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Abstract

The dissociation energies of all rotation-vibrational states of the molecular HD in the ground electronic

state are calculated to a high accuracy by including nonadiabatic, relativistic α2, and quantum electrody-

namic α3 effects, with approximate treatment of small higher order α4, and finite nuclear size corrections.

Obtained result for the ground molecular state of 36 405.7828(10) cm−1 is in a small disagreement with the

latest most precise experimental value.

† Electronic supplementary information (ESI) available: Extensive tables of all 400 bound rovibrational states of HD.
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I. INTRODUCTION

Since the beginning of quantum mechanics the molecular hydrogen and its isotopomers were

a ground for testing and developing experimental techniques and theoretical models. In determi-

nation of the dissociation energy (D0), experiment and theory have diminished their individual

uncertainties to the level below 10−3 cm−1 in a good agreement between themselves. Namely, the

latest theoretical D0 = 36 118.0695(10) cm−1 of H2, obtained by Piszczatowski et al. [1], agrees

very well with 36 118.06962(37) cm−1 derived experimentally by Liu et al. [2]. Analogous results

obtained last year for D2 are 36 748.3633(9) cm−1 from theory [1] and 36 748.36287(60) cm−1

from experiment [3]. The tiny difference of 0.0004 cm−1 fits well within both error estimates.

To achieve this 10−3 cm−1 level of accuracy, the theory must have taken into account, with suffi-

cient precision, not only the electron correlation but also the finite nuclear mass, relativistic, and

quantum electrodynamics (QED) effects.

Particularly challenging is the accurate inclusion of nonadiabatic effects. One possible ap-

proach is to obtain a nonadiabatic wave function (depending explicitly on nuclear coordinates) by

minimizing the nonrelativistic energy. For H2 such calculations, using explicitly correlated James-

Coolidge functions, were attempted by Kołos and Wolniewicz in 1963 [4, 5] and 15 years later

by Bishop and Cheung [6]. The same authors performed purely nonadiabatic calculations for HD.

Kołos and Wolniewicz obtained D0 = 36 402.4 cm−1 [7], whereas Bishop and Cheung reported

D0 = 36 405.97 cm−1 [8]. Calculation in a similar spirit, but using extensively optimized explic-

itly correlated Gaussian functions, were performed by Stanke et al. [9]. Their nonadiabatic wave

function was further employed to compute perturbatively the relativistic correction to the nonadi-

abatic energy. An apparent drawback of these methods is their decreasing accuracy observed for

the higher excited states, particularly those laying close to dissociation threshold. For such states

the perturbative treatment of relativistic effects may be inadequate. As an example, the v = 14,

J = 4 state of H2 becomes a resonance after the inclusion of relativistic effects on the level of

the potential energy curve (PEC). Moreover, certain properties like the ortho-para mixing or the

scattering length, are inaccessible within the direct nonadiabatic approach.

In contrast, the nonadiabatic perturbation theory (NAPT) approach employed here, relies on

solving the radial, variable-mass Schrödinger equation with the PEC for the nuclei constructed

from the adiabatic potential augmented by R-dependent nonadiabatic, relativistic and QED cor-

rections. The theory of the nonadiabatic potentials has been developed in Refs. 10 and 11, whereas
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the relativistic and QED corrections to the PEC are evaluated on the basis of the nonrelativistic

quantum electrodynamics (NRQED) [12–14]. These corrections are unambiguously identified by

an expansion of a bound atomic or molecular state energy in powers of the fine structure constant

α

E = E(0) + α2E(2) + α3E(3) + α4E(4) + · · · , (1)

where E(3) and higher order terms may additionally depend on lnα. The first term of the ex-

pansion represents the nonrelativistic energy, α2E(2) is the leading relativistic contribution, terms

proportional to α3 and α4 describe the QED effects of the leading and higher order, respectively.

In this paper we report on application of this approach to all rovibrational levels of the ground

electronic state of HD molecule. Uncertainty of our results comes mainly from the neglect of the

finite nuclear mass corrections of the order α2m/M to the relativistic contribution to the PEC,

and from the approximate treatment of the α4 correction. The neglect of higher order nonadiabatic

terms proportional to (m/M)3 also increases the overall uncertainty.

