Complete quantum electrodynamic a® m correction to energy levels of light atoms
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We derive a complete expression for the nonrecoil quantum electrodynamic a® m correction to the
Lamb shift, the fine and hyperfine structure of light N-electron atoms. The derivation is performed
in the framework of nonrelativistic quantum electrodynamics. The obtained formulas generalize
previous ones derived for the specific cases of the helium atom, and the fine and hyperfine structure
of lithium, and pave the way for improving the theory of light atoms with three and more electrons.

Accurate theoretical predictions of transition energies
in simple atoms are used for high-precision tests of the
Standard Model of fundamental interactions, and deter-
minations of fundamental constants and of nuclear pa-
rameters. The highest theoretical precision is achieved
for the simplest systems, like the hydrogen and the
hydrogen-like ions [1]. However, comparison of the hy-
drogen theory with the existing experimental data is
presently limited by the uncertainty from two conflict-
ing values of the proton charge radius [2].

Modern theoretical descriptions of few-electron atoms
gradually approach the level of accuracy of the hydrogen
theory [3], with higher potential for discovery of new ef-
fects. It is because there are several transitions which
have narrow linewidth. In particular, the calculation of
the a5m?/M correction in helium [4, 5] allowed us to
extract the difference of the nuclear charge radii of two
helium isotopes, revealing inconsistencies between differ-
ent experimental transition energies [6], which remain to
be explained. Furthermore, the ongoing project of the
complete calculation of the a” m effects will allow the de-
termination of the absolute value of the helium nuclear
charge radius [7].

For atoms with three and more electrons, the
dominant uncertainty of the theoretical energy levels
presently comes from uncalculated quantum electrody-
namic (QED) effects of order a®m. This correction
was derived and calculated numerically for helium in
Refs. [8, 9] and later for helium-like ions in Ref. [10].
The goal of the present investigation is to extend the
derivation of Refs. [8, 9] to the general case of an atom
with an arbitrary number of electrons, which will open
the way towards numerical calculations of these effects in
light atoms, such as lithium, beryllium, boron, and the
corresponding isoelectronic sequences.

I. NRQED EXPANSION

In order to calculate energy levels of a light atom
we employ the so called nonrelativistic QED (NRQED),
which is an effective quantum field theory that gives the
same predictions as the full QED in the region of small

momenta, i.e., those of the order of the characteristic
electron momentum in the atom.

The basic assumption of the NRQED is that the
bound-state energy E can be expanded in powers of the
fine-structure constant «,
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The coefficients of this expansion E(*) depend implicitly
on the electron-to-nucleus mass ratio m/M and may con-
tain finite powers of In a. These coeflicients may be fur-
ther expanded in powers of m/M,

According to NRQED, the expansion coefficients in
Egs. (1) and (2) can be expressed as expectation values of
some effective Hamiltonians with the nonrelativistic wave
function. The derivation of these effective Hamiltonians
is the central problem of the NRQED approach.

The leading term of the NRQED expansion, E®), is
of order a?m and is just the nonrelativistic energy as
obtained from the Schrédinger equation. The next term,
E@ | is the leading relativistic correction of order a*m
and is given by the expectation value of the Breit Hamil-
tonian H®. The next term represents the leading QED
effect of order a®m, derived many years ago by Araki
and Sucher [11, 12].

The subject of the present work is the next correction
of order o® m, which will be considered in the non-recoil
limit, £(6:9  For the helium atom, this correction was
derived and calculated numerically by one of us (K.P.)
[8, 9], see also the recent review [3]. For lithium, the
a8 m effects were so far calculated for the fine and hyper-
fine structure [13, 14]. In this work we generalize those
studies and present derivation of complete formulas for
the a®m effects valid for arbitrary states of a general
N-electron atom.

We represent the afm correction to the energy level
of an atom as a sum of three parts,
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The first term EI(f;)mb (“Lamb shift”) is the correction to
the nLS centroid energy (n denotes the principal quan-
tum number, L and S are the angular momentum and
the spin of the state under consideration). Energy cen-
troid Epamp is defined as weighted average over the fine
levels
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where J is the total angular momentum of the electronic
state. In the presence of the nuclear spin I, each fine level
is in turn an average over the hyperfine levels, namely
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where F' is the total angular momentum of the whole

atom. The second term Ef(f ) is a correction to the fine
structure, defined by the condition that its contribution
to the nLS centroid energy vanishes,
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Finally, the third term E}(f) is a contribution to the hy-
perfine structure, defined by the condition that its con-
tribution to the nLS J energy centroid vanishes,

ST (@F+1) B (nLSJF) = 0. (7)
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We note that this definition of the hyperfine splitting
leads to the appearance of nuclear-spin dependent con-
tributions in the Lamb shift and in the fine structure
(through second-order effects), see Ref. [15] for details.
Such corrections are of order a®m?/M and thus are not
relevant for the present investigation.

