
Nuclear spin-spin coupling in HD, HT, and DT

Mariusz Puchalski,1 Jacek Komasa,1 and Krzysztof Pachucki2

1Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
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The interaction between nuclear spins in a molecule is exceptionally sensitive to the physics beyond
the Standard Model. However, all present calculations of the nuclear spin-spin coupling constant J
are burdened by computational difficulties, which hinders the comparison to experimental results.
Here, we present a variational approach and calculate the constant J in the hydrogen molecule with
the controlled numerical precision, using the adiabatic approximation. The apparent discrepancy
with experimental result is removed by an analysis of nonadiabatic effects based on the experimental
values of the J-constant for HD, HT and DT molecules. This study significantly improves the
reliability of the NMR theory for searching new physics in the spin-spin coupling.

PACS numbers:

Introduction. The line splitting observed in a nuclear
magnetic resonance (NMR) experiment is one of the
smallest splittings directly observed in molecular spec-
troscopy. It results from the indirect interaction between
nuclear spins [1]. Typically, the magnitude of the nu-
clear spin-spin coupling constant J is many orders of
magnitude smaller than the energy of the fundamental
rotational excitation. The indirect spin-spin interaction
of nuclei was discovered by Hahn and Maxwell [2] and
independently by McNeil, Slichter, and Gutowsky [3] in
1951. In the HD molecule, the J-coupling (≈ 43 Hz) was
first observed by Carr and Purcell [4]. The most accu-
rate measurements, reported by Neronov et al. [5, 6] and
recently by Garbacz et al. [7, 8], reach the accuracy of
0.01 Hz. Due to its extreme smallness, the J-coupling is
potentially sensitive to the physics beyond the Standard
Model (BSM). In particular, it could yield constraints on
anomalous spin-dependent axion-nucleon interactions at
the atomic scale [9], which are several orders of magni-
tude more stringent than those inferred from any other
sources [10, 11].

In order to test the accuracy of NMR theory and to
search for BSM physics, the high accuracy measurements
must be put together with equally accurate theoretical
predictions. In this paper we report on high-precision
calculations of J in the adiabatic approximation, ana-
lyze nonadiabatic effects by comparison with experimen-
tal values for HD, HT, and DT molecules, and estimate
the relativistic and QED corrections. Nonadiabatic ef-
fects, or more precisely, the finite nuclear mass correc-
tions, in spite of their importance, have previously been
completely omitted in all the works devoted to spin-spin
coupling constant, including those of [9].

Several calculations of the leading contribution to the
coupling constant J have been performed using methods
based on the one-electron approximation and direct use
of Ramsey’s formulas [12–15]. This standard approach
is widely implemented in quantum chemistry programs
and applied to many molecular systems. However, all

the presently developed methods ignore the fact that the
sum over intermediate states is only conditionally con-
vergent and therefore the numerical accuracy is difficult
to control. Here, we demonstrate an algebraic elimina-
tion of all the divergences. Transformed formulas lead
to finite results for a definite symmetry of intermediate
electronic states, and allow the variational approach to be
employed for all the second-order contributions, which in
turn ensures high numerical precision, in contrast to all
the previous approaches. Finally, we perform numerical
calculations for the hydrogen molecules using the explic-
itly correlated basis functions. The difference of the ob-
tained results with the experimental values is explained
in terms of the finite nuclear mass effects.
Physics of the J-coupling. The theory of the nuclear

spin-spin interaction in a diatomic molecule was first for-
mulated by Ramsey [1]. His formula for the interaction of
nuclei A and B distant from each other by R, rewritten
in our notation, is

J(R) ~IA · ~IB = 2
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and energy E(R). The interaction of the spin of nucleus
X(= A,B) with electrons is
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and the vector potential ~A due to the nuclear magnetic
moment is

e ~A(~raX) = − α gX
2MX

~IX ×
~raX
r3aX

. (5)

The electron and nucleus g-factors, g and gX , the mass
ratios, and the other physical constants, are known to
high accuracy. So, in principle, the J-coupling can be
calculated to high accuracy too. However, Ramsey’s for-
mula has several limitations. In particular, it does not
account for relativistic nor QED effects and to the best
of our knowledge nobody so far has described these ef-
fects in a complete manner. More importantly, the lack
of the relativistic correction is responsible for the expo-
nential growth of J(R) ∼ exp(2R), so Ramsey’s formula
loses its validity at large R. Another limitation of this
formula is the neglect of the finite nuclear masses and we
shall discuss this issue later on.

