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Abstract
The dissociation energies of all rotation-vibrational states of the molecular HD in the ground electronic
state are calculated to a high accuracy by including nonadiabatic, relativistic o, and quantum electrody-
namic o? effects, with approximate treatment of small higher order %, and finite nuclear size corrections.
Obtained result for the ground molecular state of 36 405.7828(10) cm ™! is in a small disagreement with the

latest most precise experimental value.
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I. INTRODUCTION

Since the beginning of quantum mechanics the molecular hydrogen and its isotopomers were
a ground for testing and developing experimental techniques and theoretical models. In determi-
nation of the dissociation energy (D), experiment and theory have diminished their individual
uncertainties to the level below 1072 cm ™! in a good agreement between themselves. Namely, the
latest theoretical Dy = 36 118.0695(10) cm ™! of Hs, obtained by Piszczatowski et al. [1]], agrees
very well with 36 118.06962(37) cm ™! derived experimentally by Liu et al. [2]. Analogous results
obtained last year for Dy are 36 748.3633(9) cm ™! from theory [1] and 36 748.36287(60) cm™*
from experiment [3]. The tiny difference of 0.0004 cm™! fits well within both error estimates.
To achieve this 1072 cm ™! level of accuracy, the theory must have taken into account, with suffi-
cient precision, not only the electron correlation but also the finite nuclear mass, relativistic, and
quantum electrodynamics (QED) effects.

Particularly challenging is the accurate inclusion of nonadiabatic effects. One possible ap-
proach is to obtain a nonadiabatic wave function (depending explicitly on nuclear coordinates) by
minimizing the nonrelativistic energy. For Hy such calculations, using explicitly correlated James-
Coolidge functions, were attempted by Kotos and Wolniewicz in 1963 [4, 5] and 15 years later
by Bishop and Cheung [6]. The same authors performed purely nonadiabatic calculations for HD.
Kotos and Wolniewicz obtained Dy = 36 402.4 cm ™! [7], whereas Bishop and Cheung reported
Dy = 36405.97 cm ™! [8]]. Calculation in a similar spirit, but using extensively optimized explic-
itly correlated Gaussian functions, were performed by Stanke et al. [9]. Their nonadiabatic wave
function was further employed to compute perturbatively the relativistic correction to the nonadi-
abatic energy. An apparent drawback of these methods is their decreasing accuracy observed for
the higher excited states, particularly those laying close to dissociation threshold. For such states
the perturbative treatment of relativistic effects may be inadequate. As an example, the v = 14,
J = 4 state of Hy, becomes a resonance after the inclusion of relativistic effects on the level of
the potential energy curve (PEC). Moreover, certain properties like the ortho-para mixing or the
scattering length, are inaccessible within the direct nonadiabatic approach.

In contrast, the nonadiabatic perturbation theory (NAPT) approach employed here, relies on
solving the radial, variable-mass Schrodinger equation with the PEC for the nuclei constructed
from the adiabatic potential augmented by R-dependent nonadiabatic, relativistic and QED cor-

rections. The theory of the nonadiabatic potentials has been developed in Refs.|10/and 11, whereas



the relativistic and QED corrections to the PEC are evaluated on the basis of the nonrelativistic
quantum electrodynamics (NRQED) [[12H14]]. These corrections are unambiguously identified by
an expansion of a bound atomic or molecular state energy in powers of the fine structure constant
o)

E=FE9 4+ ?E® + *E®) L o*EW 4 ... (1)
where £G) and higher order terms may additionally depend on In . The first term of the ex-
pansion represents the nonrelativistic energy, o> £ is the leading relativistic contribution, terms
proportional to o and a* describe the QED effects of the leading and higher order, respectively.
In this paper we report on application of this approach to all rovibrational levels of the ground
electronic state of HD molecule. Uncertainty of our results comes mainly from the neglect of the
finite nuclear mass corrections of the order a? m/M to the relativistic contribution to the PEC,
and from the approximate treatment of the a* correction. The neglect of higher order nonadiabatic

terms proportional to (m/M)? also increases the overall uncertainty.

