Relativistic corrections for the ground electronic state of molecular hydrogen

Mariusz Puchalski and Jacek Komasa
Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
Krzysztof Pachucki
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

(Dated: April 27, 2017)

Abstract

We recalculate the leading relativistic corrections for the ground electronic state of the hydrogen molecule using the variational method with explicitly correlated functions that satisfy the interelectronic cusp condition. The new computational approach allowed for the control of the numerical precision which reached about eight significant digits. More importantly, the updated theoretical energies became discrepant with the known experimental values and we conclude that the yet unknown relativistic recoil corrections might be larger than previously anticipated.

PACS numbers: $31.30 . J-$, 12.20.Ds, 31.15.-p

I. INTRODUCTION

Theoretical studies of the hydrogen molecule are the cornerstone of the molecular quantum mechanics. Due to its simplicity, the achieved precision is the highest among all molecules and still has the potential of significant enhancement. This high precision of theoretical predictions for H_{2} leads to improved tests of quantum electrodynamics and improved bounds on hypothetical interactions [1]. Moreover, at the $10^{-7} \mathrm{~cm}^{-1}$ precision level the dissociation energy is sensitive to the proton charge radius, which may help to resolve the so-called proton radius conundrum [2]. This requires high accuracy calculations of not only nonrelativistic energies, but also leading relativistic $O\left(\alpha^{2}\right)$, QED $O\left(\alpha^{3}\right)$, as well as the higher order corrections $O\left(\alpha^{4}\right)$ and $O\left(\alpha^{5}\right)$. In fact, the nonrelativistic energies can already be calculated with the precision of $10^{-7} \mathrm{~cm}^{-1}$, as demonstrated in Ref. [3]. The $O\left(\alpha^{4}\right)$ contribution has very recently been calculated [4] using explicitly correlated Gaussian (ECG) functions with $1+r_{12} / 2$ prefactor ($r \mathrm{ECG}$) that causes the interelectronic cusp condition to be exactly satisfied. Here, we report the results for the leading $O\left(\alpha^{2}\right)$ relativistic correction using r ECG functions and conclude that the compilation of previous results in Ref. [5] has underestimated numerical uncertainties. We improve the numerical precision by 3-4 orders of magnitude and present in detail our computational approach.

II. COMPUTATIONAL METHOD

In the Born-Oppenheimer (BO) approximation the total wave function is assumed to be a product of the electronic and nuclear functions. The Schrödinger equation for the electronic wave functions in the infinite nuclear mass limit (assuming atomic units) is

$$
\begin{equation*}
H \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\mathcal{E}(R) \psi\left(\vec{r}_{1}, \vec{r}_{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\frac{1}{2}\left(\vec{p}_{1}^{2}+\vec{p}_{2}^{2}\right)+V \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\frac{1}{R}-\frac{1}{r_{1 A}}-\frac{1}{r_{2 A}}-\frac{1}{r_{1 B}}-\frac{1}{r_{2 B}}+\frac{1}{r} \tag{3}
\end{equation*}
$$

with $R=r_{A B}$ and $r=r_{12}$, and where indices 1 and 2 correspond to electrons, whereas A and B correspond to the nuclei. The leading relativistic correction in the BO approximation is $\mathcal{E}_{\text {rel }}(R)$ to the nonrelativistic potential $\mathcal{E}(R)$. This correction can be expressed in terms of the expectation value

$$
\begin{equation*}
\mathcal{E}_{\mathrm{rel}}(R)=\langle\psi| H_{\mathrm{rel}}|\psi\rangle \tag{4}
\end{equation*}
$$

of the Breit-Pauli Hamiltonian [6]

$$
\begin{aligned}
H_{\mathrm{rel}}= & -\frac{1}{8}\left(p_{1}^{4}+p_{2}^{4}\right)+\pi \delta^{3}(r)-\frac{1}{2} p_{1}^{i}\left(\frac{\delta^{i j}}{r}+\frac{r^{i} r^{j}}{r^{3}}\right) p_{2}^{j} \\
& +\frac{\pi}{2}\left(\delta^{3}\left(r_{1 A}\right)+\delta^{3}\left(r_{2 A}\right)+\delta^{3}\left(r_{1 B}\right)+\delta^{3}\left(r_{2 B}\right)\right),(5)
\end{aligned}
$$

where we neglected spin dependent terms vanishing for the ground electronic state of ${ }^{1} \Sigma_{g}^{+}$symmetry. The accurate calculation of the above expectation value is the principal goal of this work. We assume that every r ECG basis function contains the $1+r / 2$ factor and perform special transformation (regularization) of matrix elements, including those with the Dirac- δ function [7], to improve the numerical convergence. We demonstrate a significant enhancement in numerical precision and indicate that previous numerical results [5] were not as accurate as claimed. In order to be more convincing, we provide results obtained in three approaches: i) direct (no regularization) with ECG, ii) standard regularization with ECG, and iii) modified regularization with r ECG functions. To test the convergence of these three different approaches, first we perform calculations for $R=0$, namely for the helium atom, for which highly accurate reference results can be obtained using explicitly correlated exponential functions. Next, the ECG calculations are performed for molecular hydrogen. Comparison of individual operators from different approaches is presented for the equilibrium internuclear distance, namely for $R=1.4$ a.u. The most accurate predictions were obtained for the regularization with $r \mathrm{ECG}$ functions at 53 points in the range $R=0.0-10$ a.u.

Except for our recent paper [4], there has been no similar study of regularization techniques in the literature due to difficulties with two-center integrals involving inverse powers of interparticle distances. In relation to this, we have introduced a novel algorithm for numerical quadrature of non-standard ECG two-center integrals [4], which enables very efficient calculation of all complicated matrix elements.

