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We perform highly accurate calculations of the leading order QED correction to the ground electronic state
of molecular hydrogen. Numerical results are obtained for a grid of the internuclear distances R = 0− 10 a.u.
with the relative precision of about 10−8. The major numerical uncertainty of previous QED results [K. Piszcza-
towski et al., JCTC 5, 3039 (2009)] has been eliminated. Nevertheless, the discrepancy with measurements
in HD at the level of 1.9 σ persists.

I. INTRODUCTION6

Quantum electrodynamic effects (QED) in atomic and molecular spectra are very difficult to determine computationally,7

despite the fact that the exact formulas are well known [1]. For this reason, they are often only roughly estimated based on8

hydrogenic results [2]. However, to obtain transition energies for few-electron systems with accuracy comparable to modern9

spectroscopic measurements, a high-precision computational method that accounts for a complete leading-order QED has to10

be employed. So far, such calculations have been performed only for atoms with up to four electrons [3–12], and only for the11

simplest molecule, i.e., two-electron molecular hydrogen (H2 and its deuterated and tritiated isotopologues) [13].12

Recent measurements of several rovibrational P- and R-branch transitions in the fundamental and overtone bands of the HD13

molecule have reached unprecedented sub-MHz uncertainty [14–23]. It exceeds by at least an order of magnitude the accuracy14

of theoretical predictions including relativistic and QED contributions [24–28]. Moreover, systematic discrepancies of 1.4-1.9σ15

are observed between calculated and experimental values, the origin of which is currently not clear. To improve theoretical16

predictions, at first, it is necessary to determine more precisely the leading mα5 QED correction [13]. Its numerical uncertainty17

is comparable to the estimate of unknown finite nuclear mass (nonadiabatic) QED effects. Therefore, the development of a18

computational method that significantly reduces such numerical inaccuracies is an indispensable step towards advancing the19

present theory of the hydrogen molecule to a higher level of accuracy.20

In this work we perform high-precision calculations of leading mα5 QED correction in the ground electronic state of a hydro-21

gen molecule, using the Born-Oppenheimer (BO) approximation, thus omitting the nonadiabatic effect. Our goal is to improve22

the accuracy of previous results [13] by at least two orders of magnitude, including the most computationally demanding Bethe23

logarithm term. To accomplish this, we employ explicitly correlated Gaussian (ECG) basis functions and perform extensive24

variational optimization over all nonlinear parameters. The decisive advantage of the ECG method is that the underlying integra-25

tions are manageable and very fast in numerical evaluation due to the compact formulas for matrix elements of the nonrelativistic26

Hamiltonian, and they involve only well-known error function and elementary ones. Even though Gaussian functions have the27

drawback of improper short-range form and fail to correctly describe the Kato cusp, it can be overcome with a sufficiently large28

and well-optimized ECG basis set together with dedicated regularization techniques that accelerate the convergence of singular29

operators. Furthermore, additional ECG integrals that arise as a consequence of the regularization can be efficiently evaluated30

by means of dedicated numerical quadrature. Increasing the accuracy of the Bethe logarithm requires also the development of31

efficient optimization algorithms, employing larger bases and a denser grid in the Schwartz integral method [5] evaluated for a32

wide range of internuclear distances. In addition, it is important to derive leading asymptotic terms, which are crucial for fitting33

the contours in numerical integration. All this considerable effort is vital in laying the foundation for the future determination34

of non-adiabatic QED effects, which are the bottleneck limiting the current accuracy of theoretical predictions for rovibrational35

energy levels of hydrogen molecule isotopologues.36

II. LEADING ORDER QED CORRECTION37

In this work we assume the adiabatic approximation (clamped nuclei), so that the total molecular wavefunction Ψ is a product38

of the electronic and nuclear parts,39

Ψ = χ(R⃗)ϕ(r⃗1, r⃗2;R). (1)
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The leading mα5 QED correction

E(5,0) = ⟨χ|E(5,0)(R)|χ⟩ (2)

to the molecular level is obtained by averaging the potential E(5,0)(R) of Eq. (3) with the nuclear wavefunction χ; see [28] for
details. The QED potential E(5,0) for a two-electron diatomic molecule can be compactly represented as [1],

E(5,0)(R) =
4

3

(19
30

− 2 lnα− ln k0

)∑
i,X

ZX⟨δ3(r⃗iX)⟩

+
(164
15

+
14

3
lnα

)
⟨δ3(r⃗12)⟩ −

14

3

1

4π

〈 1

r312

〉
ε

(3)

where R is the internuclear distance, ZX is the charge of nucleus X , the expectation value ⟨. . .⟩ stands for integration over
electronic degrees of freedom with the nonrelativistic wave function ϕ, ln k0 is the Bethe logarithm [29] (see Eq. (5) below),
and the last term is the Araki-Sucher correction [30, 31] with ⟨r−3

ij ⟩ε denoting the following limit:

〈
1

r3ij

〉
ε

≡ lim
ε→0

[〈
Θ(rij − ε)

r3ij

〉
+ (γE + ln ε)

〈
4πδ(r⃗ij)

〉]
. (4)

The symbol γE denotes the Euler-Mascheroni constant, and Θ(x) is the Heaviside step function.40

III. BETHE LOGARITHM41

At the level of Born-Oppenheimer approximation, Bethe logarithm enters as the R-dependent electronic quantity, defined as42

the following ratio of matrix elements [29],43

ln k0 ≡ ⟨∇⃗(H− E) ln(2(H− E))∇⃗⟩
⟨∇⃗(H− E)∇⃗⟩

, (5)

with the electronic Hamiltonian,44

H ≡ −1

2

∑
i

∇2
i −

∑
i,X

ZX

riX
+

1

r12
+

ZAZB

R
, (6)

and E its lowest energy eigenvalue,45

Hϕ(r⃗1, r⃗2;R) = E(R)ϕ(r⃗1, r⃗2;R). (7)

It can be represented in terms of the integral [11, 12],46

ln k0 =
1

D

∫ 1

0

dt
f(t)− f0 − f2 t

2

t3
(8)

with47

f(t) = −
〈
∇⃗ k

k +H− E ∇⃗
〉
, t =

1√
1 + 2 k

. (9)

In the BO approximation, the current operator is purely electronic,

∇⃗ = ∇⃗1 + ∇⃗2 , (10)

and the denominator

D = 2π
∑
i,X

⟨δ3(r⃗iX)⟩, (11)
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where the index i runs over electrons and X over nuclei. The function f(t) in Eq. (8) has the following expansion around t = 0,48

f(t) = f0 + f2 t2 + f3 t3 + (f l
4 ln t+ f4) t

4 +O(t5) , (12)

with the coefficients49

f0 = −⟨∇⃗2⟩, f2 = −2D , f3 = 8D, f l
4 = 16D,

f4 = 4

[∑
i,X

〈 1

r4iX

〉
ε
+

∑
(i,X),(j,Y )
(i,X )̸=(j,Y )

〈 r⃗iX r⃗jY
r3iXr3jY

〉]

− 2D
(
1− 4(1 + ln 4)

)
, (13)

where 〈
1

r4ij

〉
ε

≡ lim
ε→0

[〈
Θ(rij − ε)

r4ij

〉
− ⟨4πδ(r⃗ij)⟩

ε
(14)

+ 2

〈
4πδ(r⃗ij)

∂

∂rij

〉
(γE + ln ε)

]
.

In the early days of quantum electrodynamics the calculation of the Bethe logarithm for systems beyond hydrogen-like atoms,
even with a few percent accuracy, emerged as a challenging task [32–34]. In the approach presented by Schwartz [5, 35, 36]
the evaluation of f(t) was reformulated into the second-order problem of finding ϕ⃗1 satisfying the following inhomogeneous
differential equation:

(E −H − k)ϕ⃗1 = ∇⃗ϕ, (15)

so that the sum over states f(t) is simply given by ϕ⃗1 as

f(t) = k⟨ϕ⃗1|∇⃗|ϕ⟩. (16)

This is equivalent to finding a stationary value of the following Ritz functional

w(k) = 2⟨ϕ|∇⃗|ϕ⃗1⟩+ ⟨ϕ⃗1|E − H − k|ϕ⃗1⟩, (17)

which with the stationarity condition

δw(k) ≡ 2⟨ϕ|∇⃗|δϕ⃗1⟩+ 2⟨ϕ⃗1|E − H − k|δϕ⃗1⟩ = 0 (18)

recovers (15) due to the arbitrariness of variation δϕ⃗1. Such a formulation allows for variational computation of w(k). For the50

sake of evaluating the integral (8), the matrix element (16) has to be minimized on a grid of values of k, bearing in mind the51

manifest dependence of ϕ⃗1 on k.52

IV. METHOD53

For the purpose of variational calculations of the resolvent, we follow with the decomposition of f(t), into f∥(t) and f⊥(t),54

which emerges from the decomposition of ∇⃗,55

∇⃗ = n⃗ (n⃗ · ∇⃗)− n⃗× (n⃗× ∇⃗). (19)

Namely,56

f(t) = f∥(t) + f⊥(t), (20)

f∥(t) = −
〈
Q∥

k

k +H− E Q∥

〉
,
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f⊥(t) = −
〈
Q⃗⊥

k

k +H− E Q⃗⊥

〉
, (21)

where57

Q∥ = n⃗ · ∇⃗, (22)

Q⃗⊥ = n⃗ × (n⃗× ∇⃗). (23)