The total spin-spin coupling J is conventionally split
into four parts, namely the Fermi contact (FC), param-
agnetic spin-orbit (PSO), spin-dipole (SD), and diamag-
netic spin-orbit (DSO)

J = JFC + JSD + JPSO + JDSO . (6)

Since the electronic wave function for the hydrogen
molecule is a product of a spatial and spin singlet func-
tions, all the electron spin operators can be replaced by
their difference, namely ~s1 → (~s1 − ~s2)/2. Next, us-
ing the identity

〈
(s1 − s2)i (s1 − s2)j

〉
= δij and κ =

mα6 gA gBm
2/(MAMB), these parts can be expressed

as
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where

Q1(A) = 4π
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(11)
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and where rij ≡ ri rj − δij

3 r2.
Conditional convergence. There is at least one subtle

point in the numerical evaluation of these second-order
matrix elements. The resolvent 1/(E − H) is conven-
tionally replaced with a sum over states or pseudostates

expressed in terms of some basis functions. This sum is
only conditionally convergent. For example, the separate
sums over gerade and ungerade states for HD molecule
are divergent. It is because the exact perturbed wave
function φ̃ = (E −H)−1Q1(B)φ behaves as ∼ 1/r1B for
small distances from nucleus B. Now, if we impose the
gerade or ungerade symmetry, the perturbed wave func-
tion contains 1/r1B ± 1/r1A. It becomes an ill defined
expression, when multiplied by the Dirac δ(r1A) from
Q1(A), which appears as the divergence of the separate
sums over gerade or ungerade pseudostates. So, if the
sum over intermediate states is only conditionally con-
vergent, the second-order matrix elements of Eqs. (7)–(9)
may give an arbitrary value. For this reason, we trans-
form the second-order matrix elements to a more regular
form, which provides several advantages over the original
one. First of all, the regularized individual parts take fi-
nite values, which removes the problem of cancellation of
infinities. Second, the regularization enables symmetric
second-order quantities with well-defined lower bound to
be formed, which gives the opportunity to employ vari-
ational principle and optimize the nonlinear parameters
for each individual matrix element. Finally, the regular-
ized matrix elements exhibit significantly faster conver-
gence with the growing size of the basis. All together,
these three features allow highly accurate results to be
obtained even with relatively small basis sets.

Regularization. The regularization procedure goes as
follows [16]. Let Q be an operator to be regularized. We
can assume that it depends only on one electron variables
Q = Q(~r1). In all the considered cases one can find an
operator Q̃ such that −∇2

1Q̃ ≡ −[∇1, [∇1, Q̃]] = Q, so

Q = −(∇2
1 +∇2
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}
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the PSO-part remains unchanged, and the SD-part is reg-
ularized with

Q̃ij3 (A) =
1

6

(
rij1A
r31A
−
rij2A
r32A

)
. (19)

Finally, the first-order terms Q′ are further regularized,
using Eq. (14), to reduce their singularities and improve
convergence of matrix elements.

Numerical results. The variational wave function for
the electronic ground state,

ψ(1Σ+
g ) =

∑
i

ci ψi(~r1, ~r2) , (20)

ψi = (1 + ı̂) (1 + P1↔2)φi(~r1, ~r2), (21)

where ı̂ and P1↔2 are the inversion and the electron ex-
change operators, can be accurately represented in the
basis of explicitly correlated Gaussian (ECG) functions
of the form

φ = e−a1A r
2
1A−a1B r21B−a2A r

2
2A−a2B r22B−a12 r

2

. (22)

The nonlinear a-parameters are determined variation-
ally for every ECG basis function whereas the linear c-
parameters are obtained from the solution of the gener-
alized eigenvalue problem. The primary advantage of the
ECG type of functions is that all integrals necessary for
the calculations of nonrelativistic and relativistic opera-
tors can be evaluated efficiently as described in [17].

