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We present a calculation of the hyperfine splitting of the 23S state in the 3He atom with inclusion
of all QED effects up to α3EF , where EF is the Fermi splitting. Using the experimental value of
the 1S hyperfine splitting in 3He+, we eliminate uncertainties from the nuclear structure and obtain
the theoretical prediction for 3He of νhfs = −6 739 701 181(41) Hz, which is in perfect agreement
with the experimental value −6 739 701 177(16) Hz [S. D. Rosner and F. M. Pipkin, Phys. Rev. A 1,
571 (1970)]. This result constitutes a 40-fold improvement in precision as compared to the previous
value and is the most accurate theoretical prediction ever obtained for a non-hydrogenic system.

Introduction.— Interaction of the magnetic moment of
the nucleus with that of the electron leads to the splitting
of atomic energy levels known as the hyperfine splitting
(hfs). The hfs of atoms can be measured with outstand-
ing accuracy, e.g., the ground-state hfs of hydrogen is
experimentally known up to 12 digits [1–3]. This makes
hfs an excellent candidate for high-precision tests of the
quantum electrodynamics (QED) of bound states [4] and
for searches of physics beyond the standard model [5].

An impediment to performing such tests is that theo-
retical hfs predictions are severely limited by nuclear ef-
fects, which are manifested already at the 10−4 level and
cannot be accurately calculated at present. This imped-
iment can be circumvented [3, 6, 7] by making use of the
fact that the hfs of different atomic states is strongly cor-
related, being largely proportional to the electron charge
density at the nucleus. Therefore, one can employ an
experimental hfs value measured for one state in order
to obtain an improved theoretical prediction for another
state. This idea has been realized for hydrogen [7, 8],
where theory was able to predict the hfs of excited nS
states with a sub-Hertz accuracy with help of the ex-
perimental 1S hfs value, in agreement with the recent
measurement of 2S hfs [9] which also achieved sub-Hertz
accuracy.

The same idea has been recently applied to the HD+

molecule. Specifically, the nuclear-structure effects have
been eliminated by using experimental hfs values of H
and D atoms. The spin-averaged transitions measured by
several groups [10–12] agreed very well with theoretical
predictions [13] and provided the most accurate determi-
nation of the electron mass. However, the hfs from one of
these measurements [11] deviated by 9σ from the theo-
retical predictions [14]. This disagreement is very intrigu-
ing, because HD+ is a molecule with only one electron
and can be calculated almost as precisely as hydrogen
atom.

Another system whose hfs can be accurately measured
and predicted theoretically is the helium atom. Up to
now, its theoretical calculations were hampered by severe
difficulties in QED treatment of the electron-electron cor-
relations, which limited the theoretical accuracy on the
level of about 1 kHz [15, 16]. In this Letter, we demon-

strate that the rigorous QED treatment of hfs of few-
electron atoms is possible up to the order of α3EF , where
α is the fine-structure constant and EF is the Fermi split-
ting. We perform numerical calculations for the 23S state
of 3He and use the experimental He+ hfs value to elimi-
nate nuclear uncertainties. Our calculation increases the
theoretical accuracy by more than an order of magni-
tude. The updated theoretical result has an accuracy of
41 Hz and is in excellent agreement with the experimen-
tal value [17]. This constitutes the strongest test of QED
hfs theory in few-body systems, which is of particular
importance now in view of the discrepancy observed in
HD+ [11].
Hyperfine splitting.— The QED theory of hfs in the

S state starts with the leading contribution given by the
so-called Fermi splitting EF ,

EF ≡ ⟨VF ⟩ =
4π Zα

3mM
g ⟨I⃗ · [s⃗1 δ3(r1) + s⃗2 δ

3(r2)]⟩ , (1)

where I⃗ and M are the nuclear spin and mass, respec-
tively, s⃗i and m are the spin and the mass of the elec-
trons, respectively, Z is the nuclear charge number, α
is the fine-structure constant, and the natural nuclear
g factor is defined from the nuclear magnetic moment