It should be mentioned that when considering the
structure of atomic levels, it is sometimes required to
treat several closely lying levels as quasi-degenerate
(rather than to consider each of them separately as an
isolated level), because of a strong mixing between them.
In particular, this is the case for the hyperfine structure
of the 23P level of 3He, studied in Ref. [15]. In such
cases, the scalar energy E in Eq. (1) needs to be replaced
by a matrix of an effective Hamiltonian constructed in a
subspace of quasi-degenerate states, and the energy levels
are determined by diagonalizing this matrix, see Ref. [15]
for details.

II. ENERGY CENTROID

The a® m correction to the energy centroid E©

Lamb is
represented [8] as a sum of several terms,
2
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where H, are the effective a®m operators induced by

the virtual photon exchange between the particles, Hg ;
are the operators representing the radiative corrections,
Hp is the effective operator originating from the forward
three-photon scattering amplitude, and Fy and Hy are
the nonrelativistic energy and Hamiltonian for the in-
finitely heavy nucleus, respectively. The last term on the
right-hand side of Eq. (8) is the second-order correction
induced by the Breit Hamiltonian H®,

HY = Hy+ Hp + He, (9)

where
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where ¢ denotes the electron g-factor, d = 3 — 2¢ is the
extended space dimension, §%(r) is the Dirac delta func-
tion in d dimensions and [z]. stands for d-dimensional
form of expression x. In the above, the spin-independent
part of the Breit Hamiltonian H 4 is written in d dimen-
sions, since it leads to divergent terms ~ 1/(d — 3) in
the second-order correction. The spin-dependent parts
of H® are written in d = 3 as they do not lead to any
singularities. The upper index in H](34+) and Hgl ) indi-
cates that these operators are of order a* m but contain,
in addition, some higher-order terms due to the presence
of anomalous magnetic moment. For further calculations
we will also need the g — 2 limit of these operators,

. (44)
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with X = B, C.

The derivation of the effective a®m operators H; is
described in Appendix A. It is performed in d = 3 — 2¢
dimensions, following the approach developed in Ref. [8].
The results are
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In the case of a two-electron atom, the operators H; agree
with those derived for helium in Ref. [8].

The effective operator originating from the forward
three-photon scattering amplitude is deduced from the
results derived in Ref. [16] for parapositronium, which

yields
1 T
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and ( is Riemann zeta function.

Radiative corrections to order a® m are represented by
the following one-loop and two-loop effective operators,
which have been obtained originally for hydrogen and
positronium spectra,
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Both the first-order and second-order terms in Eq. (8)
contain divergences, which need to be separated out and
cancelled algebraically. We perform this in two steps.
First, we identify divergences in the second-order correc-
tions (last term in the right-hand side of Eq. (8)) and
separate them out in terms of some effective first-order
operators by the transformation (B2) as is described in
detail in Appendix B. Second, we algebraically cancel
singular terms proportional to 1/e. This is done with
help of various identities in d dimensions listed in Ap-
pendix C.

After performing all reductions and cancellations of
singularities we get the final result

EI(fa)mb - EQ + E}{ + Esec + ERI + ER2
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where Eg = <HQ> and Efy = <H}{> The first term in
Eq. (20), Eq, incorporates first-order operators remain-
ing after the cancellation of divergences. With help of
the identity % - o) = 2, - G5, we obtain the following



formula for Hg in terms of 45 operators @); listed in Ta-
ble I. These operators are similar to those derived in [8]
with two differences: (i) there are extra three-electron
operators which are grouped together with correspond-

J
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ing similar one- and two-electron operators, and (ii) de-
pendence on spin in form of product of o matrices is now
included in definition of ) operators. The result is
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Here, E® = <H(4)> is the expectation value of Breit
Hamiltonian, and Fy = E® is the nonrelativistic energy.
In the case of operator Q12, the expectation value of 1/r3,
is calculated in the sense of the following limit
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In the case of 36, the matrix element is only condi-
tionally convergent, so one has to integrate first over the
angles and then over the radial r,;, variable.

