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Abstract

We report on highly accurate calculations of Born-Oppenheimer potentials
for excited nΣ+ states of the hydrogen molecule for all possible combi-
nations of singlet/triplet and gerade/ungerade symmetries up to n = 7.
A relative accuracy of 10−10 (0.00002 cm−1) or better is achieved for all
the internuclear distances and all the excited states under consideration –
an improvement with respect to the best results available in the literature
by at least 6 orders of magnitude. Presented variational calculations rely
on efficient evaluation of molecular integrals with the explicitly correlated
exponential basis in arbitrary precision arithmetics.
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1. Introduction

Ab initio Born-Oppenheimer potentials have proven to be invaluable
for the interpretation of spectroscopic data. Currently, transitions be-
tween rovibrational levels of X 1Σ+

g ground state for hydrogen molecule
isotopologues are a subject of exhaustive investigations both from experi-
mental [1, 2, 3] and theoretical [4, 5] standpoints, reaching the accuracy of
10−4 cm−1. On the contrary, electronically excited states of the hydrogen
molecule are much less studied, especially by theoretical methods. So far,
calculations of Born-Oppenheimer (BO) potentials for excited Σ+ states of
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H2 were performed with full CI method [6, 7, 8], variational calculations
with generalized GTOs [9], variational calculations with explicitly corre-
lated gaussians (ECG) [10, 11] and more recently with free-complement
local-Schrödinger-equation method (FC-LSE) [12]. The most accurate to
date are variational calculations in an explicitly correlated exponential ba-
sis by Wolniewicz and co-workers [13, 14, 15, 16, 17] and by Komasa et al.
[10, 11] which, remarkably have remained unsurpassed for the last 20 years.

Among the plethora of H2 excited states, of particular importance and
long-standing interest is the B 11Σ+

u state, the lowest of 1Σ+
u symmetry.

It is easily accessible for spectroscopic measurements, through the allowed
electric dipole transition from the X 11Σ+

g ground state, therefore, it can
be measured very accurately and serve as a calibration marker at XUV fre-
quencies. Likewise, energies of states such as EF 21Σ+

g , GK 31Σ+
g , B 11Σ+

u

and B′ 21Σ+
u are of great spectroscopic interest, because they comprise inter-

mediate states in multiphoton processes, which are crucial for investigations
of doubly excited states, recognized as resonant states involved in the dy-
namics of preionization and predissociation [18, 19, 20].

Moreover, BO potentials comprise an essential input for Multichannel
Quantum Defect theory analyses of Rydberg states, where an accuracy of
BO energies better than 0.001 cm−1 is required [21, 22], especially for the
highly excited states, despite their minor spectroscopic relevance due to
their experimental inaccessibility from the ground state. Accurate poten-
tials are also important for studying gerade/ungerade mixing effects [23] be-
yond the BO approximation. Ultimately, accurate BO potentials may serve
as a useful benchmark for less precise computational methods, electron-
ion scattering experiments and numerous other applications [24, 25, 26].
We note that many previous calculations often come without estimation of
uncertainties, making definitive comparisons rather difficult.

2. Method

The variational BO potentials reported in this work are obtained with
the use of explicitly correlated exponential functions [27] of the form,

ΨΣ =
∑
{n}

c{n} (1± PAB) (1± P12) Φ{n}, (1)

where PAB permutes the nuclei A and B, P12 interchanges the two elec-
trons and appropriate ± signs are chosen to fulfil the symmetry criteria for
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gerade/ungerade and singlet/triplet states. Linear coefficients c{n} form an
eigenvector, which is a solution of a secular equation. Trial wavefunctions
Φ{n} are given by,

Φ{n} = e−y η1−x η2−u ξ1−w ξ2rn0
12 η

n1
1 ηn2

2 ξn3
1 ξn4

2 , (2)

where ηi and ξi are proportional to confocal elliptic coordinates and are
given by ηi = riA − riB, ξi = riA + riB, y, x, u and w are real, nonlinear
parameters subject to variational minimization. The index {n} denotes
{n} = (n0, n1, n2, n3, n4) and enumerates all powers of coordinates allowed
by symmetry restrictions, with an additional constraint,

4∑
j=0

nj ≤ Ω, (3)

which determines the total size of the basis, once Ω is set. Analogously to
the Hylleraas basis, a trial wavefunction is uniquely characterized by the set
of {n} and nonlinear parameters, which are common to all trial functions
within a given sector.