II. NONRELATIVISTIC HAMILTONIAN

We consider a two-electron diatomic molecule in the reference frame attached to the geometri-

cal center of the two nuclei. The total wave function φ is a solution of the stationary Schrödinger

equation

H φ = E φ , (2)

with the Hamiltonian

H = Hel +Hn , (3)

split into the electronic and nuclear parts. In the electronic Hamiltonian

Hel = −
∑
a

∇2
a

2me

+ V , (4)

where V is the Coulomb interaction

V = − 1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+

1

r12

+
1

R
, (5)

the nuclei have fixed positions ~RA (proton) and ~RB (deuteron), and ~R = ~RA − ~RB. The nuclear

Hamiltonian in the reference frame fixed at the geometrical center is

Hn = − ∇
2
R

2µn

− ∇
2
el

2µn

−
(

1

MB

− 1

MA

)
~∇R · ~∇el

= H ′n +H ′′n , (6)
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where ~∇el = 1
2

∑
a
~∇a, µn = (1/MA + 1/MB)−1 is the nuclear reduced mass, and H ′n, H

′′
n are

even and odd parts with respect to the inversion.

In order to simplify the calculation of nonadiabatic corrections we introduce a unitary transfor-

mation

H̃ = U+H U (7)

of the form

U = eλ~r·
~∇R (8)

with ~r =
∑

a ~ra and the nuclear mass asymmetry parameter

λ = −me

2

(
1

MB

− 1

MA

)
. (9)

The transformed Hamiltonian is

H̃ = H + λ [H,~r · ~∇R]

+
λ2

2
[[H, ~r · ~∇R], ~r · ~∇R] +O(λ3) , (10)

where the higher order terms in the electron-nuclear mass ratio O [(me/MA,B)3] are neglected, so

that

H̃ = Hel +H ′n + λ [V,~r · ~∇R] (11)

+ 2
λ2

me

[~∇el · ~∇R, ~r · ~∇R] +
λ2

2
[[Hel, ~r · ~∇R], ~r · ~∇R] ,

and the oddO [(me/MA,B)2] terms are neglected as well. The internal commutator in the last term

of Eq. (11) is

[Hel, ~r · ~∇R] = −~r · ~∇R(V )− 2

me

~∇el · ~∇R , (12)

so that the transformed Hamiltonian can be decomposed as

H̃ = Hel + H̃ ′n + H̃ ′′n . (13)

where

H̃ ′n = H ′n + λ2

[
1

me

~∇el · ~∇R −
1

2
~r · ~∇R(V ) , ~r · ~∇R

]
= H ′n +

λ2

me

∇2
R +

λ2

2
ri rj∇i

R∇
j
R(V ) (14)

H̃ ′′n = −λ~r · ~∇R(V ) . (15)
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Both the nuclear Hamiltonians involve the derivative of the Coulomb operator V , which is

~∇R(V ) =
1

2

(
−~r1A
r3
1A

+
~r1B
r3
1B

− ~r2A
r3
2A

+
~r2B
r3
2B

)
− ~n

R2
(16)

with ~n = ~R/R, while the second derivative of V is further transformed in Eqs. (47), (48), and

(49).

III. ADIABATIC APPROXIMATION

In the adiabatic approximation the total wave function of the molecule

φa(~r, ~R) = φel(~r) χ(~R) (17)

is represented as a product of the electronic wave function φel and the nuclear wave function χ.

The electronic wave function obeys the clamped nuclei electronic Schrödinger equation

[
Hel − Eel(R)

]
|φel〉 = 0, (18)

while the wave function χ is a solution to the nuclear Schrödinger equation with the effective

potential generated by electrons[
−∇

2
R

2µn

+ Ea(R) + Eel(R)− Ea

]
|χ〉 = 0 , (19)

where Ea(R) is the so called adiabatic (or diagonal) correction defined as

Ea(R) = 〈φel |H ′n|φel〉el

=
1

2µn

(〈
~∇Rφel

∣∣∣~∇Rφel

〉
el
−
〈
φel

∣∣∣~∇2
el

∣∣∣φel

〉
el

)
. (20)

Separation of the angular variables in Eq. (19) leads to the well known radial nuclear equation[
− 1

R2

∂

∂R

R2

2µn

∂

∂R
+
J (J + 1)

2µnR2
+ Eel(R) + Ea(R)

]
χJ(R)

= Ea χJ(R). (21)

Solving this equation gives an adiabatic energy level Ea and an adiabatic radial nuclear wave

function χJ .
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IV. NONADIABATIC NUCLEAR SCHRÖDINGER EQUATION

