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ABSTRACT
We report on accurate variational calculations of the Born-Oppenheimer potential
for excited states of the hydrogen molecule with Π, ∆, and Φ symmetries. The
obtained potential energy curves reach the relative precision of 10−9 or better along
internuclear distances of 0.01 – 20 au. Calculations rely on recursive evaluation of
two-center two-electron molecular integrals with exponential functions in arbitrary
precision arithmetics. Our results for most of the states are the first ever reported,
and for the previously calculated states constitute an improvement by several orders
of magnitude.

KEYWORDS
Born-Oppenheimer; hydrogen molecule; excited state; Kolos-Wolniewicz

1. Introduction

The hydrogen molecule is one of the most intensively studied two-electron system. Its
rotational and vibrational energy levels in the ground electronic state are known with
10−9 relative accuracy, by including nonadiabatic effects and relativistic and quantum
electrodynamic corrections up to the order of α6m, where α ∼ 1/137 is the fine-
structure constant. Theoretical predictions agree very well the recent high-precision
measurements [1–3], including those of the dissociation energy, which reach the accu-
racy of 10−4 cm−1 [4–6]. Similar if not better experimental accuracy is achieved for
the transitions to the excited electronic states, but theoretical predictions are far less
accurate here.

In our recent work we have performed calculations of Born-Oppenheimer (BO)
potentials for excited states of all nΣ+ symmetries with n ≤ 7, for which we obtained
the accuracy exceeding all the previously known results by 3-4 orders of magnitude. In
this work we extend those calculations to Π, ∆, and Φ excited states with the relative
accuracy of at least 10−9 for internuclear distances of 0.01 – 20 au. Some of these
states have already been investigated in the literature. Namely, the most significant
and accurate results at that time were obtained primarily in a series of works by Ko los,
Wolniewicz, and Rychlewski [7–11], using the explicitly correlated exponential basis,
called Ko los-Wolniewicz (KW) basis functions [12]. Their results, however, disagreed
with experimental values for ∆ states. Jeziorski et al. pointed out in Ref. [13] that
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the angular factor for these states in Ref. [11] was incomplete. This was verified and
later corrected by Wolniewicz in Ref. [14]. It lowered BO curves by a few cm−1 for
singlet and less than 1 cm−1 for triplet ∆g states and resolved discrepancies with the
experimental data available at those times.

Another method, based on explicitly correlated gaussian (ECG) functions, was em-
ployed in Ref. [15, 16] to obtain a potential curve for C1Πu (n = 1). The most recent
contributions to the ab-initio Potential Energy Curves (PEC) of H2 consist of a Free-
Complement local Schrödinger equation method developed by Nakatsuji and collab-
orators [17–21] with potential curves for Σ,Π,∆, and Φ states. In this work we not
only improve all these previous results by a few orders of magnitude, but also calculate
many higher excited states of Π, ∆, and Φ symmetries and finally draw attention to
possible further applications of Kolos-Wolniewicz basis.

2. Method

Our variational calculations utilize explicitly correlated exponential functions with
polynomial dependence on interparticle distances of the form [12],

Φ{n} = e−y η1−x η2−u ξ1−w ξ2rn0

12 η
n1

1 ηn2

2 ξn3

1 ξn4

2 , (1)

where ηi and ξi are proportional to confocal elliptic coordinates and are given by
ηi = riA − riB, ξi = riA + riB with i enumerating electrons and real y, x, u, w non-
linear parameters subject to variational minimization. By {n} we denote an ordered
set of interparticle coordinate exponents, (n0, n1, n2, n3, n4) which are conventionally
restricted by a shell parameter Ω,

4∑
j=0

nj ≤ Ω. (2)

If a symmetry restriction is imposed, the set of allowed {n} is constrained even more for
specific values of nonlinear parameters. By construction these functions depend on two-
electron coordinates and account for the electronic correlation via explicit dependence
on the coordinate r12. We emphasize that a construction of the basis according to Eq.
(2) allows for a very compact parametrization of the basis, because it is completely
specified by just four nonlinear parameters and an integer value of Ω. To recapitulate,
the trial wavefunction is represented as