In this work we use two sectors, each with its own nonlinear parameters,
and with no additional symmetry restrictions. With Ω determining the to-
tal size of the first sector, the second sector’s principal number is chosen
as Ω − 2, a heurestic optimum for most cases. In previous works [29, 30]
concerning ground X 1Σ+

g or b 3Σ+
u states the James-Coolidge (x = y = 0)

or generalized Heitler-London (x = −y, u = w) was utilized. The reason-
ing behind the more general basis used in this work stems from a fairly
universal trend of wavefunctions being composed predominantly of (1s, n′l)
configurations with high values of n′ and l [6, 7, 8, 31], where in the language
of atomic orbitals, one electron is highly excited. This implies substantial
asymmetry, x 6= y and u 6= w, and demands a more flexible basis to ac-
curately represent the wavefunction. In addition, the contribution of ionic
configuration (1s′, 1s′) grows more significant not only for singlet [16, 6, 7]
but also for triplet symmetry [8], and there are states in the 1Σ+ mani-
folds where it is essential [28] for significantly broad ranges of internuclear
distances.

Thirdly, in contrast to the X 1Σ+
g and b 3Σ+

u states, BO potentials for
higher n exhibit much more complicated structure – a result of mutual
avoided crossings and resonant interaction with the H+H− configurations,
often resulting in double minima or bumps, rather than a smooth, single
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minimum Morse-like curve. This, in turn, implies the presence of strong
configuration mixing in some regions of R, unlike the case of well-separated
X 1Σ+

g and b 3Σ+
u states.

Justification for introducing a second sector into the basis set follows
from the presence of distinct scales of motion, namely, around the nuclei
and another for larger distances [32, 33]. Many previous calculations utilize
specific structure of the basis, tailored for a single state or symmetry, often
with a priori knowledge about the chemical bond character or atomic or-
bitals approximation. Here, we emphasize the universality of our approach –
nonlinear parameters for both sectors are thoroughly optimized in an unre-
stricted Kolos-Wolniewicz basis [28, 34] separately for each state and every
internuclear distance. This basis is capable of accurately representing ionic
and covalent structure with correct long-range asymptotics and short-range
vicinities of interparticle cusps, as well as complicated radial nodes, which
are expected in highly excited states.

A crucial point of our computational method is that it relies on the fact
that all the necessary matrix elements of the nonrelativistic Hamiltonian,

H = −∇
2
1

2
− ∇

2
2

2
− 1

r1A

− 1

r1B

− 1

r2A

− 1

r2B

+
1

r12

+
1

rAB
, (4)

can be readily constructed as a linear combination of f -integrals, which
are given by differentiation with respect to the corresponding nonlinear
parameter, with r = rAB,

f(r, n0, n1, n2, n3, n4) =
(−1)n0+n1+n2+n3+n4

n0!n1!n2!n3!n4!

∂n0

∂wn0
1

∣∣∣∣
w1=0

∂n1

∂yn1

∂n2

∂xn2

∂n3

∂un3

∂n4

∂wn4
f(r) ,

(5)

of f(r), called the master integral [27],

f(r) = r

∫
d3r1

4π

∫
d3r2

4π

e−w1 r12−u (r1A+r1B)−w (r2A+r2B)−y (r1A−r1B)−x (r2A−r2B)

r12 r1A r1B r2A r2B

.

(6)
The master integral (6) satisfies the differential equation [35, 36],[

σ4
d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

]
f(r) = F (r), (7)
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where

σ0 = w2
1 (u+ w − x− y) (u− w + x− y) (u− w − x+ y) (u+ w + x+ y)

+16 (w x− u y) (ux− w y) (uw − x y),

σ2 = w4
1 − 2w2

1 (u2 + w2 + x2 + y2) + 16uw x y,

σ4 = w2
1 , (8)

and F (r) is an inhomogeneous term, which involves exponential functions,
exponential integral functions Ei, and the natural logarithm, with nonlinear
parameters as their arguments, see Eq. (7) of Ref. [27] for explicit expres-
sion.

