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We perform ab initio calculations of the QED effects of ordermα7 for the 23S and 23P states of He-like ions.
The computed effects are combined with previously calculated energies from [V. A. Yerokhin and K. Pachucki,
Phys. Rev. A 81, 022507 (2010)], thus improving the theoretical accuracy by an order of magnitude. The
obtained theoretical values for the 2 3S-2 3P0,2 transition energies are in good agreement with available exper-
imental results and with previous calculations performed to all orders in the nuclear binding strength parameter
Zα. For the ionization energies, however, we find some inconsistency between the Zα-expansion and all-order
calculations, which might be related to a similar discrepancy between the theoretical and experimental results
for the ionization energies of helium [V. Patkóš et al., Phys. Rev. A 103, 042809 (2021)].

I. INTRODUCTION

Significant progress has recently been achieved in the theo-
retical description of the Lamb shift in the helium atom. After
extensive efforts, a complete calculation of the QED effects of
order mα7 has been accomplished for the triplet states of the
helium atom [1–4]. This calculation improved the accuracy of
the theoretical energies of the 2 3S and 2 3P states of helium
by more than an order of magnitude and made the theoreti-
cal predictions sensitive to the nuclear charge radius on the
1% level. The theoretical result for the 2 3S-2 3P transition
energy was found to be in excellent agreement with the exper-
imental value [5]. However, the individual ionization energies
of the 2 3S and 2 3P states were shown to deviate by 10σ from
the experimental results [6].

In the present work we extend our calculations of the mα7

effects from helium to helium-like ions. The goal of this in-
vestigation is twofold. First, our calculations will improve
the theoretical accuracy of the 2 3S-2 3P transition energies in
light He-like ions. This is of particular importance in the case
of Li+, for which very precise experimental results are avail-
able [7]. Second, calculations of the mα7 effects for different
nuclear charges Z will allow us to study the Z-dependence
of this correction (in particular, the high-Z asymptotics) and
to perform a cross-check against the hydrogen theory and in-
dependent calculations carried out to all orders in the nuclear
binding strength parameter Zα.

II. GENERAL FORMULAS

The QED effects of order mα7 for the centroid energy of
triplet states of helium-like atoms were derived by us in a se-

ries of works [1–4]. In this paper we transform the obtained
formulas to a form that is relatively compact and more suitable
for studying the Z-dependence of these effects.

Formulas derived in previous works contained logarith-
mic contributions of two types, specifically, ln(Zα) in the
electron-nucleus terms and ln(α) in the electron-electron
terms. In addition, there were terms with ln(Z) implic-
itly present in matrix elements of individual operators and
the Bethe-logarithm contributions. In the present work we
show that the complete dependence of the mα7 correction
on ln(Z) and ln(α) can be factorized out in terms of ln(Zα)
and ln2(Zα). The exact matching of coefficients at ln(Z) and
ln(α) in the electron-electron terms served as an important
cross-check of our derivation.

The QED correction of order mα7 for the centroid en-
ergy of triplet states of helium-like atoms is represented as
a sum of the double-logarithmic, single-logarithmic, and non-
logarithmic contributions,

E(7) = E(7,2) ln2(Zα)−2 + E(7,1) ln(Zα)
−2

+ E(7,0) ,(1)

where contributions E(7,i) do not contain any logarithms in
their 1/Z expansion and are defined as follows,

E(7,2) = − 1

2π
Z3Q1 = −2Z3 〈δ3(r1)〉 , (2)
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In the above formulas, Q1 . . . Q64 are the expectation values
of the basic elementary operators defined in Table I. Some of
Qi contain implicitly terms with ln(Z), which need to be sep-
arated out. We thus introduced expectation values Q̃i, which
are free from ln(Z) and are defined by

Q52 = Q̃52 +
1

2
lnZ−2Q3 , (5)

Q54 = Q̃54 +
1

2
lnZ−2Q10 , (6)

Q55 = Q̃55 +
1

6
lnZ−2Q6T , (7)

Q56 = Q̃56 +
1

2
lnZ−2Q1 , (8)

Q57 = Q̃57 − Z lnZ−2Q1 , (9)

Q58 = Q̃58 +
1

2
lnZ−2Q18 , (10)

Q60 = Q̃60 +
1

2
lnZ−2Q6T , (11)

Q63 = Q̃63 +
1

2
lnZ−2Q62 . (12)