ΨΣ+ =
∑
{n}

c{n}Ŝ
±
ABŜ

±
12Φ{n}, (3)

where Ŝ±AB = 1± PAB and PAB permutes the nuclei A and B, Ŝ±12 = 1± P12 and P12

interchange the two electrons, and appropriate ± signs are chosen to fulfil the sym-
metry criteria for gerade/ungerade and singlet/triplet states. By solving the secular
equation one obtains linear coefficients c{n}. Such a form of wavefunction expansion
is commonly referred to as the Ko los-Wolniewicz basis [12]. This nomenclature origi-
nated from the series of pioneering works of Ko los, Wolniewicz, and co-workers. It was
introduced as a flexible generalization of the James-Coolidge basis aiming to represent
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the electron density asymmetry between the two nuclei ubiquitous in excited states of
H2.

In previous calculations [11, 12, 22, 23] involving tens or hundreds of KW functions
in the basis, the set of {n} was carefully optimized by incremental selection of con-
figurations that give the most significant contribution to the energy. Here we resort
to a much simpler rule, given by Eq. (2), and introduce double basis functions with
common values of nonlinear parameters. For convenience we introduce a shorthand
notation for our basis S(ΩA,ΩB), where S denotes a shorthand symmetry of the ba-
sis: either JC for generalized James-Coolidge (x = y = 0, u 6= w) [24] or KW for a
general Kolos-Wolniewicz basis with no additional restrictions. Values of ΩA and ΩB

define the size of sectors, which are the basis subsets carrying common independent
nonlinear parameters and are constructed according to Eq. (2).

Construction of the basis by Eq. (2) for all the states considered in this work entails
a universal and practical approach. It is expected, however, that more sophisticated
selection of basis functions, such as subdivision into three Ω, each restricting the max-
imal value of exponents of ηi, ξi, and r12 individually, as investigated by Sims [25] in
James-Coolidge basis or utilized in our approach to long-range exchange splitting [26],
will lead to more compact wave function expansions.

3. Angular factors

Expansion of the type in Eq. (3) is valid only for the states of Σ+ symmetry. Extension
of the KW basis to states of higher angular momentum requires the introduction of
angular factors. The electronic state of a diatomic molecule is, among other symme-
tries, characterized by Λ – an absolute value of the eigenvalue of the ~n · ~L operator,
where ~n is a normalized vector parallel to the internuclear axis and ~L is the electronic
angular momentum operator. In order to enforce proper angular symmetry for Λ 6= 0
we construct symmetric, traceless l–th rank tensors,

χi1 = ρi1 for Π,

χij11 = ρi1ρ
j
1 −

1

2
δij⊥ ρ

2
1 for ∆,

χij12 = ρ
(i
1 ρ

j)
2 − δij⊥~ρ1 · ~ρ2 for ∆, (4)

χijk111 = ρi1ρ
j
1ρ
k
1 −

1

3
ρ2

1 ρ
(k
1 δ

ij) for Φ,

χijk112 = ρ
(i
1 ρ

j
1ρ
k)
2 −

1

3
ρ2

1 ρ
(k
2 δij) − 2

3
~ρ1 · ~ρ2 ρ

(k
1 δij) for Φ,

where ρi = ri−ni ~n~r, δij⊥ = δij−ni nj , ~n = ~R/R, and (ijk) denotes symmetrization of
indices. Such tensors represents irreducible representations of SO(2) rotations (around
the internuclear axis) in the coordinate space. Consequently, the total wavefunction
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for Π, ∆, and Φ states, corresponding to Λ = 1, 2, and 3, respectively, is expanded as

Φi
Π =

Ω∑
{n}

c{n}Ŝ
±
ABŜ

±
12χ

i
1Φ{n},

Φij
∆ =

Ω∑
{n}

c{n}Ŝ
±
ABŜ

±
12χ

ij
11Φ{n} +

Ω′∑
{n}

c′{n}Ŝ
±
ABŜ

±
12χ

ij
12Φ′{n}, (5)

Φijk
Φ =

Ω∑
{n}

c{n}Ŝ
±
ABŜ

±
12χ

ijk
111Φ{n} +

Ω′∑
{n}

c′{n}Ŝ
±
ABŜ

±
12χ

ijk
112Φ′{n}.