The regularized second-order matrix elements are split
into twelve parts with definite symmetry and the definite
electronic angular momentum ~n · ~L, where ~n = ~R/R.
These intermediate states are 3Σ+, 1Σ−, 1Π, 3Π, 3∆
with definite g or u symmetry. Each state is represented
by 128-, 256-, and 512-term ECG functions with nonlin-
ear a-parameters obtained by optimization of a pertinent
second-order matrix element with the symmetrized oper-
ator [Q(A)±Q(B)]r. Careful optimization at different
basis length is crucial for maintaining good control of
numerical precision.

TABLE I: Results of the extrapolation to a complete basis set limit and the comparison with previous calculations for individual
contributions to J (in Hz) for HD at Re = 1.4 au. Analogous results for HT and DT can be obtained by rescaling the HD
results with pertinent ratios of nuclear magnetic moments. Physical constants taken from [18].

Basis set size JFC JPSO JSD JDSO J

128 40.175 433 0.837 338 5 0.443 388 −0.314 225 8 41.142 234
256 40.174 626 0.836 695 0 0.442 969 −0.314 231 1 41.140 059
512 40.174 148 0.836 668 3 0.442 731 −0.314 231 4 41.139 316
∞ 40.174 1(3) 0.836 665(15) 0.442 70(12) −0.314 23 41.139 2(3)

References

MCSCF [19] 40.186 0.818 0.438 −0.307 41.135
SOPPA(CCSD) [20] 40.19 0.76 0.50 −0.29 41.17

FCI [7] 40.185 7 0.836 0 0.448 6 −0.314 1 41.156 3

The numerical convergence with the progressing basis
length for JFC, JPSO, JSD, and JDSO parts at the equi-
librium distance R = 1.4 au is presented in Table I. The
extrapolated numerical result for the total value of J is in
agreement with previously published results but is con-
siderably more accurate. This is due to the separate
optimization of gerade and ungerade basis, which was
possible only after the regularization of the second-order
matrix elements.

J(R) is a fast growing function of the internuclear
distance R. For small R it may behave as ∼ R−1 or
∼ R0, but we have not been able to resolve between
these two asymptotics. For large R, the J(R) goes
like ∼ R−5/2 exp(2R), which corresponds to the large-R

asymptotic of the exchange energy [21]. This exponential
growth is unphysical and is due to the neglect of rela-
tivistic corrections. The dependence of J(R) multiplied
by R exp(−2R) is presented in Fig. 1.

Despite the fact that the J(R) curve flattens near
the equilibrium distance, the temperature effect is non-
negligible. Several of the lowest rotational states were
included in the Boltzmann formula to obtain the spin-
spin coupling constant corresponding to 300 K. For the
rotational averaging we employed the Born-Oppenheimer
interaction potential [23] augmented by the adiabatic cor-
rections of [24], both obtained from highly accurate cal-
culations with the James-Coolidge functions. Table II
presents averaged results for temperatures of 0, 40, and
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FIG. 1: Nuclear spin-spin interaction J(R) times
R exp(−2R) in Hz as a function of internuclear distance R
in au, the equilibrium distance is near 1.4 au.

300 K with the comparison to experimental results. Most
importantly, we observe a −0.19 Hz difference between
the experiments and our calculation for the HD molecule.
For HT and DT this difference amounts to −1.06 and
−0.09 Hz, respectively. We note, that our results are
obtained using adiabatic approximation and the theoret-
ical uncertainty does not include effects due to the finite
nuclear mass of the order of O(m/µn). These effects,
not yet considered in the literature, are responsible for
the above mentioned differences. One partially includes

TABLE II: Theoretical predictions in adiabatic approxima-
tion at T = 300K compared to experimental value. The
difference is interpreted as a finite nuclear mass correction
of order O(me/µn). Results for T = 40K are from [9] and
our theoretical predictions are presented for the comparison
with that work. Theoretical uncertainties are purely numeri-
cal, thus do not include those due to nonadiabatic, relativistic
and QED corrections.