Further notations in Eqs. (3) and (4) are as follows: E0 is the
nonrelativistic energy,E4 is the leading relativistic (Breit) cor-
rection of order mα4, βL is the relativistic Bethe-logarithm
correction defined as in Ref. [8], B50 = −21.554 47 and
C40 = 0.417 503 770 are the hydrogenic two-loop (Zα)5

and three-loop (Zα)4 expansion coefficients, respectively, see



3

Ref. [9], and Esec is the second-order correction given by

Esec = 2
〈
H

(5)
fs

1

(E0 −H0)′
H

(4)
fs

〉
+

1

π
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45
− 2
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〉
. (13)

The effective Hamiltonians in the above formulas are defined
as follows. HR is a regular part of the spin-independent Breit
Hamiltonian and is defined by its action on a ket eigenstate
|φ〉 of the nonrelativistic Hamiltonian with the energy E as

HR|φ〉 =

[
− 1

2
(E − V )2 − Z

4

~r1 · ~∇1
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4
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1

4
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1∇2
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1

2r

(
δij +

rirj

r2

)
∇j2
]
|φ〉 , (14)

where V = −Z/r1−Z/r2+1/r. The operatorH ′R is defined
by its action on a ket state |φ〉 as

H ′R|φ〉 = −2Z

(
~r1 · ~∇1

r31
+
~r2 · ~∇2

r32

)
|φ〉 . (15)

The operators H(4)
fs and H

(5)
fs are the mα4 and mα5 parts

of the spin-dependent Breit Hamiltonian Hfs with anomalous
magnetic moment, correspondingly,

Hfs = α4H
(4)
fs + α5H

(5)
fs +O(α6) , (16)

Hfs =
α

4m2

(
~σ1 · ~σ2
r3

− 3
~σ1 · ~r ~σ2 · ~r

r5
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(1 + κ)2

+
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4m2

[
1

r31
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1
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+
α
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]
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−
[
(1 + 2κ)~σ1 + 2 (1 + κ)~σ2

]
· ~r × ~p1

]
, (17)

where κ = α/(2π) + O(α2) is the anomalous magnetic mo-
ment of the electron.

III. HIGHER-ORDER EFFECTS

The effects of order mα8 and higher cannot be calculated
rigorously at present and need to be estimated. Our approxi-
mation for these effects is represented as a sum of three terms,

E(8+) = E
(8)
D + E

(8)
1ph + E

(8+)
rad , (18)

where E
(8+)
D comes from the one-electron Dirac energy,

E
(8+)
1ph originates from the one-photon exchange correction,

and E(8+)
rad represents the radiative QED effects.

The Dirac contribution to the ionization energy of an 1snl
state comes from the valence electron, ED = ED(nl) and is
given by

E
(8)
D (2s) = E

(8)
D (2p1/2) = − 429

32768
Z8 , (19)

E
(8)
D (2p3/2) = − 5

32768
Z8 . (20)

The one-photon exchange correction of ordermα8 was cal-
culated in Ref. [10], with the result

E
(8)
1ph

(
23S

)
= 0.0281Z7 , (21)

E
(8)
1ph

(
23P0

)
= 0.1070Z7 , (22)

E
(8)
1ph

(
23P2

)
= 0.0037Z7 . (23)

We note a relative large numerical contribution of the one-
photon exchange correction for the 23P0 state.

An approximation for the radiative QED contribution of or-
der mα8 and higher is obtained by scaling the hydrogenic re-
sults with the expectation value of the δ-function [11, 12],

E
(8+)
rad =

[
E

(8+)
rad,H(1s) + E

(8+)
rad,H(nl)

] 〈∑i δ
3(ri)〉

Z3

π

(
1 +

δl,0
n3

)
− E(8+)

rad,H(1s) , (24)

where E(8+)
rad,H(nl) is the hydrogenic QED contribution of or-

der order mα8 and higher of an nl state. This contribution
consists of the one-loop and two-loop effects, which are re-
viewed in Ref. [9]. We estimate the uncertainty of this ap-
proximation for He-like ions as 75% of the few-body part of
E

(8+)
rad , specifically,

δE
(8+)
rad = ±0.75

[
E

(8+)
rad,H(1s) + E

(8+)
rad,H(nl)

]
×

[
〈
∑
i δ

3(ri)〉
Z3

π

(
1 +

δl,0
n3

) − 1

]
.