µ⃗ by µ⃗ = Ze/(2M) g I⃗. The leading QED correction
to the Fermi splitting is obtained by multiplying EF

by the magnetic moment anomaly of the free electron
κ = (ge−2)/2. Rigorous theory of the hfs of light atomic
systems is constructed within the nonrelativistic quan-
tum electrodynamics (NRQED) in the form of an expan-
sion in the fine-structure constant. We represent it as
follows

Ehfs = EF (1+κ)+E(6)+E(7)+E(8)+Enuc+Erec . (2)

Here, E(n) are the QED effects of order mαn for the
point-like and infinitely-heavy nucleus, Enuc represents
the nuclear structure effects, and Erec is nuclear recoil
correction. The nuclear effects Enuc cannot be calculated
accurately at present, so we extract them from the ex-
perimental hfs value in He+. Calculations of the leading
hfs term (i.e., EF ) are well established at present [18].
QED effects of order α2EF (i.e., E(6)) were calculated in
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Refs. [15, 16]. Here we calculate the QED effects of or-
der α3EF (i.e., E(7)) and the dominant part of the recoil
correction of order α2 (m/M)EF (i.e., Erec), which leads
to a drastic improvement of theoretical accuracy.

QED effects of order α3 EF .— The derivation de-
scribed in Appendix provides the complete expression for
the mα7 QED correction which does not contain any di-
vergences and can be used for numerical evaluation. The
final result is separated into the low-energy (EL), the
first-order matrix-elements (Efo) and the second-order
matrix-elements (Esec) parts. The first-order and second-

order contributions are further split into the self-energy
(se) and vacuum-polarization (vp) parts. We thus write,
in atomic units and with the prefactor mα7 pulled out,
E(7) ≡ mα7E(7),

E(7)
hfs = EL + Efo(se) + Esec(se) + Efo(vp) + Esec(vp) . (3)

The low-energy Bethe-logarithm-type correction EL is de-
fined by Eq. (17). The first-order contributions Efo can
be conveniently expressed in terms of expectation values
of Qi operators, which were encountered in our previous
investigation of the Lamb shift [19] and are defined in
Table I. The result for the self-energy is

Efo(se) =
gm

2πM
⟨I⃗ · S⃗⟩

{
1

9

(
71

3
+ 32 ln

α−2

2

)
Z2 Q1 Q53 +

(
143

108
+

8

9
ln

α−2

2

)
Z2 Q57

− 1

3

(
85

6
+ 16 ln

α−2

2

)
Z2

2
Q3 −

56

9
Z Q9 Q53 +

56

9
Z Q59 −

13

12
Z Q18 +

4Z

3
E(4) Q53

+
2Z

3

(
− 2E0Q13 +Q17 + E2

0Q53 + 2ZE0Q11 + 2ZE0Q12 − 2ZQ14 − 2ZQ16 + 3Z2Q15 + Z2Q56

)
− Z

3
Q28 +

2Z

3
Q24 +

Z

36

(
77

6
+ 16 ln

α−2

2

)
Q51 −

Z

36

(
95

3
+ 32 ln

α−2

2

)(
E0 Q1 −Q3 −

1

2
Q4

)
+

[
− 7

6
− 44π2

27
− 10

3
ζ(3) +

896

27
ln 2 +

16

9
ln2 2− 938

27
lnα− 64

9
ln2 α+

256

9
ln 2 lnα

]
Z3

4
Q1

}
. (4)

The second-order self-energy contribution is given by

Esec(se) =
gm

2πM
⟨I⃗ · S⃗⟩

{
2

9

[(
5

6
+ ln

α−2

2

)
S1 − 7S2

+
3

2
S3

]
+

Z

3

(
Z

2
S4 − S5

)
− Z

8
S6

}
, (5)

where the second-order matrix elements Si are defined
in Table II. For the vacuum-polarization we obtain the
following results