II. NONRELATIVISTIC HAMILTONIAN

We consider a two-electron diatomic molecule in the reference frame attached to the geometri-

cal center of the two nuclei. The total wave function ¢ is a solution of the stationary Schrodinger

equation
Ho=FE9, 2)
with the Hamiltonian
H=Ha+ H,, 3)
split into the electronic and nuclear parts. In the electronic Hamiltonian
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where V' is the Coulomb interaction
1 1 1 1 1 1
V=—— 4 — 4+ =, (5)
A ™B 24 2B 12 R
the nuclei have fixed positions R A (proton) and ]%B (deuteron), and R=R A — I%B. The nuclear

Hamiltonian in the reference frame fixed at the geometrical center is
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where V,, = %Za V., pn = (1/Ma + 1/MB)*1 is the nuclear reduced mass, and H), H/ are
even and odd parts with respect to the inversion.
In order to simplify the calculation of nonadiabatic corrections we introduce a unitary transfor-

mation
H=U"HU (7)
of the form
U=en @®)
with 7= )" 7, and the nuclear mass asymmetry parameter
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The transformed Hamiltonian is

H = H+ \[H,7- Vg
A2 - .

+5 [[H, 7 Vi, 7 Vi) + O(X), (10)

where the higher order terms in the electron-nuclear mass ratio O [(m./M4 p)?| are neglected, so

that
H = Hy+ H + \[V,7- Vg (11)
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and the odd O [(me/M 4 g)?] terms are neglected as well. The internal commutator in the last term

of Eq. (I1) is
L= L= 2 & =
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so that the transformed Hamiltonian can be decomposed as

H=Hy+H, +H . (13)
where
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Both the nuclear Hamiltonians involve the derivative of the Coulomb operator V', which is
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with 7 = Z%/ R, while the second derivative of V' is further transformed in Egs. , , and
@9).

III. ADIABATIC APPROXIMATION

In the adiabatic approximation the total wave function of the molecule

6a(F, R) = ¢a(7) x(R) (17)

is represented as a product of the electronic wave function ¢, and the nuclear wave function Y.

The electronic wave function obeys the clamped nuclei electronic Schrodinger equation

[Hel - 891<R)] ’¢el> = 0; (18)

while the wave function Y is a solution to the nuclear Schrédinger equation with the effective

potential generated by electrons

2
[— ZV;LR + E(R) + Ea(R) — Ea} Ix) =0, (19)

where &,(R) is the so called adiabatic (or diagonal) correction defined as

ga(R) = <¢e1 ’Hr,1’ ¢91>e1
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Separation of the angular variables in Eq. (I9) leads to the well known radial nuclear equation

1 0 R? 0  J(J+1)
o I a0 o

= Eaxs(R). 21

Solving this equation gives an adiabatic energy level £, and an adiabatic radial nuclear wave

function ;.



IV. NONADIABATIC NUCLEAR SCHRODINGER EQUATION

Following the NAPT formalism introduced recently [10, [11], we can obtain energy levels £
including leading nonadiabatic corrections by solving the following nonadiabatic version of the
radial Schrédinger equation

Lo R 9 J(J+D
R? OR 21uy(R) OR " 2y, (R)R?

= Exs(R), (22)
where Y(R) is a nonadiabatic potential energy function. In the nonrelativistic limit
Y(R) = Ea(R) + Ea(R) + 0Ena(R) + 6., (R), (23)

with the nonadiabatic correction constructed from the homonuclear part §&,,(R), defined in our

previous work on H, [[10, [11]], and the heteronuclear part proportional to \?

e
1

(o (Ea— Ha)
which is obtained from Egs. and (15). Apart from the nonadiabatic potential Y(R), the
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difference between Eqgs. (22) and (21)) lies in the effective masses used. In the adiabatic equation
the reduced nuclear mass u, appearing in both translational and rotational kinetic terms is
a constant, while in the nonadiabatic equation (22) it is given by two different functions of the
internuclear distance. These two effective reduced mass functions
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are defined with the help of additional radial functions
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In total, three radial functions are needed to construct the nonadiabatic radial Schrodinger equa-
tion for diatomic molecules: two functions, defined by Egs. and (28)), to describe the
variable effective reduced masses of Egs. and (26)), and the nonadiabatic potential ). This
potential, in turn, is expressed by another four functions: BO energy &, adiabatic &,, nonadiabatic

homonuclear §&,,, and heteronuclear 4€;, corrections (see Eq. (23)).