Because the ground state is of Σ+
g symmetry, this entails dipole connected intermediate states of Σ+

u and Π−
u symmetry in the58

resolvents in f∥ and f⊥, respectively.59

The external wavefunction ϕ is expanded in ECG basis functions; see Eq. (27) below. For a series of basis sizes N ∈60

{64, 128, 256, 512, 768, 1024} and for 55 values of internuclear distance R in the range 0.05−10 a.u., we have minimized f∥(t)61

and f⊥(t) on a uniform grid (∆t = 0.01). We followed the heuristic approach of Refs. [37, 38] and set the size of intermediate62

state basis as N ′ = 2N for t ≤ 0.1 and N ′ = 3
2N otherwise.63

To efficiently evaluate the integral (8) we split the integration domain into two regions: t ∈ ⟨0, tcrit⟩ and t ∈ (tcrit, 1⟩. The64

high-t region is free of singularities, and f(t) can be efficiently integrated numerically. For this purpose we have optimized65

f(t > tcrit) on a uniform t-grid with the spacing of 0.01. Because f(1) satisfies the generalized Thomas-Reiche-Kuhn (TRK)66

sum rule [39],67

⟨∇⃗(H− E)−1∇⃗⟩ = −3, (24)

we have utilized it in practical computations to deduce the completeness of the intermediate state basis and estimate the numerical68

uncertainty of f(t). Then, the integral is evaluated by means of interpolating the numerical data with a high-order polynomial69

(typically of order 18). With the largest bases considered, the uncertainty resulting from numerical integration in the high-t70

region is of order 10−11, which is a few orders of magnitude less than the uncertainty coming from the integration of the low-t71

region, the latter being of critical importance for high accuracy of the final value of ln k0.72

Primarily, in low-t region a strong numerical cancellation between f(t) and leading asymptotic terms f0 and f2t
2 occurs. We73

emphasize that for high photon momenta (t → 0) the integrand in the integral definition of ln k0, see Eq. (8), is dominated by74

∼ t−3, so that two leading terms of Taylor expansion have to be subtracted from f(t) to render it integrable. For that reason,75

f(t < tcrit) cannot be evaluated with high-accuracy in the same way as in high-t region, and we resort to elementary, term-76

by-term, analytical integration of the asymptotic expansion (12). Nonetheless, to achieve a highly precise final value of ln k0,77

inclusion only of known terms (up to ∼ t4) is insufficient and higher-order coefficients of low-t asymptotics of f(t) have to be78

added. They are determined by fitting them from the numerical data from the range (tcut, tcrit) as,79

δf(t) ≡ f(t)−
(
f0 + f2 t2 + f3 t3 + (f l

4 ln t+ f4) t
4
)
, (25)

with the functional form of fitted expansion deduced from the known behavior of f(t) for the hydrogen atom [40, 41],80

δf(t)

t5
=

M∑
m=0

tm(fm + f l
m ln t), (26)

with fixed f l
m = 0 for m even. For very low values of t a tcut cutoff discards numerical points f(t < tcut), which are of81

insufficient numerical accuracy, due to the presence of t−3 acting as a weighting factor greatly enhancing the demand on the82

numerical accuracy of f(t) as t → 0. Resultantly, values of f(t < tcut) have to be discarded completely and cannot be used83

even for the purpose of fitting higher order terms of low-t asymptotics.84

Ultimately, tcut, tcrit, and M are adjustable parameters, which are tuned with the purpose of reaching the final value of85

ln k0, such that it presents weak sensitivity to their change. Fluctuations of ln k0 due the change of those parameters around86

their optimal values serve as an uncertainty estimation. Typically, optimal values lie in the range tcut ∈ (0.02, 0.06), tcrit ∈87

(0.12, 0.23), and M ∈ (2, 6), with pronounced tendency of preffered larger tcrit whenever higher fit order M is demanded.88

A. ECG method89

In our calculations we utilize an explicitly correlated Gaussian (ECG) basis,

ϕ =
∑
i

ciϕi(r⃗1, r⃗2),

ϕi = (1± PA↔B)(1± P1↔2)
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× e−a12r
2
12−a1Ar21A−a1Br21B−a2Ar22A−a2Br22B . (27)

Direct inclusion of the interelectronic distance r12 in the exponent of trial wavefunction renders it a two-particle, two-center
geminal, explicitly correlated basis. The primary virtue of the ECG basis is that all the requisite integrals for calculations of
nonrelativistic energy and f(t) can be evaluated very efficiently. All required matrix elements can be expressed in terms of linear
combinations of the following ECG integrals:

I(n1, n2, n3, n4, n5) ≡
∫

d3r1
π3/2

∫
d3r2
π3/2

rn1

1Ar
n2

1Br
n3

2Ar
n4

2Br
n5
12 (28)