Esec in Eq. (20) incorporates what is left of the second-

order correction after separation of divergences. It is
given by
Egee= (H _ Hagr)+ (H _ Hpg)
sec— AR (EO — HO)/ AR B (EO — HO) B
1
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where H4p is defined by Eq. (B2) and its action on a
trial function ¢ is given by,
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with omitting 0%(rqp) from differentiation. It is because
§3(rqp) in the original Hy in Eq. (10) cancels out with
that from V2 ﬁg differentiation.

III. FINE STRUCTURE CORRECTIONS

The fine-structure o m correction Ef(s6 ) has the form

similar to that for the Lamb shift,

1
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The first term is given by the expectation value of the
spin-dependent a® m Hamiltonian Hf(sﬁ), whereas the sec-
ond term is the second-order perturbative correction in-
duced by the Breit Hamiltonian. The subscript “fs” in
< . > «, indicates that only the spin-dependent part of the
correction should be taken. The last term is the anoma-
lous magnetic moment (‘amm’) correction to the fine-
structure from the amm-corrected Breit Hamiltonian, see
Egs. (11) and (12). This correction arises from the fact
that the g-factor contains higher-order terms in a.

The Hamiltonian Hf(f ) for helium atom was first ob-
tained by Douglas and Kroll [17] in the framework of the
Salpeter equation and later re-derived in a more simple
way using the effective field theory in Refs. [18, 19]. In
this work we use the general expression for Hf(sﬁ) valid for
the N-electron atom which was derived in [20],
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TABLE I. Definitions of operators Q;, B = Do + Dby Pab = %(ﬁa — Db),
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Here, e &, denotes the static electric field at the position
of particle a
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and e A’ is the vector potential at the position of particle
a, which is produced by all other particles,
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It is convenient to express Hy,’ in terms of the elementary
spin-dependent operators R; listed in Table II,
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These operators are corresponding to operators derived
previously for lithium in [23]. In particular, operators
R1 — Ryg correspond to operators Q1 — Q29 derived in
that paper with the exception of Ry3 and Ri6. Operator
Ry3 corresponds to Dy in [23] and operators Ra; — Ry
correspond to P, — Py, albeit in slightly different form.
The remaining operators Ro; — Ro7 along with R4 are
equivalent to two-spin Douglas-Kroll operators [17].

The second-order term in Eq. (25) can be represented
as

1 1
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where H,, Hp, and Ho are parts of the Breit Hamilto-
nian given by Eq. (10) and the g — 2 limit of Egs. (11),
and (12), respectively.

Unlike the a® m correction to the Lamb shift, all a®m
fine-structure corrections are finite and do not require
any regularization. Numerical calculations of the a®m
effect to the helium fine structure were performed first
by Lewis and Serafino [21] and more recently by other
authors [18, 22]. For Li and Be™, analogous calculations
were carried out in Refs. [14, 23].

IV. HYPERFINE STRUCTURE

The af m corrections to the hyperfine structure was
calculated for helium in Ref. [15]. Later, this treatment
was extended to lithium in Ref. [13]. Here we reformulate
results obtained in these studies in a general form valid
for an N-electron atom.

The o m corrections to the hyperfine splitting has the
same structure as the other a® m corrections considered
in the previous sections, namely,

B = () +2 () HLE) + B

(31)
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where H. l(lfs 6

is the effective
the nuclear spin I, H® is the Breit Hamiltonian, and
H}(I?S) is the nuclear-spin dependent a*m correction to
the Breit Hamiltonian, and B9

hfs,amm

electron amm correction to H}(lfg .
The nuclear-spin dependent correction to the Breit
Hamiltonian, with inclusion of the electron amm effects,

is given by
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where A and B correspond to the magnetic field of the
nucleus,
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Here, I denotes the nuclear spin operator, M is nuclear
mass, and gy is the nuclear g-factor defined as
M p 1
35
gN = Zmp e Ia ( )

where m,, is the proton mass, p is the nuclear magnetic
moment, and puy = |e | /(2m,,) is the nuclear magneton.