Following the NAPT formalism introduced recently [10, 11], we can obtain energy levels E

including leading nonadiabatic corrections by solving the following nonadiabatic version of the

radial Schrödinger equation[
− 1

R2

∂

∂R

R2

2µ‖(R)

∂

∂R
+

J (J + 1)

2µ⊥(R)R2
+ Y(R)

]
χJ(R)

= E χJ(R), (22)

where Y(R) is a nonadiabatic potential energy function. In the nonrelativistic limit

Y(R) = Eel(R) + Ea(R) + δEna(R) + δE ′na(R), (23)

with the nonadiabatic correction constructed from the homonuclear part δEna(R), defined in our

previous work on H2 [10, 11], and the heteronuclear part proportional to λ2

δE ′na = λ2

[〈
φel

∣∣∣∣ 1

me

∇2
R +

1

2
ri rj∇i

R∇
j
R(V )

∣∣∣∣φel

〉
el

+

〈
φel

∣∣∣∣~r · ~∇R(V )
1

(Eel −Hel)′
~r · ~∇R(V )

∣∣∣∣φel

〉
el

]
, (24)

which is obtained from Eqs. (14) and (15). Apart from the nonadiabatic potential Y(R), the

difference between Eqs. (22) and (21) lies in the effective masses used. In the adiabatic equation

(21) the reduced nuclear mass µn appearing in both translational and rotational kinetic terms is

a constant, while in the nonadiabatic equation (22) it is given by two different functions of the

internuclear distance. These two effective reduced mass functions

1

2µ‖(R)
≡ 1

2µn

+W‖(R)− λ2

me

(25)

1

2µ⊥(R)
≡ 1

2µn

+W⊥(R)− λ2

me

(26)

are defined with the help of additional radial functions

W‖(R) =
1

µ2
n

〈
~n · ~∇Rφel

∣∣∣∣ 1

(Eel −Hel)′

∣∣∣∣~n · ~∇Rφel

〉
el

(27)

and

W⊥(R) =
1

µ2
n

(δij − ni nj)
2

〈
∇i
Rφel

∣∣∣∣ 1

Eel −Hel

∣∣∣∣∇j
Rφel

〉
el

.

(28)
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In total, three radial functions are needed to construct the nonadiabatic radial Schrödinger equa-

tion (22) for diatomic molecules: two functions, defined by Eqs. (27) and (28), to describe the

variable effective reduced masses of Eqs. (25) and (26), and the nonadiabatic potential Y . This

potential, in turn, is expressed by another four functions: BO energy Eel, adiabatic Ea, nonadiabatic

homonuclear δEna and heteronuclear δE ′na corrections (see Eq. (23)).

V. SEPARATED ATOMS LIMIT

At large internuclear distances the effective reduced mass functions (25) and (26) are expected

to approach a value corresponding to the reduced mass of separate H and D atoms

1

µA
=

1

mp +me

+
1

md +me

. (29)

BecauseW‖(R) andW⊥(R) tend to −me/(4µ
2
n), when R→∞, we have

1

2µ‖(∞)
=

1

2µ⊥(∞)
=

1

2µn

− me

4µ2
n

− λ2

me

(30)

=
1

2

[
1

mp

(
1− me

mp

)
+

1

md

(
1− me

md

)]
, (31)

which are exactly the leading terms of the expansion of the atomic reduced mass (29) in the

electron-nuclear mass ratio

1

2µA
=

1

2

[
1

mp

(
1− me

mp

+

(
me

mp

)2

− . . .

)
(32)

+
1

md

(
1− me

md

+

(
me

md

)2

− . . .

)]
. (33)

In the separated atoms limit, the nonrelativistic energy of the system (the dissociation threshold)

E(∞) is simply a sum of the energies of hydrogen and deuterium atoms expressed by their reduced

masses

E(∞) = −µH

2
− µD

2
. (34)

The expansion of E(∞) in the electron to nucleus mass ratio is of the form

E(∞) = −1 +
1

2

(
me

mp

+
me

md

)
− 1

2

(
m2

e

m2
p

+
m2

e

m2
d

)
+ . . . . (35)
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Subsequent terms of this expansion coincide with theR→∞ limits of corresponding components

of the nonadiabatic potential Y(R) of Eq. (23),

Eel(∞) = −1 , (36)

Ea(∞) =
me

2µn

, (37)

δEna(∞) = −
(
me

2µn

)2

, (38)

δE ′na(∞) = −λ2 . (39)

In particular, the sum of Eqs. (38) and (39) is equal to the third term in the expansion (35).