× e−a1Ar21A−a1Br21B−a2Ar22A−a2Br22B−a12r
2
12 ,

with integer ni and real parameters a. It is clear that differentiation of this integral with respect to the given nonlinear parameter90

a raises the appropriate index ni by 2. Consequently, disjoint families of ECG integrals arise. The first family is termed regular91

ECG integrals and is defined by Ω1 = 0, 2, 4, . . . and non-negative even integers ni, such that
∑

i ni ≤ Ω1. Among these92

integrals, the following master integral plays a pivotal role:93

I(0, 0, 0, 0, 0) = X−3/2 e−R2 Y/X , (29)

where94

X = (a1A + a1B + a12)(a2A + a2B + a12)− a212, (30)
Y = (a1A + a1B) a2A a2B + (a2A + a2B) a1A a1B

+ a12(a1A + a2A)(a1B + a2B). (31)

All the other regular ECG integrals can be generated by differentiation of I(0, 0, 0, 0, 0) over a-parameters.95

Another family, Coulomb ECG integrals, permits a single odd index ni ≥ −1, with
∑

i ni ≤ Ω2 (Ω2 = −1, 1, 3, . . .), and
analogously to regular ECG integrals, all Coulomb ECG integrals can be generated by differentiation over a-parameters of
appropriate master integrals,

I(−1i) =
1

X
√
Xi

e−R2 Y/X F

[
R2

(
Yi

Xi
− Y

X

)]
, (32)

where I(−1i) denotes I with ni = −1 and other indices equal zero, Xi ≡ ∂ai
X, Yi ≡ ∂ai

Y , and F (x) ≡ erf(x)/x.96

In contrast to atomic ECG integrals, the molecular ones have no known analytic form whenever two or more indices are
odd. Nevertheless, such extended ECG integrals arise either as a consequence of the regularization of expectation values, as
described in the next Subsection, or as matrix elements of the coefficients of high-momentum asymptotic expansion of f(t).
Fortunately, such extended integrals can be efficiently evaluated by means of numerical quadrature. When there is no logarithm
in the integrand, the quadrature relies on the following Gaussian integral transform,

1

rn
=

2

Γ(n/2)

∫ ∞

0

dt tn−1 e−r2t2 , n > 0. (33)

In this case, the integral (28) can be represented as

I(n1 − n, n2, n3, n4, n5) =

2

Γ(n/2)

∫ ∞

0

dy yn−1 I(n1, n2, n3, n4, n5)

∣∣∣∣
a1A→a1A+y2

. (34)

With the help of the variable transformation y = −1 + 1/x, which reduces the integration domain of extended ECG integral to
a finite interval of (0, 1), the integral can be readily evaluated by the generalized extended Gaussian quadrature with logarithmic
end-point singularities [42], ∫ 1

0

dx
[
W1(x) + ln(x)W2(x)

]
=

m∑
i

wi

[
W1(xi) + ln(xi)W2(xi)

]
; (35)
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thus,

I(n1 − n, n2, n3, n4, n5) =

2

Γ(n/2)

m∑
i=1

wi
(1− xi)

n−1

xn+1
i

I(n1, n2, n3, n4, n5)

∣∣∣∣
a1A→a1A+y2

i

. (36)

In the case of integrals involving logarithms, we utilize the following transforms:

ln r

r
= − 1√

π

∫ ∞

0

dt (2 ln t+ γE + ln 4) e−r2t2 , (37)

ln r

r2
= −

∫ ∞

0

dt t (2 ln t+ γE) e
−r2t2 . (38)

This approach can be straightforwardly generalized to double quadrature over Coulomb ECG integral over two different97

nonlinear parameters, which allows us to calculate integrals with three odd indices. Such integrals arise during calculations of98

large photon momentum asymptotic coefficients of f(t).99

B. Regularization100

According to (3), the E(5,0) correction appears as a deceivingly simple sum of expectation values. Those expectation values,101

however, are of operators that are rather nontrivial. They probe the wavefunction in the vicinity of Coulombic singularities, as102

in the case of Araki-Sucher correction or even exactly pointwise at those singularities in the case of Dirac delta functions.103

It is well-known that the ECG basis cannot reproduce the correct asymptotic behavior of the wavefunction around electron-104

electron and electron-nucleus coalescence points (cusp conditions) and resultantly yields slow convergence of expectation values105

of singular operators with a very local integral kernel. This disadvantage of the ECG basis can be circumvented by utilizing106

strong operator identities, which probe the wavefunction more globally, making expectation values much less sensitive to the107

local deficiencies of the wavefunction [37, 43–45]. Here we introduce three such identities, the first two of which are vital for108

the high-accuracy of the QED potential because enter E(5,0) directly whereas the last one enables accurate evaluation of the109

asymptotic coefficient f4,110

⟨4πδ3(r⃗ab)⟩ = 2µab

[
2V

(1)
ab −R

(1)
ab

]
,〈

1

r3ab

〉
ε

= (1 + γE) ⟨4πδ3(r⃗ab)⟩+ 2µab

[
2Ṽ

(1)
ab − R̃

(1)
ab

]
,〈

1

r4ab

〉
ε

= µab

[
− 2V

(2)
ab +R

(2)
ab ± ⟨12πδ3(r⃗ab)⟩

]
. (39)