One can express H} in a more explicit form,

1fs

4+ g > o
Hl(lfs):€z<21'0—a

a

ha+ 1 ho+ gfiaghgj> (36)

where € = (m/M) gn/2 and h, operators are

he = g7r(53(7’a),

3 (37)



TABLE II. Definitions of the fine-structure o® m operators R;.
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We start the derivation of a®m operators with the
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where 7 = p — eA. Magnetic fields A and B induced by the nuclear magnetic moment are given in Egs.
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(38) Breit-Pauli Hamiltonian Hgp of the atomic system in
the external magnetic field,
(39) Hpp = ZH +> ) Ha, (40)
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(34). The relativistic correction to the hyperfine interaction is obtained from the relativistic terms in the Breit-Pauli

Hamiltonian Hgpp,
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are divergent and need to be regularized and transformed J +1) Z Fa Fa atoalta )
to an explicitly finite form. In order to do so, it is conve- (52)
nient to rewrite the hfs correction to the energy in terms 9 1
of the hyperfine constant A defined as A0 — 2 Jhy —— " H 53

2= 7\ gy )
En=1-JA 4
e = S W o2 DU N p—
= . . “ I+ “ (Eo — Ho) ’
where J is the total electronic angular momentum. Using a 54
the notation Hyg = I - Hpgs, wWe express A as ) (54)
1 dn Z - 5
AO = - Gy 63 (ra In2— =
_ 1 > R = 7(J+1) 3 2 T Gud(ra) ) (23 ),
= <J ths> . (49) a
J(J+1) (55)
The expansion of A in « is of the form ()
and where A" is radiative correction known for the hy-
s drogen atom [24].
A=e Z " At (50) We now separate divergencies from the above expres-

n=4

where we are interested in the o m correction, A®). Due
to symmetry of the intermediate states in the second-
order matrix elements, the A, B, and C parts of the hfs
Hamiltonian H}(];i) give nonvanishing contributions only
when coupled to the corresponding A, B, and C parts of
the Breit Hamiltonian H®. So, the total result for A(®)
can be expressed as

A© = 4G 4 A9 4 AL 4 A (51)
where

2 - 1
A9 = J-Guh H
AN J(J+1)<za: (Eo — Ho)'

sions. This is done with help of the following identities

47r(53(ra) =47 [53(7”a)]r - Z {TQ

a a
Ha=Har+ Z{ EO—HO}

The regularized operators [§%(r,)], and Hagr have ex-
actly the same expectation value as the non-regularized
operators §%(r,) and H, if the expectation values are
calculated with the eigenstates of the Schrodinger Hamil-
tonian Hy. The difference between H g in Eq. (24) and
Hag in Eq. (57) is that in the latter case only electron-
nucleus Dirac delta §%(r,) needs to be regularized while
in the former case we regularize also electron-electron

, Eo — HU}, (56)

(57)



delta 63(rq). By applying the above identities, we make 40 2 < 2 1 ~
@ ’ = — JGohar ————— Har ), (59)
both the first and second-order matrix elements in Af])\, 4 J(J+1) Z (Eo — Hp)'

separately finite. The result is

AP = AD 1 A0 (58)
J

6 Tab Tb 7_"& 53(T’a) 63(7”1;)
AE\,) <ZJ Oa — { Zpb 47 6%(ry) paJrZ ( T?;>+47TZZ< i

b#a ab b#a
54 r’ .\ 1 8
_E 2247753 The —|—422pb ( b;gb>pg—47rZ53(7‘a)<Z Tb>+7”a<HA>}
b>c c¢ b>c c¢ c b
~J-P,+0lJ P > , (60)

where hqr is obtained from h, by the replacement 63(r,) — [0%(r,)],. The above expression for Ag\?) still contains
auxiliary singularities appearing on the level of individual operators. In order to remove them, we repeatedly use the
Schrédinger equation, obtaining the identity

1 4 3 2 Fab Fa 4 2 Z2 2 1 2 R 1 5
72?1;‘4”5(%)% = —227'73"'* (Eo—V) — 7 —QZZPbTPc‘F?Zpa?TQPa
a b a . a a

b#a Tab Ta

—|—<87r53(7“a)+4;Z> (Zpb +V+Z_E0>> (61)

a b?ﬁ
After this transformation, all matrix elements are finite and can be calculated numerically.