VI. RELATIVISTIC AND RADIATIVE CORRECTIONS

The relativistic correction to the adiabatic potential for a singlet state is given by the expectation

value with the nonrelativistic wave function of the Breit-Pauli Hamiltonian [15]

α−2ĤBP =− 1

8

∑
a

p4
a +

π

2

∑
A

∑
a

ZAδ(~raA) + π
∑
a<b

δ(~rab)

− 1

2

∑
a<b

(
~pa

1

rab
~pb + ~pa · ~rab

1

r3
ab

~rab · ~pb
)
. (40)

The expectation value E (2)(R) =
〈
φel

∣∣∣ĤBP

∣∣∣φel

〉
el

as a function of R, was computed for H2 to

a high accuracy by Wolniewicz in 1993 [16] and has recently been recalculated in Ref. 1. In

the present calculations, as in all the previous ones, we have omitted the small relativistic recoil

corrections, namely that proportional to α2me/M .

Another α2 effect, which can be easily incorporated into the relativistic potential, results from

the spatial distribution of the nuclear charge. The energy shift caused by this effect is given by the

formula

Efs(R) =
2π

3

α2

λ2
C

∑
A

ZAr
2
ch(A)

〈
φel

∣∣∣∣∣∑
a

δ(~raA)

∣∣∣∣∣φel

〉
el

, (41)

where λC = 386.159 264 59 fm is the Compton wavelength over 2π and rch(A) is the root mean

square charge radius of the nuclei A, with values of rch(p) = 0.8768(69) fm and rch(d) =

2.1402(28) fm [17, 18]. For the dissociation energy of the ground rovibrational level this ef-

fect is quite small and amounts to −0.000 119 cm−1 with tendency to diminish to zero for higher

levels.
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The leading order QED correction is given by [19]

E (3)(R) = α3
∑
a<b

{[
164

15
+

14

3
lnα

]
〈φel |δ(~rab)|φel〉el

− 7

6π

〈
φel

∣∣∣∣P ( 1

r3
ab

)∣∣∣∣φel

〉
el

}
+ α3

∑
A

∑
a[

19

30
− 2 lnα− ln k0

]
4ZA

3
〈φel |δ(~raA)|φel〉el . (42)

Numerical evaluation of E (3) has been described in details in Ref. 1. We only mention here that

this evaluation includes such terms as the Bethe logarithm ln k0 and the expectation value of the

Araki-Sucher distribution P (1/r3) [20]. As previously [1], the higher order QED contribution

[14] has been estimated by the corresponding one-loop electron self-energy correction

E (4)(R) ≈ π α4

(
427

96
− ln 4

)∑
A

∑
a

〈φel |δ(~raA)|φel〉el . (43)

The large-R behaviour of the above relativistic and QED potentials has been determined using

asymptotic constants reported in Refs. 1 and 21.

The relativistic and QED corrections can be computed directly, as expectation values with the

adiabatic wave function. It is more convenient and more accurate, however, to include them into

the nonadiabatic Schrödinger equation (22) by adding pertinent radial functions into the Y(R)

potential (23). In such an approach, the eigenvalue of the Schrödinger equation represents a total

energy including all the mentioned finite nuclear mass, relativistic and QED effects.

VII. COMPUTATIONAL DETAILS

The radial nonadiabatic equation (22), apart from the clamped nuclei energy Eel and the adia-

batic correction Ea, involvesW‖,W⊥, and the potentials δEna and δE ′na in Eq. (24). The numerical

values for all but last radial functions were obtained for H2 and a simple rescaling by the first or

second power of the reduced mass ratio converts them to pertinent HD functions. For this reason,

we shall omit a detailed description on how these functions were obtained, referring the reader to

our previous work on H2 [10, 11]. Below we give only basic information on these functions and

then concentrate on the new terms which result from the nuclear mass asymmetry in HD.

The electronic energy, Eel, used in this work is exactly the same as the one reported in Ref. 1. Its

analytic form is based on the energy points calculated by Sims and Hagstrom [22] using Hylleraas
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wave function and by Cencek [23] using explicitly correlated Gaussian (ECG) wave function. The

relative accuracy of these calculations is of the order of 10−12, which corresponds to about 10−10

of the relative accuracy of the Born-Oppenheimer potential. The ground state dissociation energy

obtained by numerically solving the adiabatic Schrödinger equation (21) in the Born-Oppenheimer

approximation with this analytic potential is 36401.93319 cm−1 (see also Table I). Also the rela-

tivistic and QED corrections to the potential obtained for H2 in Ref. 1 apply directly to HD because

they do not depend on the nuclear mass.