(25)

In addition we include the finite nuclear size correction,
which is obtained from the corresponding hydrogenic correc-
tions analogously to Eq. (24), see Ref. [12] for details.

IV. NUMERICAL RESULTS

In this work we performed calculations of the mα7 effects
for the centroid energies of the 23S and 23P states of helium-
like ions with Z ≤ 12. The computation followed the numer-
ical approach developed in our previous investigations [4, 12]
and used results for the relativistic Bethe-logarithm correction
obtained in Ref. [8].

Numerical values for themα7 corrections to energies of the
23S, 23P0, and 23P2 states of helium and helium-like ions
are presented in Table II. Results for the 23P0,2 states are ob-
tained by combining the mα7 correction for the 23P centroid
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TABLE I. Definitions of elementary basic operators Qi. Notations are: r ≡ |~r1 − ~r2|, ~P = ~p1 + ~p2, ~p = 1/2
(
~p1 − ~p2

)
.

Q1 4πδ3(r1) Q33 ~p1 · ~p2
Q2 4πδ3(r) Q34

~P /r1 ~P

Q3 4πδ3(r1)/r2 Q35
~P /r ~P
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3
1 p

k
2 P
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3
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j
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4
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3
1 (δ

jkri2/r2 − δikrj2/r2 − δijrk2/r2 − ri2r
j
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k
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3
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j
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3(r1) ~p1

Q20 ri1r
j
2(r

irj − 3δijr2)/(r31r
3
2r) Q52 4πδ3(r1)/r2 (ln r2 + γ)

Q21 p22/r
2
1 Q53 1/r1

Q22 ~p1/r
2
1 ~p1 Q54 1/r4(ln r + γ)

Q23 ~p1/r
2 ~p1 Q55 1/r5

Q24 pi1 (r
irj + δijr2)/(r1r

3) pj2 Q56 1/r31
Q25 P i (3rirj − δijr2)/r5 P j Q57 1/r41
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i
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3
1(δ
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2
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2
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l
2 (−δjlrirk/r3 − δikrjrl/r3 + 3rirjrkrl/r5) pi1 p

j
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Q32 (~r1 · ~r2)/(r31r32) Q64 pi(δijr2 − 3rirj)/r5pj

energy calculated in this work and the corresponding correc-
tions to the fine structure from Ref. [13]. We do not present
results for the 23P1 state because it mixes with the 21P1 state
and thus requires a separate treatment [14]. Results for helium
listed in Table II are in full agreement with those reported by
us previously [4].

Table II also presents results for the coefficients of the 1/Z
expansion of the mα7 contributions,

E(7,i) = Z6
(
c
(7,i)
0 +

c
(7,i)
1

Z
+
c
(7,i)
2

Z2
+ . . .

)
. (26)

The leading coefficients c(7,i)0 are known from the hydrogen
theory. They are induced by the one-loop QED correction of
order α(Zα)6. Specifically, for the 1snlj state, we have

c
(7,i)
0 =

1

π

[
A6i(1s) +

A6i(nlj)

n3

]
, (27)

where the coefficients A6i(nlj) are listed in Ref. [9].
We checked that our formulas for E(7,i) are reduced to

Z6c
(7,i)
0 in the large-Z limit, see Appendix A for details. We

also checked this correspondence for our numerical results, by

fitting the numerical data from Table II to the form (26) and
comparing the fitted values of the coefficients c(7,i)0 with the
analytical result of Eq. (27). In this way we confirmed that
our calculations of the mα7 effects are correct to the leading
(zeroth) order in 1/Z.

As a further test, we will compare the next term of
the 1/Z expansion of E(7) with results of the all-order
(in Zα) calculations performed recently in Ref. [14]. In
that work results were obtained for the higher-order two-
electron QED remainder function that contains contribu-
tions of order mα7+ and is linear in 1/Z. The remain-
der function G

(7+)
2elQED(Zα) = δE(7+)/[mα2(Zα)5] is de-

fined by Eqs. (21)-(23) of Ref. [14]. In the limit Zα → 0,
G

(7+)
2elQED(Zα) should approach the linear in 1/Z part of E(7),

if one removes the two-loop part that is not included into the
all-order calculations.