V. SEPARATED ATOMS LIMIT

At large internuclear distances the effective reduced mass functions (25) and (26) are expected

to approach a value corresponding to the reduced mass of separate H and D atoms

1 1 1
= + (29)
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Because W (R) and W, (R) tend to —m./(4 12), when R — oo, we have
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which are exactly the leading terms of the expansion of the atomic reduced mass (29) in the
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In the separated atoms limit, the nonrelativistic energy of the system (the dissociation threshold)

(30)

electron-nuclear mass ratio

&(c0) is simply a sum of the energies of hydrogen and deuterium atoms expressed by their reduced

masses
HH  HUD
& =—— - —. 34
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The expansion of £(c0) in the electron to nucleus mass ratio is of the form
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Subsequent terms of this expansion coincide with the R — oo limits of corresponding components

of the nonadiabatic potential Y(R) of Eq. (23),

Ea(00) = —1, (36)
£(00) = 50 (37)
2
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In particular, the sum of Eqs. (38)) and (39) is equal to the third term in the expansion (35)).

VI. RELATIVISTIC AND RADIATIVE CORRECTIONS

The relativistic correction to the adiabatic potential for a singlet state is given by the expectation

value with the nonrelativistic wave function of the Breit-Pauli Hamiltonian [[15]]

’2HBp:——Z ZZZA(ST“A +7T25Tab
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The expectation value £?(R) = <¢e1

ﬁBP‘ ¢e1> 1 as a function of R, was computed for Hs to
a high accuracy by Wolniewicz in 1993 [16] ande has recently been recalculated in Ref. [l. In
the present calculations, as in all the previous ones, we have omitted the small relativistic recoil
corrections, namely that proportional to o m, /M.

Another o? effect, which can be easily incorporated into the relativistic potential, results from

the spatial distribution of the nuclear charge. The energy shift caused by this effect is given by the

2
Ex(R) = 3”;2 ZZArch <¢el Xaja(m) ¢el>l, 41)

where Ac = 386.159 264 59 fm is the Compton wavelength over 27 and rq,(A) is the root mean

formula

square charge radius of the nuclei A, with values of rq,(p) = 0.8768(69) fm and 7, (d) =
2.1402(28) fm [17, 18]. For the dissociation energy of the ground rovibrational level this ef-
fect is quite small and amounts to —0.000 119 ecm ™! with tendency to diminish to zero for higher

levels.



The leading order QED correction is given by [[19]
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Numerical evaluation of £ has been described in details in Ref. [I. We only mention here that
this evaluation includes such terms as the Bethe logarithm In %y and the expectation value of the
Araki-Sucher distribution P(1/r3) [20]. As previously [1]], the higher order QED contribution

[14] has been estimated by the corresponding one-loop electron self-energy correction
@ 427
EDVR)~mat o — ZZ (Pe1 |0(Fan)| Pet)ey - (43)

The large- R behaviour of the above relativistic and QED potentials has been determined using
asymptotic constants reported in Refs.|1/and 21.

The relativistic and QED corrections can be computed directly, as expectation values with the
adiabatic wave function. It is more convenient and more accurate, however, to include them into
the nonadiabatic Schrédinger equation by adding pertinent radial functions into the )(R)
potential (23). In such an approach, the eigenvalue of the Schrodinger equation represents a total

energy including all the mentioned finite nuclear mass, relativistic and QED effects.

VII. COMPUTATIONAL DETAILS

The radial nonadiabatic equation (22)), apart from the clamped nuclei energy &, and the adia-
batic correction &,, involves W, W, and the potentials 0&,, and &/, in Eq. . The numerical
values for all but last radial functions were obtained for H, and a simple rescaling by the first or
second power of the reduced mass ratio converts them to pertinent HD functions. For this reason,
we shall omit a detailed description on how these functions were obtained, referring the reader to
our previous work on Hy [10, [11]. Below we give only basic information on these functions and
then concentrate on the new terms which result from the nuclear mass asymmetry in HD.