The adiabatic correction Ea has been evaluated analytically by means of a new method de-

scribed in [10, 11]. The radial function Ea previously obtained for H2 has been rescaled to HD by

the ratio of the reduced masses of nuclei µH2
n /µHD

n

EHD
a =

mp +md

2md

EH2
a (44)

and lead to the adiabatic dissociation energy of the ground state equal to 36 406.18407 cm−1.

Similarly, the nonadiabatic potentials δEna, W‖, andW⊥ were obtained for H2 in Ref. 11 and

here are rescaled to HD by the square of the reduced mass ratio
(
mp+md

2md

)2

. Numerical values of

the nuclear masses mp = 1836.152 672 47 me and md = 3670.482 965 4 me used in this study are

based on the CODATA 2006 compilation of fundamental physical constants [17] and were taken

from the NIST Web Page [18]. The nuclear reduced mass of HD is µn = 1223.899 2280 me and

the nuclear mass asymmetry parameter λ = 1.360 866 554 2 · 10−4 me.

The only newly evaluated function of R is the heteronuclear nonadiabatic correction δE ′na,

Eq. (24), resulting from those terms of the Hamiltonian H̃ , which contain λ [see Eqs. (14,15)].

δE ′na comprises three parts. The first part is analogous to the nuclear kinetic energy term in the adi-

abatic correction (20) and requires evaluation of the derivative of the electronic wave function over

the nuclear variable ~R. This differentiation can be accomplished with the help of the following

formula [24]
~∇Rφel = ~n

1

(Eel −Hel)′
∂V

∂R
φel −

i

R
~n× ~Lnφel . (45)

In the above equation, the first term gives the parallel component and requires an additional basis

set of 1Σ+
g symmetry to evaluate the reduced resolvent. The perpendicular component is obtained

by evaluation of the expectation value of an operator resulting from the last term, which involves

the nuclear angular momentum operator ~Ln = −i ~R × ~∇R. Here we made use of the following

identity valid for the Σ states: ~Ln φel = −~Lel φel, where ~Lel is the electronic angular momentum

operator ~Lel = −i
∑

a ~ra × ~∇a. In this new formulation, it is possible to avoid the Π symmetry
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functions to be involved—the perpendicular component is obtained directly from the electronic

ground state wave function as

− 1

R2

〈
φel

∣∣L2
el

∣∣φel

〉
el
. (46)

The second part of δE ′na contains operators which are difficult in numerical evaluation, so we

transform it to a more convenient form using the following identity

∇i
R∇

j
R(V ) =

(
∇i
R∇

j
R −∇

i
el∇

j
el

)
(V ) +∇i

el∇
j
el(V ) . (47)

The first term on the right hand side of Eq. (47) is(
∇i
R∇

j
R −∇

i
el∇

j
el

)
(V ) =

3RiRj − δij R2

R5
− 4 π

3
δij δ3(R) , (48)

(the δ3(R) part can be neglected) while the second term is evaluated using integration by parts〈
φel

∣∣ri rj∇i
el∇

j
el(V )

∣∣φel

〉
el

=

∫
d~r V ∇i

el∇
j
el

(
ri rjφ2

el

)
.

(49)

The third part of heteronuclear nonadiabatic correction δE ′na, Eq. (24) is again a second order

quantity, which requires evaluation of the resolvent in the basis set of 1Σ+
u symmetry.

All these expectation values as well as the second order quantities were evaluated in the basis

of exponentially correlated Gaussians (ECG) functions [25]

ψk(~r1, ~r2) = (1 + P̂12)(1± ı̂) Ξ (50)

× exp

[
−

2∑
i,j=1

Ak,ij(~ri − ~sk,i)(~rj − ~sk,j)

]
,

where the matrices Ak and vectors ~sk contain nonlinear parameters, 5 per basis function, to be vari-

ationally optimized with respect to either the electronic energy or pertinent Hylleraas functional.

The antisymmetry projector (1 + P̂12) ensures singlet symmetry, the spatial projector (1± ı̂)—the

gerade (+) or ungerade (−) symmetry, and the Ξk prefactor enforces Σ states when equal to 1,

or Π states when equal to yi—the perpendicular Cartesian component of the electron coordinate.