The linear in 1/Z part ofE(7) is induced by the coefficients
c
(7,i)
1 . The two-loop effects influence only the nonlogarithmic

coefficient c(7,0)1 . The corresponding contribution comes from
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the hydrogenic correction ∝ α2(Zα)5 and is given by

c
(7,0)
1 (2loop) =

B50

π2

(
1 +

δl,0
n3

)
, (28)

where B50 = −21.554 47, see Ref. [14]. It is interesting that
the two-loop part of c1 is much larger than the total values of
c1 in Table II, which means that the corresponding one-loop
and two-loop contributions largely cancel each other.

The function G
(7+)
2elQED was calculated for Z ≥ 10 in

Ref. [14]. The extrapolation of the numerical values towards
smaller values of Z is complicated by presence of logarithms.
In order to make an extrapolation possible, we subtract all
known logarithms, introducing a new function G(7+)

nlog that has
a smooth behaviour in the region Z ≈ 0,

G
(7+)
nlog (Zα) = G

(7+)
2elQED(Zα)− c(7,2)1 ln2(Zα)−2

− c(7,1)1 ln(Zα)
−2 − c(8,1)1 (Zα) ln(Zα)

−2
.

(29)

The logarithmic coefficient in the order mα8 comes from the
one-loop self-energy and vacuum-polarization contribution ∝
α(Zα)6 ln(Zα). It is known for hydrogen [15, 16]. Since
it is proportional to the Dirac δ function, the result can be
immediately generalized to the few-electron case,

c
(8,1)
1 =

(427

192
− ln 2

)
δ1 , (30)

where δ1 is the 1/Z1 coefficient of the 1/Z expansion of
the matrix element of the Dirac δ function, δ1(23S) =
−0.211 484 and δ1(23P ) = −0.085 951 [11].

In the Z → 0 limit, the function G
(7+)
nlog should coincide

with the c(7,0)1 coefficient from our mα7 calculations, after
subtraction of the two-loop part. Specifically,

G
(7+)
nlog (Z = 0) = c

(7,0)
1 − c(7,0)1 (2loop) . (31)

In Fig. 1 we present a comparison of numerical values of the
functionG(7+)

nlog (Z) extracted from the all-order calculations of
Ref. [14] and our present results for the Z = 0 limiting value
(31). The all-order data were fitted by a polynomial to yield
results for the Z = 0 limit. As can be seen from the figure, a
small inconsistency between the all-order and our present α-
expansion results at Z = 0 is observed. While the deviations
are only slightly larger than the estimated uncertainties of the
fit, it is remarkable that for all three states studied they are of
the same sign and of comparable magnitude. These deviations
might be related to the 0.4 MHz difference between the theo-
retical and experimental 23S and 23P ionization energies of
helium reported in Refs. [4, 6]. Similarly to the helium case,
the deviations largely cancels in the 23S-23P difference.

V. TRANSITION ENERGIES

We are now in a position to collect all available theoretical
contributions for the transition energies between the n = 2
triplet states in light He-like ions. A systematic calculation of
all QED effects up to order mα6 has been already performed
in our previous investigation [12]. We now add the mα7 cor-
rection tabulated in Table II and estimations of higher-order
corrections summarized in Sec. III.

Our theoretical results for the 2 3S-2 3P0,2 transition ener-
gies are presented in Table III, in comparison with available
experimental data and previous theoretical values. We observe
very good agreement with the experimental results for Li+ [7]
and B3+ [17], but a significant deviation in the case of Be2+

[18]. It should be noted that the measurement of Ref. [18]
was already reported to disagree with theoretical predictions
for the fine structure [13], which calls for an independent ver-
ification of this experiment.

The comparison with our previous calculations of Ref. [12]
shows an excellent consistency of the results and of the uncer-
tainty estimates. It can be seen that our present calculation of
the mα7 effects improves the theoretical accuracy by an order
of magnitude.

It can be seen from Table III that for Z = 5 our present
theoretical values are fully consistent with our recent results
obtained in Ref. [14]. It is important that Ref. [14] utilized
a different approach for calculating the effects of order mα7

and higher. In that work, the higher-order effects were ob-
tained from the all-order (in Zα) calculations, whereas in the
present study we calculate themα7 effects rigorously with the
α expansion and estimate the mα8+ effects from the hydro-
genic theory. The comparison with results of Ref. [14] thus
confirms the consistency of two different approaches for the
2 3S-2 3P transition energies.