Efo(vp) = − gm

45πM
⟨I⃗ · S⃗⟩

[
16Z2 Q1 Q53 + 2Z Q51

+ 4Z(1− 3Z)Q3 − 4Z E0 Q1 + 2Z Q4

+ 4Z2Q57 + Z3
(236
15

+ 8 lnα
)
Q1

]
. (6)

and

Esec(vp) = − gm

45πM
⟨I⃗ · S⃗⟩S1 . (7)

The numerical calculations of the mα7 corrections
are carried out with the basis set of exponential func-
tions e−αi r1−βi r2−γi r introduced by Korobov [20], where
r = |r⃗1 − r⃗2|. The method of calculations follows the
one developed in our previous investigations and de-
scribed in Ref. [21]. The calculation of the low-energy

Bethe-logarithm-type contribution follows our previous
work [22]. Numerical results for the individual mα7 cor-
rections to the hfs of the 23S state in 3He are presented
in Table III.
Hyperfine mixing correction.— For the 23S1 state the

nuclear recoil effects are dominated by the second-order
hyperfine correction induced by the Fermi contact inter-
action VF , specifically, by the 23S1-2

1S0 mixing contri-
bution. The Fermi interaction mixes states with differ-
ent values of the total momentum J and the 23S1-2

1S0

mixing is strongly enhanced because of the small energy
difference of these states [15]. The leading mixing con-
tribution is of order α2 (m/M)EF and given by

E
(6)
mix =

〈
23S|VF |21S

〉2
E0(23S)− E0(21S)

, (8)

which leads to a surprisingly large result, E
(6)
mix =

−8.992 1 × 10−6 EF . The numerical value of E
(6)
mix is so

large that we have to consider higher-order corrections to
it, which are small but not negligible at our level of in-
terest. First, we consider the recoil correction to Eq. (8).
Using the matrix element with full mass dependence

4π ⟨23S1|
[
δ3(r1)− δ3(r2)

]
|21S0⟩M =

( µ

m

)3

29.135 080 ,

(9)
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TABLE I: First-order matrix elements for the 23S state,
numerical results are from Ref. [19]

Operator ⟨Qi⟩
Q1 = 4πδ3(r1) 16.592 071
Q3 = 4πδ3(r1)/r2 4.648 724
Q4 = 4πδ3(r1) p

2
2 2.095 714

Q9 = 1/r3 0.038 861
Q11 = 1/r21 4.170 446
Q12 = 1/(r1r2) 0.560 730
Q13 = 1/(r1r) 0.322 696
Q14 = 1/(r1r2r) 0.186 586
Q15 = 1/(r21r2) 1.242 704
Q16 = 1/(r21r) 1.164 599
Q17 = 1/(r1r

2) 0.112 360
Q18 = (r⃗1 · r⃗)/(r31r3) 0.011 331

Q24 = pi1 (r
irj + δijr2)/(r1r

3) pj2 0.002 750
Q28 = p21 /r1 p

2
2 1.597 727

Q51 = 4π p⃗1 δ
3(r1) p⃗1 0.009 993

Q53 = 1/r1 1.154 664
Q56 = 1/r31 −23.022 535
Q57 = 1/r41 25.511 837
Q59 = 1/(r1r

3) 0.051 914

TABLE II: Second-order corrections for the 23S state.