For the second order matrix elements we generated a 600-term ECG basis set of 1Σ+
g or 1Σ+

u

symmetries. The nonlinear parameters of this basis were optimized by minimizing the functional

corresponding to this matrix element.

Finally, the total potential Y in the Schrödinger equation (22) reads

Y(R) = Eel(R) + Ea(R) + δEna(R) + δE ′na(R) + E (2)(R)

+ Efs(R) + E (3)(R) + E (4)(R). (51)
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All its components were shifted by subtracting corresponding atomic values (see Sec. V and [1])

so that they asymptotically tend to zero.

VIII. RESULTS AND DISCUSSION

Table I shows the dissociation energy of the ground rovibrational level decomposed into all

the known significant contributions. Particular corrections have been computed as a difference

between the eigenvalues obtained adding successively corresponding contributions to the potential

Y , Eq. (51). For instance, the α2 relativistic correction has been evaluated from two eigenvalues:

one obtained with Y = Eel +Ea +δEna +δE ′na +E (2) and the other with Y = Eel +Ea +δEna +δE ′na.

Relativistic and QED corrections can also be obtained without the nonadiabatic potential δEna +

δE ′na. The difference for the ground state is quite small 10−6 cm−1, however for excited states the

difference can be larger.

There are several possible sources of the uncertainty in the final dissociation energy. The three

dominating are (i) the missing relativistic and QED recoil terms of O(me/M), (ii) the neglect of

the nonadiabatic terms of O[(me/µn)3], and (iii) the approximate treatment of the α4 contribu-

tion. Although the formulas for the omitted relativistic recoil terms are explicitly known [24], no

numerical calculations have been performed so far. The error caused by the neglect of this term

can be estimated as me/µn times the α2 correction (see [1]) and, analogously, times the α3 cor-

rection to account for the missing QED recoil term. For D0 of the ground rovibronic level these

two contributions are 0.00043 cm−1 and 0.00016 cm−1, respectively. In a similar fashion, the

contribution to the error budget from the missing higher order nonadiabatic terms can be approx-

imated as proportional to me/µn times the second order nonadiabatic correction, which amounts

to 0.00026 cm−1 at the ground level. The last meaningful part of the uncertainty results from

the incomplete treatment of the higher order QED effects. As previously [1], we conservatively

estimate that the terms omitted in E (4), Eq. (43), contribute ca. 50% of the one-loop term, which

yields 0.0008 cm−1 of the uncertainty. The quadratic sum of these four error components leads

to the overall uncertainty on the ground state D0 of less then 0.0010 cm−1. For the rotationally

and vibrationally excited levels, the uncertainty changes in accord with the size of the corrections.

Its estimation for individual levels is listed in the ESI file related to this article. In total, there are

400 bound levels with the vibrational quantum number v ranging from 0 to 17. The number of

the rotational levels decreases with growing v from 37 for v = 0 to only 2 in the highest v = 17
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state. The full set of the total dissociation energies is presented in Table V. Moreover, a detailed

specification, similar to that in Table I, has been prepared for each bound rovibrational level and

is made available through the ESI service. For each combination of the vibrational and rotational

quantum numbers there are 8 entries corresponding to: six components of the dissociation energy,

the total D0, and the estimated uncertainty of the total D0. The six components of the total D0

are, respectively: the Born-Oppenheimer, adiabatic, nonadiabatic, α2 relativistic (including finite

nuclear size), α3 QED, and α4 QED.

Table II assembles several experimental and theoretical nonadiabatic values of D0 obtained

over the years for the ground rovibrational level. More details on the progress in determining

the dissociation energy of HD can be found in a brief review by Stoicheff [26]. The first varia-

tional nonadiabatic calculation for HD has been performed by Bishop and Cheung [8]. They used

858 basis functions, each being a product of an electronic James-Cooledge function and some

radial Gaussian-type function, and obtained the nonrelativistic D0 = 36 405.97 cm−1 with an es-

timated convergence error of 0.28 cm−1. Approximate relativistic (−0.54 cm−1) and radiative

(−0.22 cm−1) corrections completed the dissociation energy to the value displayed in Table II.

A more accurate relativistic dissociation energy of HD molecule was first obtained by Wol-

niewicz [27] in 1983, and later by Kołos and coworkers [28, 29]. In 1995 Wolniewicz has

markedly improved his electronic wave functions and refined the final dissociation energy to get

36 405.787 cm−1 shown in Table II. This value differs from ours by a few thousands of a wave

number in accord with the uncertainty estimated by Wolniewicz. Concerning the QED correction

to the ground state D0 we mention the old but very good estimation −0.197 cm−1 by Ladik [30].