In summary, we reported calculations of the mα7 QED ef-
fects for the 23S and 23P states of He-like ions. The Z-
dependence of the obtained corrections was studied. It was
demonstrated that all terms containing ln(Z) and ln(α) in
general formulas can be combined together and expressed in
terms of ln(Zα). The high-Z limit of the calculatedmα7 cor-
rection was cross-checked against the analytical results de-
rived from the hydrogen theory. The linear term of the 1/Z
expansion of the mα7 correction was cross-checked against
previous calculations performed to all orders in Zα. The con-
sistency of the two approaches was demonstrated for the 2 3S-
2 3P transition energies but a small deviation was found for
the ionization energies. In the result, we obtain the most accu-
rate theoretical predictions for the 2 3S-2 3P0,2 transition en-
ergies in He-like Li, Be, and B, which are in good agreement
with previous theoretical values and the experimental data for
Li and B.
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TABLE II. The mα7 corrections for energies of triplet states of He-like atoms.

Z 23S 23P 23P0 23P2

E(7,2)/Z6 E(7,1)/Z6 E(7,0)/Z6 E(7,2)/Z6 E(7,1)/Z6 E(7,0)/Z6 E(7,1)/Z6 E(7,0)/Z6

2 −0.330 089 1.725 409 −11.343 605 (7) −0.314 715 1.649 911 −10.825 73 (8) 1.648 886 −10.826 25 (8)
3 −0.338 059 1.775 871 −11.290 585 (7) −0.313 708 1.645 555 −10.458 59 (6) 1.647 921 −10.470 69 (6)
4 −0.342 592 1.805 773 −11.283 785 (7) −0.313 991 1.650 084 −10.314 51 (6) 1.653 032 −10.329 21 (6)
5 −0.345 472 1.825 149 −11.285 055 (7) −0.314 440 1.655 751 −10.242 46 (6) 1.658 167 −10.256 15 (6)
6 −0.347 456 1.838 657 −11.287 954 (7) −0.314 856 1.660 905 −10.200 67 (6) 1.662 493 −10.212 27 (6)
7 −0.348 903 1.848 593 −11.290 984 (7) −0.315 211 1.665 302 −10.173 90 (6) 1.666 033 −10.183 22 (6)
8 −0.350 005 1.856 203 −11.293 764 (7) −0.315 508 1.669 005 −10.155 55 (6) 1.668 938 −10.162 68 (6)
9 −0.350 872 1.862 214 −11.296 219 (11) −0.315 757 1.672 131 −10.142 32 (6) 1.671 348 −10.147 44 (6)
10 −0.351 571 1.867 082 −11.298 368 (14) −0.315 967 1.674 790 −10.132 38 (6) 1.673 370 −10.135 70 (6)
11 −0.352 148 1.871 104 −11.300 241 (14) −0.316 147
12 −0.352 630 1.874 482 −11.301 910 (18) −0.316 302
1/Z-expansion coefficients
c0 −0.358 099 1.913 246 −11.324 577 −0.318 310 1.705 367 −10.069 396 1.695 420 −10.047 690
c1 0.067 317 −0.482 89 (4) 0.3211 (4) 0.027 359 −0.368 03 (5) −0.3888 (4) −0.25568 (5) −0.7262 (10)
c2 −0.020 020 0.213 6 (15) −0.562 (11) −0.038 518 0.6445 (14) −2.4326 (33) 0.3565 (12) −1.4937 (80)
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FIG. 1. The nonlogaritmic mα(7+) contribution defined by Eq. (29) as a function of the nuclear charge Z, for the 23S, 23P0, and 23P2

states of He-like ions. Filled green dots denote results of all-order numerical calculations, open green dots show fitting results at Z = 0, red
diamonds display the α-expansion results.
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TABLE III. Theoretical and experimental 2 3S-2 3P transition ener-
gies, in cm−1. A is the mass number of the isotope.

Z A Theory Experiment Difference Ref.