In the above, µab = mamb

ma+mb
is the reduced mass of pair of particles a and b, and in the last formula ’+’ should be taken for111

particles with the same, and ’−’ with opposite charges, respectively. Furthermore,112

V
(n)
ab ≡

〈
1

rnab
(E − V )

〉
, (40)

Ṽ
(n)
ab ≡

〈
ln rab
rnab

(E − V )

〉
, (41)

R
(n)
ab ≡ −

∑
i=1,2

〈
∇⃗i

1

rnab
∇⃗i

〉
, (42)

R̃
(n)
ab ≡ −

∑
i=1,2

〈
∇⃗i

ln rab
rnab

∇⃗i

〉
, (43)

where rab pertains to either electron-electron or electron-nucleus coordinates. This regularization procedure is pivotal for achiev-113

ing well-converged, high-accuracy expectation values of singular operators with ECG functions [27, 38].114
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TABLE I. Convergence of the electronic BO energy (E) and terms contributing to E(5,0) with increasing basis size N at R = 1.4 a.u. For fixed
N , the uncertainty of ln k0 originates from uncertainties of the fi>4. Here, as well as for all other values of R, this uncertainty dominates over
the uncertainty resulting from extrapolation to the complete basis set limit. All presented digits of Dirac delta expectation values and ⟨r−3

12 ⟩ε
are accurate.

N E
∑

i,X⟨δ3(r⃗iX)⟩ ⟨δ3(r⃗12)⟩ ⟨r−3
12 ⟩ε ln k0

64 −1.174 474 384 972 363 0.919 300 2223 0.016 739 9980 0.414 497 7238 3.018 421(77)
128 −1.174 475 663 522 751 0.919 333 4195 0.016 742 9651 0.414 364 3945 3.018 549 0(37)
256 −1.174 475 712 366 731 0.919 335 9183 0.016 743 2525 0.414 346 7147 3.018 561 00(43)
512 −1.174 475 714 135 081 0.919 336 1813 0.016 743 2745 0.414 345 0950 3.018 563 264(40)
768 −1.174 475 714 210 245 0.919 336 2021 0.016 743 2769 0.414 344 8871 3.018 563 400(20)

1024 −1.174 475 714 218 617 0.919 336 2099 0.016 743 2776 0.414 344 8224 3.018 563 453(28)
∞ −1.174 475 714 221(1) 0.919 336 214(3) 0.016 743 2780(4) 0.414 344 79(3) 3.018 563 480(38)

Ref. [13] − 0.919 34(1) 0.016 74(1) 0.414 30(1) 3.018 55(1)
Ref. [46] −1.174 475 714(1) − − − 3.018 55(3)
Ref. [27]a −1.174 475 714 203 0.919 336 206(7) 0.016 743 2783(5) − −

Ref. [27, 47]b −1.174 475 714 220 443 4(5) 0.919 336 211(2) 0.016 743 2783(3) − −

a Evaluated with 1024-term rECG basis, E without extrapolation to complete basis set
b Evaluated with James-Coolidge wavefunction

V. RESULTS115

The hydrogen molecule in its ground state dissociates into H(1s)+H(1s). Therefore, in our calculations we benefit from the
fact that the analytical form of f(t), the essential part of the integrand of the integral representation of ln k0, is known exactly
for the hydrogen-like atom [40, 41]:

fH(t) ≡ −384
t5

(1 + t)8(2− t)
2F1(4, 2− t, 3− t; ξ), (44)

where 2F1 is the hypergeometric function in standard notation [48] and

ξ = [(1− t)/(1 + t)]2, t = Z/
√
−2(E − k). (45)

Resultantly, the numerical value of the Bethe logarithm for the ground state of the hydrogen atom (Z = 1, E = −1/2) is known
with many-digit accuracy [49],

ln k0(H) = 2.984 128 555 765 498 . . . (46)

The dominating contribution to the Bethe logarithm comes from the high momenta of photon excitation [50], thus involving116

highly excited continuum states. Therefore, it is very insensitive to the details of perturbation of electronic structure as induced117

by the presence of another hydrogen atom. As a result, we expect that not only f(t) but also individual terms of its Taylor118

expansions should be relatively close to those of fH(t) for all but very small values of R.119