As in the case of the Lamb shift and the fine structure, it is convenient to rewrite AS\?) in terms of a set of elementary
operators T; defined in Table III:

Z
J(J+1) AP = 6< — QuoTy — 2Ty — ZTs+ Ty +2Ts — ZTg + (8EW + AE2) Ty + 4By Z Ts + 8EZ Ty

— 8B Tho+4Z% Ty +47% Ty —AZ Ti3 — 82 Tiyu +4Tis — 3T+ 2T17 + 272 This +4Tho — 2To0 + 27 Toy
Z 3 3
—3 (T + Tos + Toy) — §T25 - §T26 + 2T27> . (62)
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the a® m QED corrections to the Lamb shift, the fine and
hyperfine structure of light N-electron atoms. The ob-
tained formulas generalize previous expressions derived
for the specific cases of the helium atom [8, 9] and the
fine and hyperfine structure of lithium [13, 14]. The ob- In this section we describe the derivation of the ma
tained formulas pave the way for improving of theory of  operators H; for the energy centroids. The starting point
light few-electron atoms, first of all, lithium and beryl- is the Foldy-Wouthuysen (FW) Hamiltonian derived in

lium atoms. Refs. [4,20]:

Appendix A: Derivation of operators H;

6

2 e L 4

H _ AO S S pu_
rw=e +2m am’ 8md | 16m?

{09 B p

e (V- B+ 0 (B p'}) + 5oz 0 B AT
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TABLE II1. Definitions of the hyperfine-structure o m operators T;.

Ty S, T Gadmd® (ra)
T2 Shce e Lo - Fadmd® (o) /ra
Ts > bta Xoa J Fo A3 (ra)/rb
Iy Zb;ea Za - Go 4md® (r )
Ts Do Lo S+ Fadnd® (ra) /e
Ts Dta 20 O 47 6°(rv) /1
Tz > J-Gal/ra
T3 > J-Gal/r?
T Yot 0 Fal/(rary)
Tuo Sice e L Fal/(rarse)
T Zb;ﬁa Zc;ﬁa 2 TG 1/(raryre)
Tr2 Dbt Xoa J -3 1/(r2ry)
Tis Shce oo S - Fal/(rarse)
Tha Dbce e Zd#a 2 TG 1/(rarscra)
T1s DpceDie Didce 2ue a T Gal/(rarserac)
T16 Z#a >ud0a :5: é
Tir Dbsta 2a J - fgb o
R ab b
Ths 2 bta 2aad Oa o/
Tg e e oa J  Faphy (59 [roe + Therdo/The) [Ta D
T2 Lbce Xie Xa T Gapi/Tap?
T D J Uapa/rapa
T o J pa :% X Pa
Tas Dbt Xoa J- r;"rg fﬁa
Tos D bta 2oa T :?, X : (Tab * Pa)
T>s >, gl (37"&7%/7"& - (5”)/7"
T S, Jiodp (3rkrd /ri — 69) /]
T Sita 20 IOk (Briyri — 89Ty - ) /(rirdy)

b oA ) B P oY B+ R e A
764?714 {p ’VQ(eAO)}+ﬁp6’ (A1)
where EI\ = —VA° and
o = l[Ui,aj] , BY =9'AT — I A", (A2)

24
Following the approach of Ref. [20] we derive the effective operators H; as follows.

1. H;

Term H; is the relativistic correction to the kinetic energy. We evaluate it as
1 6 1 2\ 3 2 A B c
H = Eza:pa = m{(;pa) - 3(;%) (Zzpbpc) +3 ;}K papipi ¢ = Hi' + HP + H{ . (A3)
The individual parts are calculated as
1 2\ 3 1 3 1 9
Hi' = 6 (Zpa) Eo— Zpa Ey -V §(E0—V) +EZ(VGV) ; (A4)

a
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5 (S0) (X vint) =5 50— i)