The electronic energy, &, used in this work is exactly the same as the one reported in Ref. 1l Its

analytic form is based on the energy points calculated by Sims and Hagstrom [22] using Hylleraas
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wave function and by Cencek [23]] using explicitly correlated Gaussian (ECG) wave function. The
relative accuracy of these calculations is of the order of 1072, which corresponds to about 10~10
of the relative accuracy of the Born-Oppenheimer potential. The ground state dissociation energy
obtained by numerically solving the adiabatic Schrodinger equation in the Born-Oppenheimer
approximation with this analytic potential is 36401.93319 cm ! (see also Table . Also the rela-
tivistic and QED corrections to the potential obtained for H, in Ref. |1/ apply directly to HD because
they do not depend on the nuclear mass.

The adiabatic correction &, has been evaluated analytically by means of a new method de-
scribed in [10} [11]. The radial function &, previously obtained for Hs has been rescaled to HD by
the ratio of the reduced masses of nuclei p!2 /1P

gio _ Mo+ M o, (44)
2my
and lead to the adiabatic dissociation energy of the ground state equal to 36 406.18407 cm ™.

Similarly, the nonadiabatic potentials 6&,,,, YV, and W, were obtained for Hy in Ref. 11/ and

mp+mgq
2mg

the nuclear masses m,, = 1836.152672 47 m, and mq = 3670.482 965 4 m, used in this study are

here are rescaled to HD by the square of the reduced mass ratio ( )2. Numerical values of
based on the CODATA 2006 compilation of fundamental physical constants [17] and were taken
from the NIST Web Page [18]. The nuclear reduced mass of HD is p, = 1223.899 2280 m, and
the nuclear mass asymmetry parameter A = 1.360 866 5542 - 10~* m...

The only newly evaluated function of R is the heteronuclear nonadiabatic correction §&;,,
Eq. , resulting from those terms of the Hamiltonian H, which contain \ [see Egs. ].
0&! . comprises three parts. The first part is analogous to the nuclear kinetic energy term in the adi-
abatic correction and requires evaluation of the derivative of the electronic wave function over
the nuclear variable K. This differentiation can be accomplished with the help of the following

formula [24]]

1 oV 1., =
m %¢el — Rt X Ly@er - (45)

In the above equation, the first term gives the parallel component and requires an additional basis

VR¢el =1

set of 12; symmetry to evaluate the reduced resolvent. The perpendicular component is obtained
by evaluation of the expectation value of an operator resulting from the last term, which involves
the nuclear angular momentum operator L, = —iR x V. Here we made use of the following
identity valid for the . states: in Gel = —Eel ®e1, Where Eel is the electronic angular momentum

operator Ly = —i Y uTa X V,. In this new formulation, it is possible to avoid the IT symmetry

10



functions to be involved—the perpendicular component is obtained directly from the electronic

ground state wave function as
1
— oz (0a [L3] da),, - (46)

The second part of J&/, contains operators which are difficult in numerical evaluation, so we

transform it to a more convenient form using the following identity
Vi Va(V) = (Vi Vi = Va Vi) (V) + Vo Va(V). (47)

The first term on the right hand side of Eq. (47) is
SRR — 69 R? 4w,
= — —0875%(R 48
= 5 07 0(R). (48)

(the §2(R) part can be neglected) while the second term is evaluated using integration by parts

(Vi Vi = Va Vi) (V)

(G |r'+? Va VE(V)] ), = / dFV Vo Ve (r'1763)
(49)

The third part of heteronuclear nonadiabatic correction 0&!

na’

Eq. is again a second order
quantity, which requires evaluation of the resolvent in the basis set of 3" symmetry.

All these expectation values as well as the second order quantities were evaluated in the basis
of exponentially correlated Gaussians (ECG) functions [25]]

Uk, 72) = (1+ Po)(1£0)E (50)
2
X oxp | = Y Api(7 = 8ea) (75 = 55 |
ij=1

where the matrices A, and vectors 5 contain nonlinear parameters, 5 per basis function, to be vari-
ationally optimized with respect to either the electronic energy or pertinent Hylleraas functional.
The antisymmetry projector (1 + Py5) ensures singlet symmetry, the spatial projector (1 4 7)—the
gerade (+) or ungerade (—) symmetry, and the =; prefactor enforces X states when equal to 1,
or II states when equal to y,—the perpendicular Cartesian component of the electron coordinate.
For the second order matrix elements we generated a 600-term ECG basis set of 12; or 1XF
symmetries. The nonlinear parameters of this basis were optimized by minimizing the functional
corresponding to this matrix element.