The differential equation (7) entails that the master integral f(r) and
all its derivatives with respect to nonlinear parameters have a Taylor-like
expansion in r,

f(r) =
∞∑
n=1

[
f (1)
n (ln(r) + γE) + f (2)

n

]
rn , (9)

where γE is the Euler-Mascheroni constant. Derivation of efficient recursion
relations for evaluation of coefficients f

(1)
n and f

(2)
n constitutes an essential

step towards evaluating f -integrals with arbitrary y, x, u and w nonlinear
parameters and arbitrary precision, see Ref. [27] for more details.

Once all matrix elements are constructed in terms of f -integrals, the
electronic energy is found as the nth lowest eigenvalue by refining an ini-
tial guess with inverse iteration method. This step is the most time con-
suming part of our computational method, because it scales as O(N3),
where N is the total size of the basis. Recently, interest in Aasen’s algo-
rithm [37] for indefinite matrix factorization has been revived due to a novel
communication-avoiding variant [38], suitable for efficient parallelization on
modern computer architectures.

In our calculations a custom implementation of this algorithm inspired
by the PLASMA library [39] was utilized with custom vectorization of quad-
double arithmetics based on Bailey’s quad-double precision algorithms [40].
Incorporation of both the communication-avoiding variant of Aasen’s factor-
ization and vectorized quad-double arithmetics constitutes a very efficient
implementation of dense matrix factorization – an essential component of
the inverse iteration method with nonorthogonal bases. Extension to octu-
ple precision arithmetics has proven sufficient to contend with near-singular
matrices, ill-conditioning of which can be attributed to the presence of large
powers of the r12 coordinate in the basis.
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3. Results and discussion

Reported BO energies are calculated for all possible symmetries of the
Σ+ manifold: n1Σ+

g , n3Σ+
g , n1Σ+

u , and n3Σ+
u , with n ≤ 7 (26 states in total),

with the exception of the ground X 1Σ+
g and b 3Σ+

u states, which were calcu-
lated elsewhere [29, 30] using special cases of the KW basis. The results are
obtained on a grid of internuclear distances resembling logarithmic spacing
in the range R = 0.7− 20.0 au (72 points per state in total). It is sampled
with denser spacing of 0.1 au in the region of R = 4.0 − 6.0 au, where po-
tential curves demonstrate strong avoided crossing features and are subject
to rapid changes as a function of R.

H(1s) + H(2l)

H(1s) + H(3l)

R (au)

E
 (

au
)

Figure 1: BO potentials for n1Σ+
g states, up to n = 7. In this scale the X 11Σ+

g ground
state is not visible. The GK 31Σ+

g with H 41Σ+
g and P 51Σ+

g with O 61Σ+
g switch char-

acter from united atom 3dσ and 4dσ configurations to 3s and 4s, respectively, exhibiting
< 1 cm−1 splitting around R = 1.0 au [13].

Numerical results for BO energies obtained in this work, together with
uncertainties originating purely from extrapolation to the complete basis set
(CBS) limit are presented in Tables S1 – S26 in the Supplementary Mate-
rial [45]. Additional quantities such as dE/dR, −〈∇2

1〉/2 and −〈∇1 · ∇2〉/2
along with E itself are reported in raw format of the Supplementary Ma-
terial [46]. Unsurprisingly, convergence for triplet states is better than for
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singlet, because the requirement of antisymmetry of total fermionic wave-
function generally results in less electron-electron correlation – well-known
phenomenon of correlation hole.

Table 1: Exemplary values of optimal nonlinear parameters for states and internuclear
distances with high ionic component.

state R
sector 1 sector 2

y x u w y x u w

B 11Σ+
u 10.0 0.047 -0.447 0.338 0.468 -0.949 -1.263 1.052 1.226

HH̄ 41Σ+
g 12.0 0.000 -0.446 0.263 0.506 -0.807 -0.807 1.068 1.068

61Σ+
u 15.0 0.079 -0.490 0.163 0.493 -0.863 -0.727 0.847 0.520

71Σ+
g 20.0 -0.357 -0.858 0.276 0.692 -0.428 0.164 0.445 0.146

From inspection of potential curves in Figures 1 and 3 to 5, one evident
universal feature for all the considered states is the presence of principal
minimum around 2 bohrs. Existence of a second minimum is mainly driven
by the interaction of energy levels with purely ionic H+H− system. A modest
drop in convergence rate can be noticed for the states: EF 21Σ+