Term Value

S1 =
〈
VR

1
(E0−H0)′

VR

〉
−2634.595 12

S2 =
〈
VR

1
(E0−H0)′

1
r3

〉
0.371 13

S3 =
〈
VR

1
(E0−H0)′

HR

〉
202.676 07

S4 =

〈(
r⃗1
r31

× p⃗1 +
r⃗2
r32

× p⃗2
)

× 1
(E0−H0)′

(
r⃗1
r31

× p⃗1 +
r⃗2
r32

× p⃗2
)〉

−0.004 69

S5 =

〈(
r⃗1
r31

× p⃗1 +
r⃗2
r32

× p⃗2
)

× 1
(E0−H0)′

r⃗
r3

× (p⃗1 − p⃗2)
〉

−0.007 07

S6 =
〈(

δij

r31
− 3ri1r

j
1

r51
+ δij

r32
− 3ri2r

j
2

r52

)
× 1

(E0−H0)′

(
δij

r3
− 3 rirj

r5

)〉
−0.01128

TABLE III: mα7 corrections to the hfs of the 23S state.
E are in units of α3 EF and δ(3) = E(7)α3.

Term Value

EL 22.05873(88)
Efo(se) 8.31316
Esec(se) −83.11218
Efo(vp) 0.88943
Esec(vp) 1.68478

E(7)(He) −50.16609(88)

E(7)(He+) −50.64036

E(7)(He-He+) 0.47428(88)

δ(3)(He-He+) 0.1843(3)× 10−6

(with µ = mM/(m + M)) and including the recoil cor-
rection in the energy denominator, we obtain δEmix,rec =
0.003 2×10−6 EF for the nuclear mass correction beyond
that in EF . Second, we take into account the corrections
due to the anomalous magnetic moment and the nuclear
effects to the operator and the relativistic correction to
the energies,

δEmix,rad = E
(6)
mix

[(
1 + κ+

Enuc

EF

)2

− 1− δErel

δE

]
,

(10)

where δErel/δE is the relative contribution of the rela-
tivistic correction to the 23S-21S energy difference. This
yields δEmix,rad = −0.015 2× 10−6 EF . Finally, we con-
sider the correction due to the mixing with higher ex-
cited states. The summation over the complete spectrum
in the second-order contribution will lead to the infinite
result, which indicates that it is not a complete recoil
correction. Following Ref. [15], we here consider the nor-
malized difference of this correction between helium atom
and helium ion,

δEmix,exc = ⟨VF
1

(E −H)′
VF ⟩

∣∣∣∣
He

− 3

4

⟨π (δ3(r1) + δ3(r2))⟩
8

⟨VF
1

(E −H)′
VF ⟩

∣∣∣∣
He+

,

(11)

which is finite and yields a numerical contribution of
δEmix,exc = 0.010 3 · 10−6 EF . Finally, the total recoil

correction is given by the sum ∆Erec = E
(6)
mix+δEmix,rec+

δEmix,rad+δEmix,exc, with the numerical result presented
in Table IV.
Results and discussion.— For the final analysis it is

convenient to represent all corrections to hfs as multi-
plicative factors to EF ,

Ehfs = EF (1 + δ) , (12)

where

δ =κ+ δ(2) + δ(3) + δ(4) + δnuc + δrec , (13)

which is equivalent to Eq. (2) with δ(k) = E(k+4)/EF .
The main advantage of this representation is that the δ
coefficients are strongly correlated with those in He+. In
order to exploit this correlation, we split δ in Eq. (12)
into two parts,

δ(He) = δ(He+) + δ(He-He+) , (14)

where δ(He+) will be extracted from the experiment on
He+ and δ(He-He+) is calculated theoretically.
The individual theoretical contributions to δ(He-He+)

are presented in Table IV. The leading term, δ(2), is of
order α2EF . It was calculated first by one of the authors
in Ref. [15] and later improved in Ref. [16]. The next-
order QED correction of order α3EF , δ

(3), and the recoil
contribution, δrec, are calculated as described above.
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TABLE IV: Contributions to the 23S1 hfs of 3He.