Finally, the total potential ) in the Schrodinger equation (22)) reads

V(R) = E4(R) 4 Ea(R) 4 0Ena(R) + 6E (R) + EP(R)
+ &(R) + EP(R) + EW(R). (51)

11



All its components were shifted by subtracting corresponding atomic values (see Sec. [V|and [1])

so that they asymptotically tend to zero.

VIII. RESULTS AND DISCUSSION

Table [l shows the dissociation energy of the ground rovibrational level decomposed into all
the known significant contributions. Particular corrections have been computed as a difference
between the eigenvalues obtained adding successively corresponding contributions to the potential
Y, Eq. . For instance, the o relativistic correction has been evaluated from two eigenvalues:
one obtained with Y = Eg + &, + 0Eua + &, +E?) and the other with ) = &+ E, + 0Epa +6E",.
Relativistic and QED corrections can also be obtained without the nonadiabatic potential 0&,,, +
§E!,. The difference for the ground state is quite small 10% cm ™!, however for excited states the
difference can be larger.

There are several possible sources of the uncertainty in the final dissociation energy. The three
dominating are (i) the missing relativistic and QED recoil terms of O(m,/M ), (ii) the neglect of
the nonadiabatic terms of O[(m./,)%], and (iii) the approximate treatment of the a* contribu-
tion. Although the formulas for the omitted relativistic recoil terms are explicitly known [24], no
numerical calculations have been performed so far. The error caused by the neglect of this term
can be estimated as m,/u, times the a? correction (see [1]]) and, analogously, times the o cor-
rection to account for the missing QED recoil term. For Dy of the ground rovibronic level these
two contributions are 0.00043 cm ™! and 0.00016 cm™?, respectively. In a similar fashion, the
contribution to the error budget from the missing higher order nonadiabatic terms can be approx-
imated as proportional to m,/u, times the second order nonadiabatic correction, which amounts
to 0.00026 cm ™! at the ground level. The last meaningful part of the uncertainty results from
the incomplete treatment of the higher order QED effects. As previously [1], we conservatively
estimate that the terms omitted in £, Eq. , contribute ca. 50% of the one-loop term, which
yields 0.0008 cm™~! of the uncertainty. The quadratic sum of these four error components leads
to the overall uncertainty on the ground state Dy of less then 0.0010 cm~?. For the rotationally
and vibrationally excited levels, the uncertainty changes in accord with the size of the corrections.
Its estimation for individual levels is listed in the ESI file related to this article. In total, there are
400 bound levels with the vibrational quantum number v ranging from 0 to 17. The number of

the rotational levels decreases with growing v from 37 for v = 0 to only 2 in the highest v = 17

12



state. The full set of the total dissociation energies is presented in Table [Vl Moreover, a detailed
specification, similar to that in Table I, has been prepared for each bound rovibrational level and
is made available through the ESI service. For each combination of the vibrational and rotational
quantum numbers there are 8 entries corresponding to: six components of the dissociation energy,
the total Dy, and the estimated uncertainty of the total Dy. The six components of the total D
are, respectively: the Born-Oppenheimer, adiabatic, nonadiabatic, o relativistic (including finite
nuclear size), a® QED, and o* QED.

Table [II] assembles several experimental and theoretical nonadiabatic values of D, obtained
over the years for the ground rovibrational level. More details on the progress in determining
the dissociation energy of HD can be found in a brief review by Stoicheff [26]. The first varia-
tional nonadiabatic calculation for HD has been performed by Bishop and Cheung [8]]. They used
858 basis functions, each being a product of an electronic James-Cooledge function and some
radial Gaussian-type function, and obtained the nonrelativistic Dy = 36 405.97 cm™! with an es-

timated convergence error of 0.28 cm™.