In the evaluation of matrix elements with the above functions, repeated Cartesian
indices in bra and ket are summed over, and the resulting expression is a linear com-
bination of f -integrals with various sets of {n}, which are defined as

f{n}(R) = R

∫
d3r1

4π

∫
d3r2

4π

e−w1 r12−u ξ1−w ξ2−y η1−x η2

r1A r1B r2A r2B
rn0−1

12 ηn1

1 ηn2

2 ξn3

1 ξn4

2 . (6)

Efficient recursive evaluation of these integrals is the subject of our previous works [27–
29], and the details will not be repeated here.

The obtained expressions for matrix elements are too lengthy to be reported here,
even those for the Hamiltonian with wavefunctions of the Π symmetry. Nevertheless,
we have explicitly checked that our construction of angular factors yields the same
linear combinations of f -integrals, as with the use of either real or complex angular
factors introduced by Jeziorski et al. in Ref. [13]. In practical calculations, due to the
length of these formulas, evaluation of matrix elements dominates the computation
time for ∆ and Φ symmetry, even at moderate basis sizes.

In pioneering calculations of the lowest gerade ∆ states, namely J and S 1∆g and
j and s 3∆g, by Ko los and Rychlewski [8, 10] and later by Wolniewicz [11, 14], the
ππ terms were not included (the χ12 angular factor), as hinted by Jeziorski et al. [13].
Its inclusion improves the adiabatic energies by a few cm−1 for J1∆g and S1∆g states
and tenths of cm−1 for triplet j3∆g and s3∆g states, as demonstrated in subsequent
work by Wolniewicz [14]. Together with the evaluation of nonadiabatic coupling by Yu
and Dressler [30], the apparent discrepancy with experimental values for dissociation
energies of H2 and D2 [31, 32] has been resolved.

4. Results

We have calculated BO energies for 1 − 4 Π and 1 − 3 ∆ and 1 − 2 Φ states, and
additionally 3 1Φu, and 3 3Φu states (38 in total) in 81 points of a nonuniform grid
spanned within R ∈ (0.01, 20.0) au. In order to test the capability of the exponential
basis, we have selected the I1Πg, i3Πg, C1Πu, and c3Πu states (n = 1), for which
we have ventured to exceptionally large bases consisting of two sectors with their
own nonlinear parameters: JC(21,19) (54648 basis functions in total) in the range
R = 0.01 − 6.0 au, and KW(18,16) (53998 basis functions in total) in the range R =
6.5− 20.0 au. This allowed us to achieve 15 or more significant digits in the range R =
0.7− 20 au, and can be regarded as the state-of-the-art of our current computational
approach.
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Figure 1. BO potential for n = 1..4 Π states.

In the remaining cases, calculations were performed with smaller bases, obtained
by incrementing Ω of both sectors by 1 until the extrapolated energies reached un-
certainty no worse than 10−9 at all distances. This usually required the use of the
JC(14,12) basis in the range 0.01− 6.0 au and the KW(12,10) basis in 6.5− 20.0 au.
To reduce the computational cost of calculations with ∆ and Φ symmetries, both sec-
tors having different angular factor were set to carry the same nonlinear parameters.
This significantly reduced the number of f -integrals required for calculations of matrix
elements.

All the potential curves have a well-pronounced single minimum around R = 2 au
and exhibit strong features of anticrossings and curve interactions in the region
R = 4 − 8 au, which are associated with the configuration mixing. Those interac-
tions have a trend to become weaker with the increasing angular momentum of the
excited electron. Due to the high accuracy of the calculated potential, the dominating
electronic configuration can be deduced from comparison to energies of helium atom
excited states and of an infinitely separated hydrogen H(1s) – H(nl) atoms. In partic-
ular, we observe, by reaching internuclear distances as small as R = 0.01 au, that the
energies smoothly evolve to the corresponding value of the excited He atom [33]. It fol-
lows from analysis of curves that each highly excited molecular state is dominated by
a single atomic 1snl configuration at both the united atom and the dissociation limit.
The nl configuration at both of those limits is usually not the same; therefore, in such
cases, when considering fixed n in the molecular term (i.e., the n-th eigenvalue of the
BO molecular Hamiltonian), a character change of the excited electron has to occur
at least once along the PEC. Understanding of the electronic character of a molecule
in terms of singly excited 1snl atomic configurations originates from the pioneering
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works on molecular binding theory of Hund, Mulliken and many others [34–36] and
can be qualitatively described with the correlation diagrams [37]. Detailed analysis
of electronic characters along the PECs is out of scope of the current report and in
this work we mainly focus on the computational aspects and accuracy comparison
with previous ab-initio results. For a meticulous analysis of electronic configuration
evolution as a function of n and R, we refer to the extensive analysis of Corongiu and
Clementi [38].