Term ×10−6 [Hz] D21 [kHz]

δ(2)(He-He+) 3.012 0 −20 279. −1 152.44

δ
(2+)
rec (He-He+) −8.993 7 (21) 60 552.(14) −0.80

δ(3)(He-He+) 0.184 3(3) −1 241.(2) −36.03

δ(4)(He-He+) 0.005 8 (58) −39.(39) −1.14

δ(He-He+) −5.791 6 (62) 38 993.(41)
1 + δ(He+) [23] −6 739 740 174.

νhfs,theo(He) −6 739 701 181.(41)
νhfs,exp(He) [17] −6 739 701 177.(16)

In order to estimate the higher-order QED contribu-
tion δ(4)(He-He+), for which no direct calculations exist
so far, we use results obtained in Ref. [7] for the nor-
malized difference of the hfs intervals in He+, D21 =
8Ehfs(2S) − Ehfs(1S). Specifically, we assume the ratio
δ(4)/δ(3) for the He-He+ difference to be the same as the
corresponding ratio for D21, with a 100% uncertainty.
Similarly, we obtain the uncertainty of δrec by examin-

ing the ratio of δ
(2+)
rec /δ(2) for D21 and assuming the same

ratio holds for He-He+ difference, thus obtaining the esti-
mate of the omitted non-mixing hfs recoil contributions.

Adding the contribution δ(He+) inferred from the ex-
perimental result of the 1S hfs in 3He+ from Ref. [23],
we obtain the theoretical prediction for the He(23S1) hfs
with an accuracy of 41 Hz, see Table IV, in perfect agree-
ment with the experimental result of Ref. [17].

Conclusion.— In this Letter, we have demonstrated
that advanced QED calculations are now capable of pre-
dicting the hfs of helium with precision of several tens
of Hz by using the experimental hfs value for the corre-
sponding hydrogen-like ion. We derived formulas and
performed numerical calculations for the 23S state in
3He. This improved the theoretical accuracy by a factor
of 40 as compared to previous calculations. The present
theoretical precision of 3He(23S1) hfs is 41 Hz, which
makes it the most accurate theoretical prediction ever
achieved for non-hydrogenic systems.

The excellent agreement of theory and experiment for
the helium hfs contrasts sharply with the 9σ discrepancy
observed for the HD+ [11, 14]. The disagreement is very
surprising, taking into account the fact that the same
theoretical approach is used in both systems. If the dis-
crepancy is confirmed in forthcoming studies, this would
be a signal of some unknown physics.

Our calculations can also be extended to helium- and
lithium-like ions, in particular, to Li+, for which accurate
experimental results are available [24, 25]. The developed
method can be used for extending the advanced tests of
QED to more complicated systems or, alternatively, for
determining the effective Zemach radii r̃Z of light nuclei.
The later direction is of particular interest in view of the
confirmed anomalies for the Zemach radii in 6Li and 7Li
[25, 26] and a significant discrepancy for hfs in µD [27].

Acknowledgments.— K.P. and V.P. acknowledge
support from the National Science Center (Poland)
Grant No. 2017/27/B/ST2/02459.

Appendix on derivation of the α3 EF effects.— The
QED effects to hfs of the order mα7 (= α3 EF ) can be
represented as

E(7) = EL + 2 ⟨H(4)
hfs

1

(E0 −H0)′
H(5)⟩

+ 2 ⟨H(5)
hfs

1

(E0 −H0)′
H(4)⟩+ ⟨H(7)

hfs ⟩ . (15)

Here, EL is the Bethe-logarithm-type low-energy contri-
bution, H0 and E0 denote the nonrelativistic Hamilto-
nian and its reference-state eigenvalue, respectively, H(4)

is the Breit-Pauli Hamiltonian of order mα4, H(5) is the

effective QED Hamiltonian of order mα5, and H
(4)
hfs and

H
(5)
hfs are effective hfs Hamiltonians of order mα4 and

mα5, respectively. The Breit-Pauli Hamiltonian H(4) is
well-known and given, e.g., by Eq. (7) of Ref. [28]. The

effective hfs Hamiltonian of order α4, H
(4)
hfs , is responsi-

ble for the leading-order hfs splitting. It can be obtained
from Eqs. (5)-(11) of Ref. [16] by setting the electron
magnetic anomaly to zero. The next-order effective hfs