Approximate relativistic (—0.54 cm™!) and radiative
(—0.22 ecm™!) corrections completed the dissociation energy to the value displayed in Table

A more accurate relativistic dissociation energy of HD molecule was first obtained by Wol-
niewicz [27] in 1983, and later by Kotos and coworkers [28, 29]. In 1995 Wolniewicz has
markedly improved his electronic wave functions and refined the final dissociation energy to get
36405.787 cm™~! shown in Table [ll This value differs from ours by a few thousands of a wave
number in accord with the uncertainty estimated by Wolniewicz. Concerning the QED correction
to the ground state Dy we mention the old but very good estimation —0.197 cm™~! by Ladik [30].
It agrees surprisingly well with the current rigorous result, see Table [I}

Last year, Stanke et al. [9] performed new variational nonadiabatic calculation employing
10000 explicitly correlated Gaussian basis functions. Their nonrelativistic total energy of
—1.1654719220(20) hartree, when subtracted from the sum of the atomic nonadiabatic ener-
gies, Eq. , yields Dy = 36 406.5105 cm™! in good agreement with our nonrelativistic subtotal
value in Table [} the difference is 0.0003(2) cm~!. Their relativistic correction computed with
the nonadiabatic wave function is —1.089 307 x 10~° hartree. Because the corresponding atomic
limit (—a?/4 hartree) is known to a high accuracy (the leading order recoil term vanishes), the
relativistic Dy can be inferred from this data as equal to 36405.9794 cm~'. We note here that
now the discrepancy increases to 0.0012(5) cm ™! in comparison with our relativistic result. If this

difference were attributed to the relativistic recoil contribution, it would be almost 3 times larger
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than the conservative estimate of this effect discussed above.

Table [[I| collects also dissociation energies determined experimentally. The first measurement
of Dy for HD was performed by Herzberg and Monfils in 1960 [31] yielding 36 400.5 cm™?.
Motivated by a discrepancy with the famous theoretical results by Kotos and Wolniewicz [32],
Herzberg repeated his experiment [33), 34] using an improved apparatus and established D, =
36 406.2(4) cm~! shown in Table [[I This value, however, is in fact an arithmetic mean of two
independent measurements: 36405.8 cm ™! and 36 406.6 cm™*, the former being very close to
our value. In 1993, Eyler and Melikechi [35] determined the dissociation threshold from the
EF 12; state and, in combination with the spectra measured by Diecke [36], obtained D, =
36 405.88(10) cm™'. At the same time, Balakrishnan er al. [37] performed a delayed detection of
the fluorescence spectrum of photodissociated hydrogen and arrived at Dy = 36 405.83(10) cm ™.
These results, although systematically larger, are in agreement within their uncertainties with cur-
rent theoretical predictions. An order of magnitude more accurate measurements were reported
by Eyler group in 2004 [38]]. In a three-step experiment aiming at determination of the second
dissociation threshold they obtained Dy = 36 405.828(16) cm™!. This result is 30 away from our
theoretical value. In view of an increased precision on both the experimental and theoretical side
it must be stated that currently there is a discrepancy of ca. 0.05 cm™! in the determination of D,
for HD.

Accuracy of the present results can also be assessed by comparison of the energy differ-
ence corresponding to the lowest rotationless vibrational transition with the available literature
data (see Table [[II)). The most accurate theoretical predictions by Wolniewicz and by Kotos and
Rychlewski as well as the experimental data are in very good agreement with the present result
3632.1604(5) cm™!. Here, we estimated the uncertainty in the same way as for the dissociation
energy (see above) i.e. assuming that the error components are proportional to corresponding
corrections.

In contrast to the homonuclear isotopomers, the electric dipole transitions between the lowest
rotational states of HD are allowed and the transition energy can, in principle, be measured directly.
In Table [TV]we present values of all significant contributions to the lowest J = 0 — 1, 2 transition
energies and compare with the available experimental data. These data are not very accurate,
but we think, once they are improved, this comparison would be a significant test of the present

molecular structure theory.
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The ionization potential (IP) of HD can be related to its dissociation energy by
IP = Do(HD) — E(H) — Do(HD™). (52)

Since the dissociation energy of HD™, as well as the total energy of the hydrogen atom are known
very accurately, we can evaluate IP with an accuracy adequate to that of Dy(HD). Up to date
values of E(H) = —109678.7717 cm™~* and Dy(HD™") = 21 516.069 60 cm ! have been compiled
by Liu et al. [3] on the basis of current fundamental constants [17] and calculations by Korobov
(39, 40]. IP computed for HD from the above formula amounts to 124 568.4849(10) cm~! with

the uncertainty transfered directly from D).