4.1. States of Π symmetry

Although the basis for the Π state could in principle be built with a single sector, use of
the second sector with different nonlinear parameters has proven to be advantageous.
Primarily, it clearly makes the basis more flexible with the introduction of another
set of nonlinear parameters. Secondarily, multi-sector bases are routinely utilized in
atomic calculations with Hylleraas bases, where the largest sector spans the most dif-
fuse length scales with nonlinear parameters bounded from below by

√
−2mE, and

subsequent sectors aim to improve the shorter scale range to the nucleus. Optimal
values of parameters obtained in the present calculations for H2 suggest that spanning
more diffuse functions is usually energetically more important than the short-range
motion in the vicinity of the nuclei, and the introduction of a second sector seems
especially relevant in the regions without the domination of a single electronic config-
uration.

Our numerical results for 1− 4 Π states are plotted in Fig. 1 and presented in the
Supplementary Materials in Tables S1-S16. In order to compare with the previous
results of Refs. [11, 15, 21, 39] we select R = 2 au and present value of potentials in
Table 1. To test capabilities of our method, we have also evaluated a few Πu states
with n = 5, 6, 10 at a single point R = 2.0 au.

In Ref. [39] an alternative approach to solving the Schrödinger equation in terms
of stochastic evaluation of the path integral with the Schrödinger potential was in-
troduced as an energy estimator. In general these results were in good agreement
with previous results. However, few σ discrepancy was observed for the I1Πg state,
for which their initial result of -0.659 515 9(3) appeared to be discrepant by a few
σ with the variational result −0.659 515 055 5 of Wolniewicz [11]. Curiously enough,
by taking four times larger statistical sample, more specifically four times more in-
tegration paths in the generalized Feynman-Kac method (GFK), they tightened the
result to -0.659 515 54(6), thus suggesting a significant improvement over the result
of Wolniewicz. Comparison of both results with ours reveals that result of Ref. [39]
overshoots the variational limit by almost the same amount as the difference between
our result and that of Wolniewicz. This indicates that the convergence of the GFK
method to the exact energy is much slower than anticipated and the extrapolation
uncertainty was much too optimistic.
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Table 1. Comparison of BO energy near minimum for selected Π states.

method/basis size R/Bohr E/hartree Ref.

I state (n=1) 1s2p1Πg

KW/75 2.0 −0.659 511 60 [7]

JC(5,3)/140 2.0 −0.659 512 139 this work
KW/193 2.0 −0.659 515 055 5 [11]

JC(6,4)/272 2.0 −0.659 515 272 this work

GFK 2.0 −0.659 515 54(6) [39]
JC(21,19)/53636 2.0 −0.659 515 340 754 017(6) this work

C state (n=1) 1s2p1Πu

KW/150 1.952 −0.718 366 655 [9]

ECG/149 1.952 −0.718 367 778 [15]

JC(5,0.280,0.745,3,0.618,0.675)/168 1.952 −0.718 367 796 214 this work
KW/449 1.952 −0.718 367 979 [23]

ECG/600 1.952 −0.718 368 027 [16]

JC(8,6)/917 1.952 −0.718 368 027 687 this work
JC(21,19)/53636 1.952 −0.718 368 030 147 144 23(7) this work

D state (n=2) 1s3p1Πu

CI/50 2.0 −0.655 035 [40]

KW/80 2.0 −0.655 299 82 [22]