b<c c b<c c¢
3 1
-Ex{ -t [z ] ]
Tbe
b<c c €
[
and >3 (2(E0 -V)=> p3> 47r53(7“bc)} .
3 c#b b a#b
c_ 9 2 2 2
Hl - 16 Z PaPyDe - (A5) (All)
a<b<lc
Taking into account that
2. H:
DD 025 (re)
Hs is a correction due to the static electric interaction, akb cb b
_ (VaV)? 39 o2 =3 283 + > > pasd(re)
HQZ@:( ) +128[p Vil - 64{ VV} a b<e c aibb<c c
_ r7A B c
= He iy A0 =S S B V)8 ) + 303 S p2% ),
The first term is just b<e ¢ Zzg b<e ¢
V.V)? (A12)
ap =S V)7 A
$= (A7)
“ we finally get
The second term is transformed as
3
5 c_ 92 - _ 2 3
HE = Z (92, [p2, V] Hy =55 [Z (2(E0 V) Zpa) Ar26°(ry)
128 b a#b
_ 2 1.2 2 1,2 _ _ _ 2 3
= m(ZZ[pm VARSI [pb,V]]> ;Z < (Eo = V) Zm) dmo (rbc)} :
a#b b <c ¢ a;ib
( Z VaV)2+ Y ) (02 [ph V ) (A8) (AL3)
a<b b
The third term is
3. Hs

3 STV =g (S vy
Term Hj represents another correction to the Coulomb

- Z Z pzvﬁv) interaction between electrons, coming from higher-order
terms in the FW Hamiltonian. Corresponding operator

a#tb b
3 2 2v72 8
:_3)2(;2(E0—V)va-§)zb:pavbv>. 1 )
Ha = — |- 25d “ i
(A9) 3 ;zb: 64 l TV ran) + g 1)” %
Using the identity 1 1 3 i 4
X <(d = ) Do AT (T ap) Py — P L?’ ((5” - 3%)} p{))] .
ViV =dr [z(sd ) = Y 6%y } : (A10) ab ab /e

por (A14)

This term will be simplified using various identities later

on.

we express it as

HS = _3 [Xb: (Q(EO -V) - Zpﬁ) A 253 (ry)

32 =
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4. Hy

H, corresponds to the relativistic correction due to the transverse photon exchange and is given by

1 5 i [90Y Tébrib j Uéjazj 2 d A B
H4:§ZZ Pa s Pa TabJrszpr + od {pa747T5 (Tab)} = Hy + Hy. (A15)

a “b#a

The first term is transformed as

rtopd
Tab T j
=3 Y[ } v
€

b#a a ab
1 abrab ibrib j
e yen” EDHHW I (EERY
c a<b b T'ab c#a a<b b ab
c#b

1 1) riopd o1 1 §i gt gl

- E _ e ab ab J o % J e ab ' ab

2 (Z%Xb: P (£ (Tab i ol )pb 2 [pa, {pb’ [TabL” [Tab i rab e

i )
-5 Z oD vive ( 7“1’32“1’ )Pi) : (A16)
i;;g, a<b b a

The second term is finite and is evaluated as

Hfzézzgﬂgszillﬂ'é rab Sd(zz ch ch O—U0'U47T(S (rab)>

a b#a a<b b c c#a
c#b
(ZZ (Eo = V)= pl)oi o) 47r63<rab>) . (A17)
a<b b c#a
c#b
[
5. Hs The first term is calculated as

oo’ |T -
. . B =Y [T o
Term Hj is another correction to the transverse photon 4d Tab
exchange,

— ZZ UZ] Ub ZTa ZFb Fab 2 1
B b B 4d 3 Ty o 7“31;
ol gt 1 [ - Z<%+m>.m} (A19)
Hs = o b (_— |2 .V, V 3 3 3 (>
b o 2 ( 2 [Tgb]e cra Nae v/ Tab
a c#b
1

1
T Hrb ’ pi] ’ pi]) = H' + HP. (A18)  whereas the second term is
|

s[4

b£a a TabJe

zz ][I A4

G5 -2 BefE e (G R) 2ol )]

- - ZaZb ) o Zle _Z00) . Tab Ly +2 : LN R .

azd; 16d 7’2 Tg Tab Tab C#Za ac ch gb ¢ ’ Tab €
c#b

<

(A20)



13

6. Hg (A23)
Hg comes from the double transverse photon exchange,
. o . and
rtor J rdr
=YY i (5 ) (5 4 )
b#a c£a a Tab Tac Tac ) .
B __ 2 2 ij z] rab rac
o 7y Fu = g Y|t | 2 X oo ]
+ b8d Lg 3 } ] = Hg' + HE (A21) 8d =5 Tavle s TabTae
ab tacde 1 1 7, b 7,
where == Z Z {d(d ~1) LA} Z Uu i
a<b b able  c4qp ac
1 5% r
HA — o ab ab A24
§ [Z > p <T e P (A22) ( )
b#a a ab "a
a(' a(' 5]k rl]; rl]?c k : : 17 \2 2
+2 Z Z Zpa + =52 | py where we have used the identity (¢%7)? = 02 = d(d — 1).
caa<b b ac ac Tbe Tbe
CFU ‘
7. H-~