The greater accuracy of ln k0 near the equilibrium is a consequence of purposeful computational focus on optimization of120

f(t) by employing larger basis sets (N=768,1024). Moreover, ln k0(R) changes rather slowly for R > 5 a.u., and this region121

is much less important in view of averaging E(5,0) with nuclear wavefunction; therefore, the largest size of external basis used122

there was only N = 512. Deterioration of ln k0 uncertainty as R → 0 is the consequence of large uncertainty of fitted expansion123

in the low-t region, due to its high sensitivity to the fitting parameters.124

Although ln k0 as a function of R changes rapidly from its united-atom helium value to the hydrogenic one in a manner125

resembling exponential decay, it exhibits nontrivial behavior in the region around equilibrium internuclear distance, see Fig. 1.126

Consequently, commonly used one-parameter approximation to the R-behavior of the Bethe logarithm,127

ln k0(H) +
[
ln k0(He) − ln k0(H)

]
e−aR, (47)

when both united-atom and dissociation limits are usually known much more accurately (as is the case with H2), is far from128

sufficient for high-precision theoretical predictions.129

Convergence with the basis size and comparison to the literature of Dirac delta, Araki-Sucher and Bethe logarithm at R = 1.4130

a.u. is presented in Table I . Final values of E(5,0) and its essential components are presented in Table II , whereas its R-behavior131

is plotted in Fig. 2.132
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Ultimately, we recognize the obtained absolute Bethe logarithm accuracy of 3 × 10−8 with N ∼ 1000 to be satisfactory,133

especially in view of its proximity to the absolute accuracy of the Araki-Sucher term which is of similar magnitude (about134

10−8).135

A. Long-range asymptotics of the Araki-Sucher correction136

At the dissociation limit only the first term of Eq. (3) persists, so that

E(5,0)(∞) =
4

3

(19
30

− 2 lnα− ln k0(H)
) 2

π
(48)

= 6.357 448 103 05(2), (49)

with 1/α = 137.035 999 206(11) [51] and the value of ln k0(H) given by Eq. (46).137

We have found that ⟨r−3
12 ⟩ε, as evaluated according to Eq. (39) using a single quadrature utilizing transform Eq. (37), exhibits

very clear ∼ m−6 convergence, with m being the number of quadrature nodes, Eq. (35). Therefore, a very accurate Richardson
extrapolation is possible, which allows for effortless improvement of the accuracy by roughly 2 orders of magnitude. Although
the accuracy of those operators is usually good enough even with m = 40, we have found such an acceleration of convergence
very useful and necessary for the sake of as accurate as possible comparison to analytical long-range asymptotic expansion of
⟨r−3

12 ⟩ε, which reads [52], 〈 1

r312

〉
ε
=

1

R3
+

6

R5
+

75

R7
− C6

10

R8
+

1575

R9
+O(R−10), (50)

where C6 = 6.499026705405 . . . is the leading order coefficient (dipole-dipole) of the long-range asymptotics of dispersion138

energy.139

Due to the high accuracy of our data, we have attempted to fit higher-order terms by subtracting the asymptotics up to order140

R−9 and fitting a series in powers of 1/R. We have found such fits to be sensitive to both the expansion order and the number of141

points used. We noticed that the leading coefficient of the fit is oscillating around a value given by (50) as the expansion order142

is incremented by one. This observation strongly suggests the presence of higher order terms with large coefficients, and we143

estimate the next term to be −3400/R10 with 50% uncertainty. A meaningful comparison with even higher-order terms would144

require data at R > 20 a.u. or higher accuracy (better than 10−12) of our large-R results, which entails costly optimization of145

even larger basis sets and is of little practical significance.146

B. Long-range asymptotics of the Bethe logarithm147

The Bethe logarithm in H2 is known to behave asymptotically as

ln k0(R) = ln k0(H) +
L6

R6
+O(R−8) as R → ∞, (51)

with L6 = 2.082 773 197 [13]. Comparison with our data suggests that this asymptotic expansion is not sufficient to accurately148

describe the behavior of ln k0(R) for R as large as 6-10 a.u., in spite of its numerical value rapidly approaching that of the149

hydrogen atom. In particular, this two-term asymptotic expansion diverges from numerical data by as much as 27, 157, and150

568% at R = 10, 8, and 6 a.u., respectively. This suggests the significance of higher order terms. Large magnitude of their151

coefficients is tentatively confirmed by our fitting attempts.152

VI. CONCLUSIONS153

We have performed highly accurate calculations of QED effects in the ground state of molecular hydrogen. Due to the154

accuracy of order of 10−8, which is 2 to 3 orders better than previous calculations [13], major numerical uncertainty of the155