KW/150 2.0 −0.655 325 841 [9]
FC-LSEa/1050 2.0 −0.655 328 191 [21]

JC(6,4)/316 2.0 −0.655 328 203 this work
KW/724 2.0 −0.655 328 261 [41]

JC(7,5)/552 2.0 −0.655 328 266 813 this work

JC(8,6)/917 2.0 −0.655 328 274 470 this work
JC(14,12)/9080 2.0 −0.655 328 276 407(7) this work

V state (n=3) 1s4f1Πu

KW 2.0 −0.633 939 [40]

MRCI/173 2.0 −0.632 582 84 [42]

MRCI/284 2.0 −0.634 045 91 [43]
FC-LSEa/1050 2.0 −0.634 036 945 [21]

KW/724 2.0 −0.634 058 929 [41]

JC(8,6)/917 2.0 −0.634 059 096 079 this work
JC(14,12)/9080 2.0 −0.634 059 104 699 22(8) this work

D’ state (n=4) 1s4p1Πu

KW 2.0 −0.632 391 [40]

MRCI/284 2.0 −0.632 606 24 [43]

FC-LSEa/1050 2.0 −0.632 669 650 [21]
KW/724 2.0 −0.632 670 21 [41]

JC(8,6)/917 2.0 −0.632 670 221 022 this work

JC(14,12)/9080 2.0 −0.632 670 222 456(6) this work

(n=5) 1s5f1Πu

FC-LSEa/1050 2.0 −0.621 700 378 [21]
JC(8,6)/917 2.0 −0.622 727 031 this work

KW(12,10)/9191 2.0 −0.622 727 143 343(3) this work

(n=6) 1s5p1Πu

FC-LSEa/1050 2.0 −0.620 612 4 [21]

JC(8,6)/917 2.0 −0.622 010 993 this work
JC(14,12)/9080 2.0 −0.622 011 008 773(5) this work

(n=10) 1s7f1Πu

Full-CI/320 2.0 −0.603 59 [38]

KW(8,6)/1749 2.0 −0.612 873 187 073 this work

KW(14,12)/17816 2.0 −0.612 873 232 0(1) this work

(n=10) 1s7p3Πu

Full-CI/320 2.0 −0.605 11 [38]
KW(8,6)/1749 2.0 −0.613 021 263 099 this work
KW(14,12)/17816 2.0 −0.613 021 373 965(5) this work

aFree Complement local Schrödinger equation method
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Figure 2. Comparison of BO energies for selected Π and ∆ states as a function of R.

In Fig. 2, we have plotted the difference between our results and that of Refs. [20, 21,
41, 43, 44] as a function of R for a few selected Π states differing in the singlet/triplet
and gerade/ungerade symmetry, as well as in the character of the excited electron.
Considering the energy differences between our results and those of Refs. [11, 15, 21]
for various Π states as a function ofR, we conclude that rather old results of Wolniewicz
[41] for 1− 41Πu states are accurate to at least 0.1 cm−1. Interestingly, the agreement
with Ref. [21] within ∼ 1 cm−1 accuracy is observed for the 1, 2 Π states of p and d
character. In contrary the discrepancy is much bigger for the states dominated by the
configurations with higher l, where the discrepancy reaches even hundreds of cm−1, see
Fig 2c. Most likely it is due to the poor representation of singly-excited configurations
with large values of l, especially of f, g, and h character, and could be associated with
the absence of terms proportional to H(1s) – H(n = 4) in the initial function of their
method. This absence is already noted by the Authors of Ref. [21].
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4.2. States of ∆ symmetry

Table 2. Comparison of BO energy ∆ states at R = 2.0 au. To the Authors’ best knowledge, these are all the
ab-initio results of ∆ symmetry available in the literature. δ is the difference with respect to the best available

result.

method & basis size R/Bohr E/hartree δ/cm−1

J state (n=1) 1s3d1∆g

Full-CI/320 2.0 −0.657 53 10.57 [38]

FC-LSE 2.0 −0.657 565(52) 2.89 [20]
VMC 2.0 −0.657 577 61(4) 0.12 [39]