g , HH̄ 41Σ+
g ,

71Σ+
g and B 11Σ+

u , B′′B̄ 31Σ+
u , and 61Σ+

u in regions of large R, where this
interaction is most prevalent and configurations mix markedly. This ob-
servation is consistent with the optimal values that nonlinear parameters
attain, see Table 1 for exemplary values. For detailed analysis of ionic and
covalent components we refer to Ref. [6, 7]. In Table 2 we present exemplary
values of optimal nonlinear parameters for n = 7 states. Evident asymme-
try between parameters of first and second electron justifies the use of more
flexible KW basis over its more symmetric special cases. We conjecture that
the same basis type can be used as a remedy for the convergence rate of
ionic states if our basis is augmented with a third scale sector, improving the
representation of electron correlation, when both are localized around the
same nucleus, similarly as it was performed in the calculations of HeH+[41]
BO potential and recognized as a feature of in-out electronic correlation in
one-center, two-electron calculations of He [33].

All the considered states dissociate as H(1s) + H(nl) with energies tend-
ing to the sum of its dissociation products as R →∞, see Figures 1 and 3
to 5. On the other hand, in the united atom limit, R → 0, electronic con-
figuration should approach those of He. Straightforward observation that
the order of energies of atomic configurations He[1,3L(1snl)] is in general
different than corresponding H(1s) + H(nl) dissociation products, together
with well-known theorem that the BO potential curves with the same sym-
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Table 2: Exemplary values of optimal nonlinear parameters for n = 7 at various in-
ternuclear distances. Notice very small values of y,u in sector 1 and x,w in sector 2,
corresponding to very diffuse (high n) highly excited atomic orbitals.

state R
sector 1 sector 2

y x u w y x u w

71Σ+
g 2.0 0.000 -0.423 0.097 0.821 -0.080 -0.122 0.637 0.262

73Σ+
g 4.0 0.000 -0.405 0.097 0.638 0.080 0.278 0.624 0.114

71Σ+
u 6.0 -0.061 -0.514 0.146 0.619 -0.285 0.080 0.578 0.080

73Σ+
u 8.0 0.047 -0.449 0.105 0.553 0.436 0.000 0.522 0.267

metry cannot cross, implies that the character of the states must change
in the region of intermediate R. The first qualitative approach aiming to
predict such configuration mixing in terms of so-called correlation diagrams
can be attributed to Mulliken [31], while a detailed discussion on config-
uration mixing and matching of Σ+ manifolds electronic densities to the
corresponding atomic orbitals was presented in the meticulous analysis by
Corongiu and Clementi [6, 7, 8]. Here, we supplement this discussion with
the help of Figure 2, where we present accurate splittings between singlet
and triplet energies approaching the united atom configuration, including
(1snf) states which are split by values as small as ∼ 10−8 au.

Table 3: Comparison of calculated BO energies (hartrees) for selected states at inter-
nuclear distance of 2 bohrs (vicinity of first minimum). Long dash indicates no data
available for given method. Underlined digits present an improvement over previous
most accurate result.

Method Ref. EF 21Σ+
g HH̄ 41Σ+

u 7 3Σ+
u

Full CI [6, 7, 8] -0.717 68 -0.634 09 -0.618 97
FC-LSE [12] -0.717 724 7(96) -0.634 105(21) -0.618 207(64)
GGTOs [9] — -0.634 098 15 —

ECG [11] -0.717 715 240 — —
KW [14],[16] -0.717 715 096 -0.634 101 622 0 —
KW this work -0.717 715 279 148 71(3) -0.634 101 640 058 24(1) -0.618 969 968 931(3)

For the sake of comparison with the most recent integral-free FC-LSE
calculations by Nakashima and Nakatsuji [12], we refer to the definition of
H-square, see Eq. (24) of Ref. [43],

σ2
FC−LSE = 〈Ψ| (H − E)2 |Ψ〉, (10)

which is utilized in Ref. [12] as a measure of wavefunction (and energy)
8



He[P(1s 2p)] 
He[P(1s 3p)] 
He[P(1s 4p)] 
He[P(1s 5p)] 