Finally, the term H7 = Hr7,+ Hz. is the double retardation correction to the nonrelativistic single transverse photon
exchange, We evaluate the first part as

1 ) riopd 3§02 . L 2 Tpiopd 34002 .
HmZZS{W{ i ] ViV _iviv {H T } }p@

a<b b ab Tab
i, — 380 y2 i ri gl 380 2 2 -
tipt | |lablab ab ng+ pb ab "ab ab ’pi pl Y = HA + HE + HE .
Tab € 2 Tab € 2
(A25)
Here,
1 X riopd 380 2 :
A _ i ab ' ab ab J
=g LS vy |l gy
a<b b €
Zr v\ [re, rd — 36802 Zrd r
- _ - ZZ Lb _ Z % ab ' ab ab 3b gb + Z Tdb
3, TS, Tab Tp Tab T
a<b b "a c#a, € a d#a,
c#b d#b
—IyY ( ZT) rhy Ty — 3872 (Zruz%)_z(”a_zﬁ).m
a<b b cta, Tac T'ab ry dta, T ra r Tab
#b db
1 Tae = Te Ty
+2{3} — 1476 (rap) +2Z<+ 3”) 2”} (A26)
/rab € 7Aac ch 7Aab
c#a
c#b
Furthermore,
1 X p? [r Pl — 38102 . [t rd, — 360 2 p
HB _ _ ViV 7b’ ab’ab ab 7 L) ab ' ab ab Fa vjv
_ 1 ZZ zrl, Z Toc ok 5jkilb _ 511@@ _ 6ij7ib _ ik, ok
8 a<b b 7’2 cta rgc b Tab Tab Tab 'I’gb b
c#b
1 jk 2 L 3
pb e (6 - 3Tabrab)pb +(aeb)p—2 A +6m0%(rap) | - (A27)
ab ablde

el



Finally,

1 - [p? Pl — 341 p2
C % b ab " ab ab
i =5 S [ [[ |

14

e

Tab
a<b b
1 k1 K gitgak kgl §id gkl 5jlr3b7"§b §ik ]brflb rflbrjbrkbrlb o
=3 Dalp| | — + - - +3-¢2abava pipl. (A28
8 azd, ; o Tab Tab Tab Tob oy Tob O ’ (A28)
The term Hz7. is simply
ooy 2, | p? 1
ZZ 16d Das | Pos T . (A29)
a<b b able
[
Appendix B: Separation of singularities from a trial function |¢> as
second-order correction
1 1 PR
Hagl¢) = [—Q(EO—V2+4ZZV3V§ (B4)
In this section we examine the second-order perturba- a<b b
tion correction induced by the Breit Hamiltonian Z 7, - Z Z 5 abrab
DML r(5 |19
a a<b b

<H<4> ! (B1)

b pw
(Bo—Hoy >

with H® = H4 + Hp + He . The second-order correc-
tion induced by the spin-independent part of the Breit
Hamiltonian H, contains divergent ~ 1/(d — 3) contri-
butions which need to be separated out in terms of ex-
pectation values of some (singular) first-order operators,
as explained below.

Following the approach of Ref. [8], we represent the
spin-independent part of the Breit Hamiltonian as

Hy = Hag + {Hy — Eo,Q}, (B2)
where
(2] @) sy L
Q=-7 Z [m]f 1 221; [mL (B3)

The regularized operator H i acts on the ket vector of

J

=2 (-5 (Zh)

a<b b

1 00 i)
*522 ;{ argﬂ p{)}Q><X§4+Xf+X§;+X;?+X3E>.
b €

a<b ab

The individual terms are evaluated as

W=y esb

Zzpa b+

v (Xr)e=

Using Eq. (B2), the second-order correction induced by
H 4 can be rewritten as

1 1
<HA (Eo — Hy)' HA> - <HAR (Eo — Hy)' HAR>
+X1 4+ X2 + X3, (B5)
where
Xy = <Q(H0 - EO)Q> C Xo = 2(HA(Q), Xs=—-2(HsQ).