GFK 2.0 −0.657 578 0(3) 0.04 [39]

KW/394 2.0 −0.657 578 084 4 0.02 [14]
JC(6,4)/316 2.0 −0.657 578 102 4 0.016 this work

JC(16,14)/16233 2.0 −0.657 578 175 516(2) 0.0 this work

j state (n=1) 1s3d3∆g

Full-CI/320 2.0 −0.657 59 10.27 [38]

FC-LSE 2.0 −0.657 658(29) −4.65 [20]
KW/394 2.0 −0.657 636 708 8 0.02 [14]

JC(6,4)/316 2.0 −0.657 636 722 7 0.016 this work
JC(16,14)/9080 2.0 −0.657 636 796 522(2) 0.0 this work

S state (n=2) 1s4d1∆g

FC-LSE 2.0 −0.633 651(40) −2.65 [20]
KW/70 2.0 −0.633 607 617 6.87 [10]

KW/394 2.0 −0.633 638 424 0 0.11 [14]
JC(8,6)/917 2.0 −0.633 638 871 0.012 this work

JC(14,12)/16233 2.0 −0.633 638 926 5(2) 0.0 this work

s state (n=2) 1s4d3∆g

FC-LSE 2.0 −0.633 697(25) −5.72 [20]

KW/70 2.0 −0.633 657 867 2.87 [10]
KW/394 2.0 −0.633 670 563 6 0.08 [14]

JC(14,12)/9080 2.0 −0.633 670 925 50(8) 0.0 this work

(n=1) 1s4f1∆u

Full-CI/320 2.0 −0.633 93 0.91 [38]

MRCIb/284 2.0 −0.633 923 21 2.40 [43]
JC(6,4)/272 2.0 −0.633 934 070 0.016 this work

JC(14,12)/9080 2.0 −0.633 934 144 964(1) 0.0 this work

a Free Complement local Schrödinger equation method
b Multi-reference Configuration Interaction

Our numerical results for 1− 3 ∆ states are presented in the Supplementary Material
in Tables S17-S28, and are shown in Fig. 3. Moreover, in Table 2. we compare our
results for ∆ symmetry at R = 2.0 au (vicinity of the minimum) with all the ab-initio
results available in the literature. Comparison reveals that Wolniewicz’s results for J
and S 1∆g and j and s 3∆g states are accurate up to 0.1 cm−1, which is roughly the
uncertainty he had originally assigned to his calculations [14]. This Table reveals that
for the S state, the basis JC(14,12) even with different parameters for both sectors,
gives rather slow convergence to the CBS limit; therefore, the JC basis is far from
optimal for this state. By virtue of high accuracy of our curves we can unambigously
assign state configurations by direct comparison with helium values [33]. In particular
1, 2, 3 ∆g and 1, 2, 3 ∆u states start at R = 0 as 1s3d, 1s4d, 1s5d, 1s4f , 1s5f , and
1s6f , respectively and this configurations propagate at least up to R = 5 au, with the
exception of 3 ∆g states which sharply switch to 1s5g configuration at R ∼ 0.5 au.
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4.3. States of Φ symmetry

Table 3. Comparison of BO energy of Φ states at R = 2.0 au with, to the Authors’ best knowledge, the only

ab-initio results available in the literature for this symmetry. Underlined digits present an improvement with
respect to the previous best value.

method & basis size E/hartree E/hartree

(n = 1) 1s4f1Φu (n = 1) 1s4f3Φu

Full-CI/320, Ref. [38] −0.633 72 −0.633 72

FC-LSEa, Ref. [20] −0.633 746(24) −0.633 746(24)

JC*(5,3)/140 −0.633 733 620 −0.633 733 849

JC*(15,13)/12240b −0.633733701792(6) −0.633 733 908 758(2)

(n = 1) 1s4g1Φg (n = 1) 1s4g3Φg

Full-CI/320, Ref. [38] −0.622 61 −0.622 61

FC-LSEa, Ref. [20] −0.622 53(17) −0.622 53(17)

JC*(5,3)/140 −0.622 625 783 −0.622 625 783

JC*(15,13)/11832c −0.622 628 438 589(3) −0.622 628 439 218(3)