QED effects on the molecular levels has been eliminated. Nevertheless, the shift of about 0.03 MHz with respect to Ref. [13]156

is below the level of existing discrepancies with measured transition energies (1.4-1.9 σ ≈ 2MHz) in the HD molecule. Fully157

nonadiabatic QED calculations [37, 38] performed for the lowest levels of H2 (ν = 0, J = 0) reduce the uncertainty of the QED158

contribution to the level of 5 kHz. Together with the results obtained here, this indicates the significance of nonadiabatic QED159

effects in the hydrogen molecule and its isotopologues. Thanks to present work, these effects can now be calculated with the160

help of nonadiabatic perturbation theory (NAPT) [53], which is planned in the near future.161

The obtained results have already been included in the updated version (v7.4) of the publicly available computer code162

H2SPECTRE [28].163
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FIG. 1. The solid black line represents ln k0(R), Eq. (8). A very rapid drop from the united-atom (helium) limit can be observed. The inset
displays nontrivial dependence of ln k0 as a function of R in the region R = 1 − 6 a.u., which prevents the use of a simple exponential
decay fit. The dash-dotted line presents the only known leading order long-range asymptotics, Eq. (51). The dashed line corresponds to the
asymptotic hydrogenic limit.
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FIG. 2. The solid black line represents E(5,0) of Eq. (3) as a function of R with the asymptotic hydrogenic limit subtracted.
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TABLE II. Terms contributing to E(5,0) as a function of R. Uncertainties originate from extrapolation to the complete basis set. All quantities
in a.u., ln k0 is dimensionless.

R
∑

i,X⟨δ3(r⃗iX)⟩ ⟨δ3(r⃗12)⟩ ⟨r−3
12 ⟩ε ln k0 E(5,0)(R)− E(5,0)(∞)