It agrees surprisingly well with the current rigorous result, see Table I.

Last year, Stanke et al. [9] performed new variational nonadiabatic calculation employing

10000 explicitly correlated Gaussian basis functions. Their nonrelativistic total energy of

−1.165 471 922 0(20) hartree, when subtracted from the sum of the atomic nonadiabatic ener-

gies, Eq. (34), yields D0 = 36 406.5105 cm−1 in good agreement with our nonrelativistic subtotal

value in Table I, the difference is 0.0003(2) cm−1. Their relativistic correction computed with

the nonadiabatic wave function is −1.089 307 × 10−5 hartree. Because the corresponding atomic

limit (−α2/4 hartree) is known to a high accuracy (the leading order recoil term vanishes), the

relativistic D0 can be inferred from this data as equal to 36 405.9794 cm−1. We note here that

now the discrepancy increases to 0.0012(5) cm−1 in comparison with our relativistic result. If this

difference were attributed to the relativistic recoil contribution, it would be almost 3 times larger
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than the conservative estimate of this effect discussed above.

Table II collects also dissociation energies determined experimentally. The first measurement

of D0 for HD was performed by Herzberg and Monfils in 1960 [31] yielding 36 400.5 cm−1.

Motivated by a discrepancy with the famous theoretical results by Kołos and Wolniewicz [32],

Herzberg repeated his experiment [33, 34] using an improved apparatus and established D0 =

36 406.2(4) cm−1 shown in Table II. This value, however, is in fact an arithmetic mean of two

independent measurements: 36 405.8 cm−1 and 36 406.6 cm−1, the former being very close to

our value. In 1993, Eyler and Melikechi [35] determined the dissociation threshold from the

EF 1Σ+
g state and, in combination with the spectra measured by Diecke [36], obtained D0 =

36 405.88(10) cm−1. At the same time, Balakrishnan et al. [37] performed a delayed detection of

the fluorescence spectrum of photodissociated hydrogen and arrived at D0 = 36 405.83(10) cm−1.

These results, although systematically larger, are in agreement within their uncertainties with cur-

rent theoretical predictions. An order of magnitude more accurate measurements were reported

by Eyler group in 2004 [38]. In a three-step experiment aiming at determination of the second

dissociation threshold they obtained D0 = 36 405.828(16) cm−1. This result is 3σ away from our

theoretical value. In view of an increased precision on both the experimental and theoretical side

it must be stated that currently there is a discrepancy of ca. 0.05 cm−1 in the determination of D0

for HD.

Accuracy of the present results can also be assessed by comparison of the energy differ-

ence corresponding to the lowest rotationless vibrational transition with the available literature

data (see Table III). The most accurate theoretical predictions by Wolniewicz and by Kołos and

Rychlewski as well as the experimental data are in very good agreement with the present result

3632.1604(5) cm−1. Here, we estimated the uncertainty in the same way as for the dissociation

energy (see above) i.e. assuming that the error components are proportional to corresponding

corrections.

In contrast to the homonuclear isotopomers, the electric dipole transitions between the lowest

rotational states of HD are allowed and the transition energy can, in principle, be measured directly.

In Table IV we present values of all significant contributions to the lowest J = 0→ 1, 2 transition

energies and compare with the available experimental data. These data are not very accurate,

but we think, once they are improved, this comparison would be a significant test of the present

molecular structure theory.
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The ionization potential (IP) of HD can be related to its dissociation energy by

IP = D0(HD)− E(H)−D0(HD+). (52)

Since the dissociation energy of HD+, as well as the total energy of the hydrogen atom are known

very accurately, we can evaluate IP with an accuracy adequate to that of D0(HD). Up to date

values ofE(H) = −109 678.7717 cm−1 andD0(HD+) = 21 516.069 60 cm−1 have been compiled

by Liu et al. [3] on the basis of current fundamental constants [17] and calculations by Korobov

[39, 40]. IP computed for HD from the above formula amounts to 124 568.4849(10) cm−1 with

the uncertainty transfered directly from D0.