Ref. HD HT DT
JBO(Re) 41.139 2(3) 285.857(2) 43.880 7(3)
δJ(0K) 1.968 0(9) 12.869(6) 1.554 6(7)

δJ(300K) 0.199 5 1.391 8 0.215 3
J(300K) 43.306 7(9) 300.117(6) 45.650 6(9)

Jexp(300K) [8] 43.12(1) 299.06(36) 45.56(2)
[5, 6] 43.115(9)
[22] 43.130(15)

δJ(40K) 0.010 0
J(40K) 43.117 2(9)

Jexp(40K) [9, 22] 42.94(4)

them through the averaging of J(R) with the nuclear vi-
brational function χ(R)

J =

∫
d3R J(R)χ∗(R)χ(R) , (23)

nevertheless, the neglected effects are of the order of the

ratio of the electron mass to the reduced nuclear mass
m/µn, which e.g. for HD molecule is about 0.8 · 10−3.
Therefore, the use of Ramsey’s formula alone limits the
accuracy of J by at least m/µn J = 0.036 Hz. To obtain
a more reliable estimation, we replace the electron mass
by the reduced one µ = mµn/(m+ µn) in Ramsey’s for-
mula. Then, each Dirac δ in Eq. (7) scales as (µ/m)3, the
nonrelativistic Hamiltonian in the denominator scales as
µ/m, and the total factor in the dominating JFC term is
(µ/m)5. After expansion in the electron mass the finite
nuclear mass correction becomes −5m/µn J = −0.18 Hz,
which is close to the difference with the experiment of
−0.19 Hz. Analogous estimation for HT and DT yields
−1.09 and −0.10 Hz in comparison with discrepancy be-
tween experiment and theory equal to −1.12 and −0.09
Hz.

From the other side, the finite nuclear mass effects can
be inferred from experimental values for different isotopes
[8] as follows. Let us subtract from the experimental val-
ues Jexp(300K) the theoretical predictions J(300K) and
rescale the remainder by magnetic moments of nuclei to
that of HD. Such normalized remainders δJ̃ , differ due
to different value of the reduced nuclear mass, as shown
on Fig. 2. This dependence agrees with the expected be-
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1
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FIG. 2: The rescaled remainder of the nuclear spin-spin in-
teraction δJ̃ in Hz as a function of the reduced nuclear mass.
The fitted curve (in blue) is of the form A/µn +B/µ

3/2
n , while

the linear fit (in red) is J0 + C/µn, with J0 = 0.043 Hz

havior of ∼ 1/µn, which is demonstrated by the fitted
functions. We do not aim to analyze in details differ-
ent fits because of large experimental uncertainties, but
we claim that the finite nuclear mass effects account for
the difference between theoretical predictions and exper-
imental results, and should be precisely calculated prior
looking for BSM physics in the spin-spin coupling [9].
These very challenging calculations can be performed us-
ing the nonadiabatic perturbation theory [25], or by us-
ing the fully nonadiabatic approach with explicitly corre-
lated Gaussian or exponential functions. In both cases,
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one should include additional electron-nucleus interac-
tions not accounted for in Ramsey’s formula.

Regarding other possible sources of theoretical uncer-
tainties, the relativistic correction for the HD molecule at
the equilibrium distance has been estimated numerically
by Helgaker et al. [7] as being of the order of 0.01 Hz.
Our estimation of this correction is 3α2 JFC ≈ 0.006 Hz,
which is twice the relativistic (so called Breit) correction
to the hyperfine splitting in atomic hydrogen. Moreover,
the radiative correction to J , again from the hydrogenic
hyperfine splitting is 2 (ln 2 − 5

2 )α2 JFC = −0.0077 Hz.
Both corrections, regardless of the fact that they com-
pensate each other to a large extent, are negligible at
present.

Summary. The main results of this work are the de-
velopment of a new computational method for the spin-
spin coupling constant J including algebraic elimination
of all singularities, the highly precise calculation for HD,
HT, and DT molecules, and the resolution of the observed
difference with experimental results in terms of finite nu-
clear mass effects. We established a benchmark, which is
a reliable starting point for accurate evaluation of finite
nuclear mass, relativistic, and QED corrections. More-
over, we notice, that the proposed regularization and
variational optimization of the basis functions can be ap-
plied to other molecules enabling high-precision numeri-
cal results and the possibility to search for BSM physics
in heavier systems, where it is significantly enhanced.
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