Hamiltonian H
(5)
hfs is obtained from the same equations

by picking up the linear part in the electron magnetic
anomaly. The QED Hamiltonian H(5) is expressed as

H(5) =

(
5

6
− 1

5
+ ln

α−2

2λ

)
4α2Z

3m2

[
δ3(r1) + δ3(r2)

]
− 7α2

3πm2

1

r3
+H

(5)
fs , (16)

where H
(5)
fs is the spin-dependent part of H(5) and is

given by Eq. (14) of Ref. [28], and λ is the low-energy
photon-momenta cutoff. The dependence on the cutoff
cancels out when all terms in Eq. (15) are considered
together, which is explicitly demonstrated in the detailed
derivation [29]. Therefore, for simplicity, we will set λ =
1 in the following formulas.
The low-energy Bethe-logarithm-type contribution EL

comes from the virtual photon momenta of the order k ≈
mα2. It can be represented (in atomic units, with the
mα7 prefactor pulled out) as

EL = − 2

3π
δVF

〈
P⃗ (H0 − E0) ln(H0 − E0) P⃗

〉
, (17)

where δVF
⟨S⟩ denotes the first-order perturbation of the

matrix element ⟨S⟩ by the Fermi contact interaction VF

defined by Eq. (1) and P⃗ = p⃗1+p⃗2 is the electron momen-
tum operator. The low-energy contribution EL is very
similar to the Bethe-logarithm-type contribution EL1 en-
countered in our previous study of the mα7 effects in the
Lamb shift [22]. In fact, all necessary formulas for EL

can be obtained by repeating the derivation of Ref. [22]
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for the perturbation VF instead of the spin-independent
Breit Hamiltonian. We thus refer the reader to our pre-
vious work for detailed description of the evaluation of
the low-energy contribution.

The second-order matrix elements in Eq. (15) are prob-
lematic because of divergences originating from the sum-
mation over the intermediate states. They arise when
operators on the left and on the right of the resolvent
1/(E0 −H0)

′ are nearly singular so that their first-order
matrix elements are finite but the second-order matrix
elements diverge. Specifically, there are two such “prob-
lematic” operators in our case, the electron-nucleus Dirac
δ function and the spin-independent part of the Breit

Hamiltonian H
(4)
nfs given by Eq. (6) of Ref. [30]. In order

to make the divergences more tractable, we transfer them
to first-order matrix elements. This can be accomplished
[31] by representing the problematic operators as an an-
ticommutator with the Schrödinger Hamiltonian H0 plus
some more regular operator. Specifically,

4πZ
[
δ3(r1) + δ3(r2)

]
= 2

{
H0 − E0,

Z

r1
+

Z

r2

}
+ VR ,

(18)

H
(4)
nfs = −1

4

{
H0 − E0,

Z

r1
+

Z

r2

}
+HR . (19)

The regularized operators VR and HR are acting on the
eigenfunction of H0 as

VR|ϕ⟩ = −2Z

(
r⃗1
r31

· ∇⃗1 +
r⃗2
r32

· ∇⃗2

)
|ϕ⟩ , (20)

and

HR|ϕ⟩ =
[
1

4
p21p

2
2 −

1

2
(E0 − V )2 − 1

2
pi1

(
δij

r
+

rirj

r3

)
pj2

− Z

4

r⃗1 · ∇⃗1

r31
− Z

4

r⃗2 · ∇⃗2

r32
+

1

2

r⃗

r3
· (∇⃗1 − ∇⃗2)

]
|ϕ⟩ , (21)

with V = −Z/r1 −Z/r2 +1/r. The second-order contri-
bution is thus transformed into