(n = 3) 1s6h1Φu (n = 3) 1s6h3Φu

Full-CI/320, Ref. [38] −0.613 77 −0.613 77

JC*(5,3)/140 −0.616 525 695 795 −0.616 525 695 796

JC*(15,13)/12240d −0.616 525 704 654 9(2) −0.616 525 704 656 4(2)

* the same nonlinear parameters in both basis sectors
a Free Complement local Schrödinger equation method
b u = 0.173,w = 0.760
c u = 0.105,w = 0.803
d u = 0.082,w = 0.760
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Figure 4. BO potential for n = 1..3 Φ states. The difference between singlet and triplet states for specific
gerade/ungerade symmetry and fixed n is indistinguishable on this scale.

Our numerical results for 1− 2 Φ, and 3 Φu states are presented in the Supplementary
Material in Tables S29-S38, and are shown in Fig. 4. In the literature Φ states were
calculated only in Ref. [20] using the Free Complement local Schrödinger equation
(FC-LSE) method of Nakashima and Nakatsuji [18] and in Ref. [38] using the Full-CI
method. In this latter work the results were presented only for a few selected states and
at specific points corresponding to the energy minimum and dissociation limit, R = 2
au and R = 100 au, respectively. Consequently, in Table 3 we present a comparison to
those results at the curve minimum R = 2 au. It appears, that for the Φ state, FC-LSE
functions do not span the complete Hilbert space with their choice of initial spatial
functions. The deviation is slightly smaller than 1 cm−1, and thus larger than the
uncertainty estimates. Ultimately though, direct comparison with experimental data
is cumbersome, because for such highly excited states the Rydberg electron decouples
from the nuclear axis due to nonadiabatic effects and Λ is no longer a good quantum
number.

Due to high angular momentum, the curves are very regular. The difference between
neighbouring states propagates almost unchanged from those of helium values [33] at
R = 0 up to around R = 5 au. The singly-excited characters of 1, 2 Φg and 1, 2, 3 ∆u

states start at R = 0 as 1s5g, 1s6g, 1s4f , 1s5f , and 1s6f , respectively and this
configurations propagate at least up to R = 5 au, with the exception of 3 Φu states
which sharply switch to 1s6h configuration at R ∼ 0.3 au.
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5. Summary and Conclusions

In order to compare our results with the plethora of transitions measured with ac-
curacy reaching ∼ 0.001 cm−1, theoretical values of relativistic, QED, adiabatic, and
nonadiabatic corrections are necessary. The importance of the latter is arguably the
most significant due to strong nonadiabatic couplings, because in contrast to the well-
isolated X 1Σ+

g ground state, energy differences of BO energies between neighboring

excited states can be as small as a few cm−1. Even though some of the states with
high Λ are hardly accessible with spectroscopic methods, knowledge about them has
proven to be beneficial for extrapolation of high-n molecular Rydberg states. Incorpo-
ration of clamped-nuclei ab-initio potentials for relatively low n has been found fruitful
in approaches based on Multichannel Quantum Defect Theory (MQDT) for Rydberg
states of H2 [45–50].

In recent years explicitly correlated Gaussian (ECG) functions have achieved a great
success in high-precision calculations of hydrogen molecule isotopologues, ranging in
applications from BO energy [15, 51] and nonadiabatic corrections [52, 53] to relativis-
tic [54, 55] and QED [56, 57] corrections. All those calculations, however, were limited
to the electronic X1Σ+

g ground state.
In the present work we have demonstrated that the Ko los-Wolniewicz bases still find

a niche in high-accuracy variational calculations of excited states of a diatomic two-
electron molecule, especially for the states with high angular momentum. Alongside
with our previous calculations of Σ+ states [58], present calculations reconcile with all
the previous ab-initio calculations of BO potentials of H2 by elucidating the actual
accuracy of the former calculations. Numerical uncertainty of Born-Oppenheimer po-
tentials has been alleviated from a level of a few to the millionth parts of cm−1; hence,
we have laid the foundation for the evaluation of further corrections to the energy
levels, lack of knowledge of which currently hinders comparison with state-of-the-art
spectroscopic results.
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