IX. CONCLUSION

The high accuracy of 0.001 cm−1 for the theoretically predicted dissociation energy of H2

and isotopomers has been achieved due to the recent progress made in two directions. The first

one, enabled a complete treatment of the leading QED effects. In particular, the approach to

effectively calculate the many electron Bethe logarithm and mean values of singular operators,

like the Araki-Sucher term, has been developed [1, 41, 42]. The second direction, indispensable to

reach this accuracy, is the nonadiabatic perturbation theory [10, 11, 24], which enables a rigorous

approach to the finite nuclear mass effects beyond the adiabatic approximation. However, an

accurate nonadiabatic correction to relativistic contribution still remains to be evaluated.

In comparison of theoretical predictions with recent experimental results we observe a very

good agreement for dissociation energies of H2 and D2, and a small discrepancy of 0.045(16) cm−1

for HD. Moreover, our predictions for transition energies, such as J = 0 → 1 and J = 0 → 2

(v = 0) are much more accurate than present experimental values for HD. Therefore, a new

measurement with an increased precision of dissociation and transition energies of HD molecule

would be very desirable.
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TABLE I: Components of D0 (in cm−1) for the v = 0, J = 0 state of HD. Uncertainties of α2 and α3 come

from the neglect of nuclear recoil corrections and that of α4 from the approximate formula.

Component D0

BO 36 401.9332(1)

Adiabatic correction 4.2509(1)

Nonadiabatic correction 0.3267(2)

α0 subtotal 36 406.5108(2)

α2 correction −0.5299(4)

α2 finite nuclear size correction −0.0001(0)

α0+α2 subtotal 36 405.9809(5)

α3 correction −0.1964(2)

α4 correction −0.0016(8)

Total 36 405.7828(10)
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TABLE II: Comparison of theoretical and experimental results for D0 (in cm−1) of the v = 0, J = 0 state

of HD. δ is a difference to our result.

Component D0 δ

This work 36 405.7828(10)

Theory

Stanke et al. (2009) [9] 36 405.7814a −0.0014

Wolniewicz (1995) [43] 36 405.787 0.004

Kołos and Rychlewski (1993) [29] 36 405.763 −0.020

Kołos, Szalewicz, Monkhorst (1986) [28] 36 405.784 0.001

Wolniewicz (1983) [27] 36 405.73 0.05

Bishop and Cheung (1978) [8] 36 405.49 −0.29

Experiment

Zhang et al. (2004) [38] 36 405.828(16) 0.045

Balakrishnan et al. (1993) [37] 36 405.83(10) 0.05

Eyler and Melikechi (1993) [35] 36 405.88(10) 0.10

Herzberg (1970) [33, 34] 36 406.2(4) 0.4

a The original D0 = 36 405.9794 cm−1 from [9] has been augmented by a sum of our α3 and α4 QED

corrections equal to −0.1980 cm−1.
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TABLE III: Comparison of theoretical and experimental results for the energy difference ∆E (in cm−1)

between v = 0 and v = 1 rotationless states of HD. δ is a difference to our result.

Source ∆E δ

This work 3632.1604(5)

Theory

Stanke et al. (2009) [9] 3632.1614a 0.0010

Wolniewicz (1995) [43] 3632.161 0.001

Kołos and Rychlewski (1993) [29] 3632.161 0.001

Experiment

Stanke et al. (2009) [9] 3632.1595(17)b −0.0009

Rich et al. (1982) [44] 3632.159(6)c −0.001

McKellar et al. (1976) [45] 3632.152(9)c −0.008

a The original ∆E = 3632.1802 cm−1 from [9] has been augmented by a sum of our α3 and α4 QED

corrections equal to −0.0187 cm−1.

b 1σ uncertainty.

c 3σ uncertainty.
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TABLE IV: Components of theoretically predicted transition energy ∆E between J = 0 and J = 1, and

between J = 0 and J = 2 rotational levels of the ground vibrational state (v = 0) of HD. All entries in

cm−1.

Component ∆E(0→ 1) ∆E(0→ 2)

BO 89.270 629 267.196 840

Adiabatic correction −0.036 086 −0.107 842

Nonadiabatic correction −0.007 782(6) −0.023 287(19)

α0 subtotal 89.226 761(6) 267.065 711(19)

α2 correction 0.001 948(2) 0.005 813(5)

α0+α2 subtotal 89.228 709(6) 267.071 524(20)

α3 correction −0.000 771(1) −0.002 303(2)

α4 correction −0.000 007(4) −0.000 018(9)

Total 89.227 933(8) 267.069 205(22)

Experiment, [46] and [47] 89.23 267.086(10)
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