0.0 7.24171727400(4)a 0.106345370635(1)a 0.989273545024(1)a 4.3701602230703(3)b 50.930716724136(3)
0.05 6.4890437210(4) 0.105003821909(7) 0.9881318794(5) 3.9610(2) 48.362(2)
0.1 5.770597278(3) 0.10157055016(10) 0.98432455(2) 3.7616(2) 43.700(2)
0.2 4.568931914(3) 0.09136818987(9) 0.96590419(2) 3.52291(5) 34.5292(3)
0.3 3.671598383(2) 0.0798419070(2) 0.93232441(2) 3.37749(2) 27.07582(5)
0.4 3.007974280(3) 0.0688732774(1) 0.88704623(2) 3.279584(5) 21.33818(2)
0.5 2.512087713(3) 0.0591374522(2) 0.83484011(4) 3.210230(2) 16.950265(6)
0.6 2.135554242(4) 0.0507632372(2) 0.77971886(2) 3.1595728(9) 13.569055(3)
0.7 1.844767256(4) 0.0436605313(2) 0.72449332(2) 3.1218242(4) 10.9319924(9)
0.8 1.616559028(4) 0.0376678752(4) 0.67093263(4) 3.0933129(2) 8.8483668(4)
0.9 1.434821980(8) 0.0326147204(4) 0.62004755(4) 3.07157925(5) 7.18120486(9)
1.0 1.288195834(4) 0.0283452755(4) 0.57234019(4) 3.05490864(6) 5.8317574(1)
1.1 1.168538455(4) 0.0247256344(4) 0.52798840(4) 3.04206959(5) 4.72813145(7)
1.2 1.069918931(4) 0.0216439932(3) 0.48697212(3) 3.03215694(6) 3.81734866(9)
1.3 0.987949457(3) 0.0190083084(3) 0.44915639(3) 3.02449314(6) 3.05986972(9)
1.4 0.919336214(3) 0.0167432780(4) 0.41434479(3) 3.01856348(4) 2.42581252(4)
1.4011 0.918645801(5) 0.0167201832(4) 0.41397774(4) 3.01850633(3) 2.41943366(4)
1.5 0.861572961(6) 0.0147874126(5) 0.38231287(4) 3.01397237(6) 1.89232027(8)
1.6 0.812728773(5) 0.0130904713(5) 0.35282881(5) 3.01041312(6) 1.44170996(7)
1.7 0.771298712(4) 0.0116113186(4) 0.32566573(3) 3.00764631(6) 1.06015438(6)
1.8 0.736097174(4) 0.0103161797(3) 0.30060873(3) 3.00548408(5) 0.73673165(5)
1.9 0.706180622(4) 0.0091772346(2) 0.27745861(2) 3.00377871(6) 0.46273095(6)
2.0 0.680790767(4) 0.0081714960(4) 0.25603365(4) 3.00241335(9) 0.23113917(9)
2.1 0.659312208(4) 0.0072799102(4) 0.23617006(3) 3.00129678(5) 0.03625438(5)
2.2 0.641240392(4) 0.0064866435(2) 0.21772165(3) 3.0003573(2) −0.1266062(1)
2.3 0.626157038(4) 0.0057785088(3) 0.20055918(3) 2.9995393(3) −0.2613324(2)
2.4 0.613711019(4) 0.0051445018(2) 0.18456954(2) 2.99880014(8) −0.37119725(7)
2.5 0.603603308(5) 0.0045754299(3) 0.16965457(3) 2.9981078(3) −0.4589970(2)
2.6 0.595575025(6) 0.0040636043(3) 0.15573008(2) 2.9974395(2) −0.5271620(2)
2.7 0.589397878(6) 0.0036025887(9) 0.14272450(8) 2.99677927(9) −0.57784529(8)
2.8 0.584866587(6) 0.0031869850(9) 0.13057766(9) 2.99611714(9) −0.61299348(7)
2.9 0.581792978(6) 0.0028122509(3) 0.11923957(3) 2.9954475(3) −0.6344010(2)
3.0 0.580001468(5) 0.0024745485(2) 0.10866836(2) 2.9947706(3) −0.6437534(2)
3.2 0.579608561(5) 0.0018975786(7) 0.08969278(6) 2.9933998(2) −0.6326256(1)
3.4 0.582448355(5) 0.0014346013(5) 0.07342502(5) 2.9920403(2) −0.5916362(1)
3.6 0.587399916(3) 0.0010683465(2) 0.05967099(2) 2.9907405(2) −0.5317100(2)
3.8 0.593491441(3) 0.0007837408(3) 0.04822793(3) 2.9895459(4) −0.4623141(4)
4.0 0.599942218(4) 0.0005669019(3) 0.03886333(2) 2.9884879(1) −0.3910095(7)
4.2 0.606187475(4) 0.0004049339(2) 0.03131461(2) 2.9875819(9) −0.3231954(8)
4.4 0.611872454(2) 0.0002861635(2) 0.025304362(9) 2.9868296(3) −0.2621756(8)
4.6 0.616819342(2) 0.00020046794(8) 0.020560798(7) 2.9862180(4) −0.2094973(3)
4.8 0.620980474(2) 0.00013946740(5) 0.016835178(4) 2.9857306(2) −0.1654339(2)
5.0 0.624391499(3) 0.00009651477(4) 0.013912356(3) 2.9853497(3) −0.1294587(3)
5.2 0.627132992(2) 0.00006652495(4) 0.011614267(3) 2.9850545(5) −0.1006249(4)
5.4 0.629303303(2) 0.00004571971(2) 0.009798327(2) 2.9848280(5) −0.0778397(4)
5.6 0.631001614(2) 0.00003135473(3) 0.008353048(2) 2.9846557(3) −0.0600270(3)
5.8 0.632318799(2) 0.00002147077(1) 0.007192666(1) 2.9845254(3) −0.0462145(2)
6.0 0.633333462(2) 0.00001468696(3) 0.006251868(2) 2.9844270(3) −0.0355683(3)
6.5 0.634946115(2) 0.000005668122(8) 0.0045649148(5) 2.9842755(4) −0.0186014(4)
7.0 0.635760799(2) 0.000002183104(3) 0.0034749552(2) 2.9842020(5) −0.0099569(4)
7.5 0.636169868(2) 0.000000840032(2) 0.00272930901(9) 2.9841664(4) −0.0055487(5)
8.0 0.636376357(2) 0.0000003230160(9) 0.00219493423(5) 2.9841490(4) −0.0032671(6)
8.5 0.636482278(2) 0.0000001241243(5) 0.00179784702(2) 2.9841401(4) −0.0020520(6)
9.0 0.636538096(2) 0.0000000476605(5) 0.001494408972(5) 2.9841350(3) −0.0013766(3)
9.5 0.636568630(2) 0.0000000182846(2) 0.001257399493(6) 2.9841331(4) −0.0009818(6)

10.0 0.636586108(2) 0.0000000070084(2) 0.001068988784(2) 2.9841314(4) −0.0007357(6)
11.0 0.636603270(2) 0.00000000102659(2) 0.000792906742(2)
12.0 0.636610686(2) 0.00000000014980(1) 0.000605092990(2)
13.0 0.636614385(2) 0.00000000002177(1) 0.000472597263(2)
14.0 0.636616412(2) 0.00000000000315(1) 0.000376332776(2)
15.0 0.636617594(2) 0.00000000000045(2) 0.000304652082(2)
16.0 0.636618315(2) 0.00000000000006(1) 0.000250149428(2)
17.0 0.636618771(2) 0.00000000000001(1) 0.000207953638(2)
18.0 0.636619068(2) 0.00000000000000(1) 0.000174767149(2)
19.0 0.636619267(2) 0.00000000000000(1) 0.000148301511(2)
20.0 0.636619402(2) 0.00000000000000(1) 0.000126933698(2)
∞ 0.63661977236 0.0 0.0 2.984128555765 0.0

a Ref. [54]
b Ref. [8]