2 3S1–2 3P0

3 7 18 231.30193 (10) 18 231.301972 (14)−0.00004 (10)[7]
18 231.3021 (11)a

4 9 26 864.61052 (54) 26 864.6120 (4) −0.0015 (7) [18]
26 864.6114 (47)a

5 11 35 393.6244 (20) 35 393.627 (13) −0.003 (13) [17]
35 393.6211 (49)b

35 393.628 (14)a

2 3S1–2 3P2

3 7 18 228.19893 (10) 18 228.198963 (15)−0.00003 (10)[7]
18 228.1989 (10)a

4 9 26 867.94512(54) 26 867.9484 (3) −0.0033 (6) [18]
26 867.9450(47)a

5 11 35 430.0880(20) 35 430.084 (9) 0.004 (9) [17]
35 430.0876 (22)b

35 430.088 (14)a

a Yerokhin and Pachucki 2010 [12];
b Yerokhin, Patkóš, and Pachucki 2022 [14];

[18] T. J. Scholl, R. Cameron, S. D. Rosner, L. Zhang, R. A. Holt,
C. J. Sansonetti, and J. D. Gillaspy, Phys. Rev. Lett. 71, 2188
(1993).

Appendix A: Large-Z limit

To the leading order in the large-Z expansion we can omit
all operators containing the electron-electron radial distance
and keep only the electron-nucleus operators containing r1
and r2. The spatial part of the wave function in the large-Z
limit is given by an (anti-) symmetrized product of two hydro-
genic wave functions,

ψ(r1, r2) =
1√
2

[
ψ10(r1)ψnl(r2)±ψnl(r1)ψ10(r2)

]
, (A1)

where the plus sign stands for the singlet and the minus sign,
for the triplet states, andψnl(r) are the hydrogenic radial wave
functions with the principal quantum number n and the orbital
momentum l. The expectation value of an arbitrary operator
O with the triplet-state wave function is

〈O〉 =
1

2
〈(1, 0), (n, l)|O|(1, 0), (n, l)〉

+
1

2
〈(n, l), (1, 0)|O|(n, l), (1, 0)〉

−1

2
〈(n, l), (1, 0)|O|(1, 0), (n, l)〉

−1

2
〈(1, 0), (n, l)|O|(n, l), (1, 0)〉 , (A2)

where |(m, l1), (n, l2)〉 = ψml1(r1)ψnl2(r2).
If the operator O is a sum of one-electron operators O =

O′(r1) + O′(r2), the first two terms in the right-hand-side of
Eq. (A2) are reduced to the sum of two one-electron matrix
elements, 〈10|O′ |10〉 + 〈nl|O′ |nl〉. The last two terms in
the right-hand-side of Eq. (A2) are of a different form. It can
be shown that for the large-Z limit of the total mα7 correc-
tion such “mixing” terms from the first-order operators cancel
identically with the corresponding terms in the second-order
contribution.

For evaluating the large-Z limit of various operators con-
tributing to the mα7 correction, we make use of the following
results for the one-electron matrix elements,

〈nl| 1
r
|nl〉 =

Z

n2
, (A3)

〈nl| 1

r2
|nl〉 =

Z2

n3(l + 1
2 )
, (A4)

〈nl| p2 |nl〉 = 2En + 〈nl| 2Z
r
|nl〉 =

Z2

n2
,(A5)

〈nl| 4πδ3(r) |nl〉 =
4Z3

n3
δl0, (A6)

〈nl| ~p 4π δ3(r) ~p |nl〉 =
4Z5

3

(
− 1

n5
+

1

n3

)
δl1 , (A7)

〈nl| 1

r3
|nl〉 =

4Z3

n3

(
ln

n

2Z
−Ψ(n)− γ +

1

2
− 1

2n

)
δl,0 +

2Z3

n3
1− δl,0

l(l + 1)(2l + 1)
, (A8)

〈nl| 1

r4
|nl〉 =

8Z4

n3

(
− ln

n

2Z
+ Ψ(n) + γ − 5

3
+

1

2n
+

1

6n2

)
δl,0

+(1− δl,0)
4Z4

(
3n2 − l(1 + l)

)
(2l − 1)l(2l + 1)(l + 1)(2l + 3)n5

, (A9)

〈nl| p2 1

r
|nl〉 = 2En 〈nl|

1

r
|nl〉+ 2Z 〈nl| 1

r2
|nl〉 = −Z

3

n4
+

2Z3

n3(l + 1
2 )
, (A10)

〈nl| ~p 1

r2
~p |nl〉 = Z4

[
δl0

(
− 2

3n5
+

8

3n3

)
+

2(1− δl0)

(2l − 1)(2l + 1)(2l + 3)

((
1− 4l(l + 1)

)
n5

+
8

n3

)]
. (A11)