IX. CONCLUSION

The high accuracy of 0.001 cm™! for the theoretically predicted dissociation energy of H,
and isotopomers has been achieved due to the recent progress made in two directions. The first
one, enabled a complete treatment of the leading QED effects. In particular, the approach to
effectively calculate the many electron Bethe logarithm and mean values of singular operators,
like the Araki-Sucher term, has been developed [1} 41, 42]. The second direction, indispensable to
reach this accuracy, is the nonadiabatic perturbation theory [10, [11, 24], which enables a rigorous
approach to the finite nuclear mass effects beyond the adiabatic approximation. However, an
accurate nonadiabatic correction to relativistic contribution still remains to be evaluated.

In comparison of theoretical predictions with recent experimental results we observe a very
good agreement for dissociation energies of Hy and D5, and a small discrepancy of 0.045(16) cm ™!
for HD. Moreover, our predictions for transition energies, suchas J =0 — land J =0 — 2
(v = 0) are much more accurate than present experimental values for HD. Therefore, a new

measurement with an increased precision of dissociation and transition energies of HD molecule

would be very desirable.
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TABLE I: Components of Dy (in cm™!) for the v = 0, J = 0 state of HD. Uncertainties of o and o come

from the neglect of nuclear recoil corrections and that of o* from the approximate formula.

Total

Component Dy

BO 36401.9332(1)
Adiabatic correction 4.2509(1)
Nonadiabatic correction 0.3267(2)
a? subtotal 36 406.5108(2)
a? correction —0.5299(4)
o? finite nuclear size correction —0.0001(0)
a%+a? subtotal 36 405.9809(5)
o? correction —0.1964(2)
a correction —0.0016(8)

(
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TABLE II: Comparison of theoretical and experimental results for Dy (in cm ™) of the v = 0, J = 0 state

of HD. § is a difference to our result.

Component Dy 1)
This work 36 405.7828(10)
Theory
Stanke et al. (2009) [9] 36405.7814¢ —0.0014
Wolniewicz (1995) [43] 36405.787 0.004
Kotos and Rychlewski (1993) [129] 36 405.763 —0.020
Kotos, Szalewicz, Monkhorst (1986) [128]] 36405.784 0.001
Wolniewicz (1983) [27] 36405.73 0.05
Bishop and Cheung (1978) [i8] 36 405.49 —0.29
Experiment
Zhang et al. (2004) [38] 36 405.828(16) 0.045
Balakrishnan et al. (1993) [37]] 36405.83(10) 0.05
Eyler and Melikechi (1993) [35]] 36405.88(10) 0.10
Herzberg (1970) [33}[34] 36406.2(4) 0.4

@ The original Dg = 36 405.9794 cm ™! from [9] has been augmented by a sum of our o® and a* QED

corrections equal to —0.1980 cm ™.
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TABLE III: Comparison of theoretical and experimental results for the energy difference AE (in cm™!)

between v = 0 and v = 1 rotationless states of HD. ¢ is a difference to our result.

Source AFE o
This work 3632.1604(5)
Theory
Stanke et al. (2009) [9] 3632.1614¢ 0.0010
Wolniewicz (1995) [43]] 3632.161 0.001
Kotos and Rychlewski (1993) [129] 3632.161 0.001
Experiment
Stanke et al. (2009) [9] 3632.1595(17)° —0.0009
Rich et al. (1982) [44] 3632.159(6)¢ —0.001
McKellar et al. (1976) [45] 3632.152(9)¢ —0.008

@ The original AE = 3632.1802 cm ™" from [9] has been augmented by a sum of our o® and a* QED

1

corrections equal to —0.0187 cm™".

b 1o uncertainty.

¢ 30 uncertainty.
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TABLE IV: Components of theoretically predicted transition energy AFE between J = 0 and J = 1, and

between J = 0 and J = 2 rotational levels of the ground vibrational state (v = 0) of HD. All entries in

-1

cm

Component AE0 —1) AFE(0 — 2)
BO 89.270629 267.196 840
Adiabatic correction —0.036 086 —0.107 842
Nonadiabatic correction —0.007 782(6) —0.023287(19)
o subtotal 89.226 761(6) 267.065 711(19)
a? correction 0.001948(2) 0.005813(5)
a%+a? subtotal 89.228 709(6) 267.071 524(20)
a? correction —0.000771(1) —0.002 303(2)
o correction —0.000007(4) —0.000018(9)
Total 89.227933(8) 267.069 205(22)
Experiment, [46] and [47]] 89.23 267.086(10)
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