2 ⟨H(4)
hfs

1

(E0 −H0)′
H(5)⟩+ 2 ⟨H(5)

hfs

1

(E0 −H0)′
H(4)⟩

= mα7
[
Esec(se) + Esec(vp) + Efo,A

]
, (22)

where Esec(se) and Esec(vp) are regularized second-order
corrections given by Eqs. (5) and (7), and Efo,A is the
first-order contribution given by

Efo,A = ⟨I⃗ · S⃗⟩ gm

3πM

{
1

3

[(
5

6
− 1

5
+ ln

α−2

2

)(〈
16π Z[δ3(r1) + δ3(r2)]

〉〈Z

r1
+

Z

r2

〉
−

〈
16π Z[δ3(r1) + δ3(r2)]

×
(
Z

r1
+

Z

r2

)〉
+ 2

〈
Z2

r41
+

Z2

r42

〉)
− 14

〈
1

r3

〉〈
Z

r1
+

Z

r2

〉
+ 14

〈
1

r3

(
Z

r1
+

Z

r2

)〉]
+

1

2

[
1

4

〈
Z2

r41
+

Z2

r42
− 2

(
Zr⃗1
r31

− Zr⃗2
r32

)
· r⃗

r3

〉
+

〈(
Z

r1
+

Z

r2

)
(E0 − V )2

〉
− 1

2

〈
p21

(
Z

r1
+

Z

r2

)
p22

〉
+ 2E(4)

〈
Z

r1
+

Z

r2

〉
+

〈
pi1

(
Z

r1
+

Z

r2

)(
δij

r
+

rirj

r3

)
pj2

〉
−
〈
π Z

[
δ3(r1) + δ3(r2)

]〉〈Z

r1
+

Z

r2

〉]}
, (23)

where mα4E(4) is the relativistic correction to the energy
centroid. The singularities are now moved into the first-
order terms in Eq. (23). Divergencies in singular opera-
tors Z2/r4a and Z3/r3a are handled according to Ref. [19].

H
(7)
hfs is an effective Hamiltonian of order mα7. It

comes from the one-loop self-energy and the one-loop
vacuum polarization only, because no photon-exchange
terms contribute at this order. It is represented as

H
(7)
hfs = H

(7)
hfs,A +H

(7)
hfs,B + . . . , (24)

where . . . denotes terms that are proportional to the
electron-nucleus Dirac δ function, ∝ Z3 δ3(ra). At the
current stage of the derivation we drop such terms;
the corresponding contribution will be restored later by
matching the high-Z limit of the obtained formulas to the

known hydrogenic result. H
(7)
hfs,A is induced by the spin-

dependent terms in the generalized Breit-Pauli Hamilto-
nian HBP (see Eqs. (15)-(17) of Ref. [32]) that are pro-
portional to the magnetic moment anomaly,

H
(7)
hfs,A = κ

∑
a

[
Zα

2m2
σ⃗a ·

r⃗a
r3a

×
[
− eA⃗a

]
(25)

− e

16m3
σ⃗a ·∆B⃗a +

e

4m3
(p⃗a · σ⃗a)(B⃗a · p⃗a)

]
+ κ

∑
a̸=b

α

2m2 r3ab
σ⃗a · r⃗ab ×

[
eA⃗a − eA⃗b

]
,

where a and b indices refer to the electrons, A⃗a = A⃗(r⃗a)
and

e A⃗(r⃗) =
e

4π
µ⃗× r⃗

r3
= −Zα

g

2M
I⃗ × r⃗

r3
. (26)
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After the spin averaging SiIj → δij I⃗ · S⃗/3 with S⃗ =
s⃗1 + s⃗2 being the total spin of electrons, it becomes

H
(7)
hfs,A =

g κZα

4m2 M
I⃗ · S⃗

{
2Zα

3

1

r41
− 4π

9m
pi1 δ

3(r1) p
i
1

+
1

6m
pi1

1

r51

(
r21 δ

ij − 3 ri1r
j
1

)
pj1 +

π

3m
∆ δ3(r1)

− 4

3
α
r⃗ · r⃗1
r3 r31

}
+ (1 ↔ 2) . (27)

Operator ∆ δ3(ra) is transformed into regular Qi opera-
tors from Table I with the help of Eq. (61) of Ref. [33].

