +XB
3 +XC

3 +XD
3 +XE

3

〉
. (B9)

The individual terms are evaluated as

XA
3 =

1

4

(∑
a

p2a

)2
Q =

1

2
(E0 − V )

(∑
a

p2a

)
Q = −1

2

∑
a

(~∇aV ) · (~∇aQ) + (E0 − V )2Q , (B10)



15

XB
3 = −1

2

∑
a<b

∑
b

p2a p
2
b Q = −1

2

∑
a<b

∑
b

p2aQp
2
b −

d− 1

16

[
p2a,

[
p2b ,

[
1

rab

]
ε

]]
, (B11)

XC
3 = −Zπ

∑
a

δ3(ra)Q =
Zπ

4

∑
a

(∑
b 6=a

Z − 2

rb
−
∑
b<c
b 6=a

∑
c6=a

2

rbc

)
δ3(ra) , (B12)

XD
3 = −2π

∑
a<b

∑
b

δ3(rab)Q =
π

2

∑
a<b

∑
b

(∑
c

Z

rc
−
∑
c<d
cd 6=ab

∑
d

2

rcd

)
δ3(rab) , (B13)

XE
3 =

∑
a<b

∑
b

pia

[
δij

rab
+
riabr

j
ab

r3ab

]
ε

pjbQ =
∑
a<b

∑
b

piaQ

(
δij

rab
+
riabr

j
ab

r3ab

)
pjb +

(d− 1)

8

[
pia,

[
pjb,

[
1

rab

]
ε

]] [
δij

rab
+
riabr

j
ab

r3ab

]
ε

.

(B14)

Appendix C: Elimination of singularities

In this section we list the identities in d = 3 − 2ε dimensions that were used in order to algebraically cancel the
singularities and to get the simplified expression for the final formula for EQ. The following notations are used:
~Pab = ~pa + ~pb and ~pab = (~pa − ~pb)/2, and

〈
1/r3ab

〉
is defined in Eq. (22). The identities are:[

p2a,

[
p2b ,

[
1

rab

]
ε

]]
= −(~∇aV )

(
~∇a

1

rab

)
− (~∇bV )

(
~∇b

1

rab

)
− P 2

ab

3
4π δ3(rab) + P iabP

j
ab

3riabr
j
ab − δij r2ab
r5ab

= −
[

2

r4ab

]
ε

+

(
Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r3ab
−
∑
c6=a
c 6=b

(
~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r3ab
− P 2

ab

3
4π δ3(rab) + P iabP

j
ab

3riabr
j
ab − δij r2ab
r5ab

, (C1)

p2a

[
1

rab

]
ε

p2b = (E0 − V )2
[

1

rab

]
ε

− 1

4

∑
c6=a
c6=b

∑
d6=a
d6=b

p2c
1

rab
p2d + 2π

∑
c6=a
c6=b

(∑
d6=c

δ3(rcd)− Zδ3(rc)

)
1

rab

−
∑
c6=a
c6=b

~pc (E0 − V )
1

rab
~pc − ~pab · ~Pab

1

rab
~pab · ~Pab , (C2)

[
1

r4ab

]
ε

=
1

2
~pa

1

r2ab
~pa +

1

2
~pb

1

r2ab
~pb −

(
E +

∑
c

Z

rc
−
∑
d<c

∑
c

[
1

rcd

]
ε

−
∑
c6=a
c6=b

p2c
2

)[
1

r2ab

]
ε

, (C3)

[
Z2

r4a

]
ε

= ~pa
Z2

r2a
~pa +

∑
b 6=a

p2b
Z2

r2a
− 2

(
E +

∑
b

[
Z

rb

]
ε

−
∑
b<c

∑
c

1

rbc

)[
Z2

r2a

]
, (C4)

pia

[
1

r3ab

(
δij − 3

riabr
j
ab

r2ab

)]
ε

pjb = −π∇2δd(rab) +
1

3
~pab 4πδ3(rab) ~pab +

1

2

[
1

r4ab

]
ε

− 1

4

(
Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r3ab

+
1

4

∑
c6=a
c6=b

(
~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r3ab
− 1

4
P iabP

j
ab

3riabr
j
ab − δij r2ab
r5ab

, (C5)

∑
a

(∇aV )2 =
∑
a

[
Z2

r4a

]
ε

+ 2
∑
a<b

∑
b

[
1

r4ab

]
ε

− 2
∑
a<b

∑
b

(
Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r3ab

+
∑
c6=a
c6=b

∑
a<b

∑
b

(
~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r3ab

,(C6)
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∑
a

(∇aQ)2 =
1

16

∑
a

[
Z2

r4a

]
ε

+
(d− 1)2

8

∑
a<b

∑
b

[
1

r4ab

]
ε

− 1

4

∑
a<b

∑
b

(
Z~ra
r3a
− Z~rb

r3b

)
· ~rab
r3ab

+
1

4

∑
c6=a
c6=b

∑
a<b

∑
b

(~rac
r3ac

+
~rcb
r3cb

)
· ~rab
r3ab

, (C7)

∑
a<b

∑
b

pia

(
δij

rab
+
riabr

j
ab

r3ab

)
pjb = −2E(4) − (E0 − V )2 +

1

2

∑
a<b

∑
b

p2a p
2
b +

∑
a

Zπδ3(ra) + 2
∑
a<b

∑
b

πδ3(rab) , (C8)

pia 4πδ3(rab) p
j
b = −piab 4πδ3(rab) p

j
ab + πδ3(rab)P

i
abP

j
ab , (C9)

~pa · ~pb
[

1

rab

]
ε

~pa · ~pb = p2a

[
1

rab

]
ε

p2b − ~pa × ~pb
1

rab
~pa × ~pb − 2πδ3(rab)P

2
ab , (C10)

[
1

2rab

(
δij+

riabr
j
ab

r2ab

)]
ε

∇i∇j
[

1

rab

]
ε

=

[
1

r4ab

]
ε

−πδ3(rab) ,

(C11)〈[
1

r3ab

]
ε

〉
=

〈
1

r3ab

〉
+ 〈πδd(rab)〉

(
1

ε
+ 2

)
, (C12)

∇2δd(rab) = 2 ~pab δ
d(rab) ~pab−2

[
E0−

P 2
ab

4
−
∑
c 6=a
c 6=b

p2c
2
−V
]
δd(rab) .

(C13)
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