(B6)

The second-order correction induced by H g in Eq. (B5)
is finite for d = 3 and can be calculated numerically in
its present form. The other terms are transformed as

X =5 (1@~ Bl = § S ((7.07) (B)

X, —2E<4><E° + 5 ZZ%>

a<b b

(B8)

The evaluation of the third term is more complicated.
We transform it as follows

d—2)7 Z Z 6% (rap)

a<b b

5 Za: 6% (rq) +

(B9)

Z(%V) - (VaQ) + (Ey — V)?Q, (B10)

a



15

3= —% D Q= ZZ P2Qp} — [pﬁ, [pQ, Lﬂ(ﬂ ” : (B11)

a<b b a<b b
Z
ng—ZﬂZ(Sg(ra)Q:ZZ( " )(53 Ta), (B12)
a a b#a b<c c#a be

XP=-2r> "> 60ra)Q ZZ(Z— Z Z ) (rab) (B13)

a<b b a<b b
cd;éab

xE= ST+ ] o=y L+t )y D [ [ [ )] [ )

a<b b a<b b ab Fablell LTab "ab
(B14)

Appendix C: Elimination of singularities
In this section we list the identities in d = 3 — 2¢ dimensions that were used in order to algebraically cancel the

smgularltles and to get the simplified expression for the final formula for Eg. The following notations are used:
P, = Pa + Pp and pap = (Do — Db)/2, and <1/rab> is defined in Eq. (22). The identities are:

1 S -1 4 .1 P2 , 3 — &%
e |P3, = —(VoV) [ Va— | = (VuV) [ V— 77ab47r53(rab)+PleibM
Tab Tab Tab 3 Tab
2 Z7, Z7 Tab Tac Teb Tab P 3 3t ’I“j — i 2
= | = e —ae  1ev ) 1ab  Zabyrs pzpaw C1l
H*( R I b B
c#b
1 1
i =y ] XYk e (SR - 2000 ;
able ab c#a d#a Tab c#a ~d#c ab
c#b d#£b c#b
. 1. L s 1 4
*ZPC(EO*V)ipc*pab'Pabipab'Pabv (02)
Tab Tab
c#a
c#b
1 1,1 . 1, . Z 1 p? 1
) ermaanga- (X -EEL] 20 @
‘ c d<c c¢ € c#a able
c#b
VA L 7% Z 1\ [2?
B TE0  E CED K B 9 o) I (ca)
a bta a p Lode oo Tbe
[ (T ; 1 171 1 (ZF,  Z@\ T
¢ _— (g9 _ glabab ) = —xv26¢(r, S o A3 (rap) Pap + = | — | — - [ =2 - 22 ). 22
A (07 -3 ) | = o5t + G mlooiGe )
1 7, b Tap 1 3ri gl — §4 2
- lac 4 v ) a pi pi 2 abab 7 "ab 5
3 ra (r20+rgb> 4T Tab ’ ()
c#b
Z? 1 Al A T Teb Tab
2 a ac a
SUASEED ISR ) DI IEE) 3 I LA BETES 35 9) B SR Y RCNCY
a a ade a<b b able a<b b a a c#a a<b b Tae e ab

c#b



ONEEE
) zzz(”e

c;éa a<b b "ac
c#b

>3k (2 T )

r
a<b b ab

S (V.Q)? =

a

)

R
ch) %}:b

= 2FW _(Ey-V

P 483 (1ap) p = —ply 483 (Tap) pab + 783 (rap) PL Pab ,

Tab | .

1 (o i il 1 1
§U ab’ ab iN7d || — || — 53 .
|:2Tab ( M rib >:|ev V |:Tab:|e |:T3b:|e " (T b)7

17 . o L[1] 5 o
Pa Py |~ | PaPo=Pa|—| Pp—Pa X P
€

16

z+%zzp pg+zzw53 (ra) + 23" 3" 7% (ras) , (C8B)

a<b b a<b b

} 6% (rap) -

(C9)
1
7}7@ Xﬁb — 271'53(7"(1()) PaZb, (CIO)
ab ab
[
v2§d(rab) = 2ﬁ'ab 5d(7nab) ﬁab_2 |:E0_ Z pc
(C11) pors

(C13)

() () e, o
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