The second part of H
(7)
hfs is obtained by expanding (in q2)

the form factors and the vacuum polarization multiplied
by the Fermi contact interaction,

H
(7)
hfs,B =

gZα

4m3 M

[
F ′
1(0) + F ′

2(0)−
α

15π

]
8π

3
I⃗ · S⃗∆ δ3(r1)

+ (1 ↔ 2) , (28)

where the form-factor slopes are given by

F ′
1(0) + F ′

2(0) =
α

π

[
17

72
+

1

3
ln

α−2

2

]
. (29)

We now turn to restoring the missing contribution pro-
portional to the electron-nucleus Dirac δ function. This
is accomplished by evaluating the large-Z limit of the
above formulas. In the Z→∞ limit, all effects of the
electron-electron interaction vanish (since they are sup-
pressed by a factor of 1/Z as compared to the electron-
nucleus interaction) and the result should agree with the
mα7 correction derived for the hydrogen-like ions. This
matching gives us the coefficient at the electron-nucleus
Dirac δ function. As a result, we obtain an additional
first-order contribution, which reads

Efo,B =
α(Zα)3g

4πM
⟨I⃗ · S⃗⟩π⟨

[
δ3(r1) + δ3(r2)

]
⟩

×
[
− 5351

1350
− 44π2

27
− 10

3
ζ(3) +

896

27
ln 2

+
16

9
ln2 2− 4882

135
lnα− 64

9
ln2 α+

256

9
ln 2 lnα

]
.

(30)

Finally we obtain the total first-order contribution as

⟨H(7)
hfs,A⟩+ ⟨H(7)

hfs,B⟩+ Efo,A + Efo,B = mα7
[
Efo(se) + Efo(vp)

]
,

(31)

where Efo(se) and Efo(vp) are given by Eqs. (4) and (6),
respectively. The details of the derivation will be pub-
lished elsewhere [29].
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[19] V. Patkóš, V. A. Yerokhin, and K. Pachucki, Phys. Rev.

A 103, 042809 (2021).
[20] V. I. Korobov, Phys. Rev. A 61, 064503 (2000).
[21] V. A. Yerokhin, V. Patkóš, and K. Pachucki, Symmetry
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[22] V. A. Yerokhin, V. Patkóš, and K. Pachucki, Phys. Rev.

A 98, 032503 (2018), ibid. 103, 029901(E) (2021).
[23] A. Schneider, B. Sikora, S. Dickopf, M. Müller, N. S.

Oreshkina, A. Rischka, I. A. Valuev, S. Ulmer, J. Walz,
Z. Harman, et al., Nature 606, 878 (2022).

[24] J. J. Clarke and W. A. van Wijngaarden, Phys. Rev. A
67, 012506 (2003).

[25] W. Sun, P.-P. Zhang, P.-p. Zhou, S.-l. Chen, Z.-q. Zhou,
Y. Huang, X.-Q. Qi, Z.-C. Yan, T.-Y. Shi, G. Drake,
et al., Phys. Rev. Lett. 131, 103002 (2023).

[26] M. Puchalski and K. Pachucki, Phys. Rev. Lett. 111,
243001 (2013).

[27] M. Kalinowski, K. Pachucki, and V. A. Yerokhin, Phys.
Rev. A 98, 062513 (2018).

[28] V. A. Yerokhin and K. Pachucki, Phys. Rev. A 81,
022507 (2010).



7

[29] K. Pachucki, V. Patkóš, and V. A. Yerokhin,
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