He[F(1s 4f )] 
He[F(1s 5f )] 

R (au)

(a
u

)

Figure 2: Energy splittings between singlet and triplet nΣ+
u states at small internuclear

distances. Labels on the y axis indicate values of energy differences between helium
1L(1snl) and 3L(1snl) states (here with L =P,F for the states under consideration).
Dotted lines represent tentative assignments from calculated splittings to corresponding
differences between united atom (R→ 0) energies from Ref. [42], which are in agreement
with [7, 8].

accuracy. For convenience, we define a relative ratio p as,

p =
Evar − EFC−LSE

σ2
FC−LSE

, (11)

where Evar denotes the variational energy result as obtained in this work
and EFC−LSE refers to results of the FC-LSE method from Ref. [12]. One
observes, that in the case of the highly excited 73Σ+

u state, p is much greater
than 1 for the majority of points and varies significantly (up to ∼ 90) along
with internuclear distance with no visible trend. In contrast, another highly
excited states available for the reference, such as 61Σ+

u or 71Σ+
g , have p > 1

consistently in the region R = 2.0 − 6.0 au. For n > 4 and all symme-
tries, systematically, more than half of the points fall outside the range of
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H(1s) + H(2l)

H(1s) + H(3l)

H(1s) + H(4l)

R (au)

E
 (

au
)

Figure 3: BO potentials for n3Σ+
g states, up to n = 7. Pairs of states 2 − 3, 4 − 5 and

6−7 all anticross around the R = 2.0 au minima, conjointly changing the character from
united atom 3dσ, 4dσ, 5dσ to 3s, 4s, 5s, respectively.

confidence for triplet states, if H-square is given the interpretation of 1σ
confidence interval. Therefore, we conclude that H-square vastly underes-
timates the actual uncertainty of wavefunctions (and of energies) obtained
in Ref. [12], especially in case of triplet states and for large distances. Not
surprisingly, a detailed comparison in Table 3 of numerical results with their
uncertainties for all the previous calculations for selected excited states at
given distance of R = 2.0 au indicates that almost no previous calculations
were able to correctly estimate numerical uncertainties.

4. Conclusions

We have demonstrated that a relative accuracy of 10−10 or better can
be reached for BO energies of all the excited nΣ+ states of H2 up to n = 7,
with at most 18 000 basis functions of explicitly correlated exponential basis.
With a two-sector unrestricted Kolos-Wolniewicz basis, a rapid, exponen-
tial convergence towards the CBS limit is attained, even for exceptionally
complicated electronic configurations of high singly-excited orbitals.
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H(1s) + H(2l)

H(1s) + H(3l)

H(1s) + H(4l)

R (au)

E
 (

au
)

Figure 4: BO potentials for n1Σ+
u states, up to n = 7.

Adiabatic corrections are known to be of significant magnitude [16] and
this work paves the way towards their accurate evaluation with method
similar to that presented in Ref. [44]. Ultimately, because the results ob-
tained in this work are at least 6 orders of magnitude more accurate than
any other available in the literature, we believe that they will serve as a
useful benchmark for less accurate computational methods. Moreover, our
two-body two-center integrals with exponential functions can be used for
any two-center systems, giving the possibility of achieving high-precision
results for an arbitrary diatomic molecules.

Supplementary Material

For the complete list of our numerical results we refer to Tables S1–S6 for
the BO energies of the 2 1Σ+

g − 7 1Σ+
g states, Tables S7–S13 for the BO

energies of the 1 3Σ+
g − 7 3Σ+

g states, Tables S14–S20 for the BO energies
of the 1 1Σ+

u − 7 1Σ+
u states, Tables S21–S26 for the BO energies of the

2 3Σ+
u − 7 3Σ+

u states in the Supplementary Material [45].
In addition, dE/dR, −〈∇2

1〉/2 and −〈∇1 ·∇2〉/2 along with energies are
reported in raw text format of the Supplementary Material [46].
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H(1s) + H(3l)

H(1s) + H(3l)

H(1s) + H(4l)

R (au)

E
 (

au
)

Figure 5: BO potentials for n3Σ+
u states, up to n = 7, partial curve for b 13Σ+

g from Ref.
[30] is shown for reference.
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