III. REGULARIZATION OF THE RELATIVISTIC CORRECTION

In this section we provide regularization formulas for matrix elements with Dirac- δ and p^{4} operators in $H_{\text {rel }}$. The latter operator can be regularized according to two schemes: the standard one, already employed in the past in quantum molecular computations, [8] and the modified scheme, valid in the case of the wave function obeying Kato's cusp condition.

According to the standard scheme, the relativistic operators are transformed into the regular form by the following relations

$$
\begin{align*}
4 \pi \delta^{3}\left(r_{1 A}\right) & =4 \pi\left[\delta^{3}\left(r_{1 A}\right)\right]_{r}+\left\{\frac{2}{r_{1 A}}, H-\mathcal{E}\right\} \tag{6}\\
4 \pi \delta^{3}(r) & =4 \pi\left[\delta^{3}(r)\right]_{r}+\left\{\frac{1}{r}, H-\mathcal{E}\right\} \tag{7}\\
p_{1}^{4}+p_{2}^{4} & =\left[p_{1}^{4}+p_{2}^{4}\right]_{r}+4\{\mathcal{E}-V, H-\mathcal{E}\}+4(H-\mathcal{E})^{2} \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
4 \pi\left[\delta^{3}\left(r_{1 A}\right)\right]_{r} & =\frac{4}{r_{1 A}}(\mathcal{E}-V)-\vec{p}_{1} \frac{2}{r_{1 A}} \vec{p}_{1}-\vec{p}_{2} \frac{2}{r_{1 A}} \vec{p}_{2}, \tag{9}\\
4 \pi\left[\delta^{3}(r)\right]_{r} & =\frac{2}{r}(\mathcal{E}-V)-\vec{p}_{1} \frac{1}{r} \vec{p}_{1}-\vec{p}_{2} \frac{1}{r} \vec{p}_{2}, \tag{10}\\
{\left[p_{1}^{4}+p_{2}^{4}\right]_{r} } & =4(\mathcal{E}-V)^{2}-2 p_{1}^{2} p_{2}^{2} . \tag{11}
\end{align*}
$$

For the exact wave function ψ, which fulfills the electronic Schrödinger equation $(\mathcal{E}-H) \psi=0$, the expectation value identity holds $\langle\psi| \ldots|\psi\rangle=\langle\psi|[\ldots]_{r}|\psi\rangle$, since for an arbitrary operator $Q,\langle\psi|\{Q, H-\mathcal{E}\}|\psi\rangle=0$. For an approximate function $\tilde{\psi}$, such expectation values do not vanish, but converge to zero at the limit $\tilde{\psi} \rightarrow \psi$. In practice, the numerical convergence of the regularized form is much faster, so the leading relativistic correction shall be evaluated as

$$
\begin{equation*}
\mathcal{E}_{\mathrm{rel}}(R)=\langle\psi|\left[H_{\mathrm{rel}}\right]_{r}|\psi\rangle \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
{\left[H_{\mathrm{rel}}\right]_{r}=} & -\frac{1}{8}\left[p_{1}^{4}+p_{2}^{4}\right]_{r}+\frac{\pi}{2}\left(\left[\delta^{3}\left(r_{1 A}\right)\right]_{r}+\left[\delta^{3}\left(r_{2 A}\right)\right]_{r}\right. \\
& \left.+\left[\delta^{3}\left(r_{1 B}\right)\right]_{r}+\left[\delta^{3}\left(r_{2 B}\right)\right]_{r}\right)+\pi\left[\delta^{3}(r)\right]_{r} \\
& -\frac{1}{2} p_{1}^{i}\left(\frac{\delta^{i j}}{r}+\frac{r^{i} r^{j}}{r^{3}}\right) p_{2}^{j} \tag{13}
\end{align*}
$$

The modified regularization is applied when the wave function $\tilde{\psi}$ exactly satisfies the interelectronic cusp condition, as
for example the r ECG function does. In this case, the action of $\left[p_{1}^{4}+p_{2}^{4}\right]_{r}$ on such a function can be represented as

$$
\begin{equation*}
\left[p_{1}^{4}+p_{2}^{4}\right]_{r}|\tilde{\psi}\rangle=\left\{4(\mathcal{E}-V)^{2}-2 \tilde{p}_{1}^{2} \tilde{p}_{2}^{2}+8 \pi \delta^{3}(r)\right\}|\tilde{\psi}\rangle \tag{14}
\end{equation*}
$$

The new term $\tilde{p}_{1}^{2} \tilde{p}_{2}^{2}$ (in contrast to $p_{1}^{2} p_{2}^{2}$) is understood as the differentiation $\nabla_{1}^{2} \nabla_{2}^{2}$ of $\tilde{\psi}$ as a function, and what is omitted

$$
\begin{equation*}
-2 \nabla_{1}^{2} \nabla_{2}^{2}(1+r / 2)=8 \pi \delta^{3}(r) \tag{15}
\end{equation*}
$$

coincides with the last term in Eq. (14). Now, if we are interested in determination of the $\langle\tilde{\psi}| p_{1}^{4}+p_{2}^{4}|\tilde{\psi}\rangle$ alone, we can additionally replace the Dirac- δ operator by its regularized form and obtain the fully-regularized expectation value
$\langle\psi| p_{1}^{4}+p_{2}^{4}|\psi\rangle=\langle\psi| 4(\mathcal{E}-V)^{2}-2 \tilde{p}_{1}^{2} \tilde{p}_{2}^{2}+8 \pi\left[\delta^{3}(r)\right]_{r}|\psi\rangle$.
We emphasize that here, unlike $p_{1}^{2} p_{2}^{2}$, the $\tilde{p}_{1}^{2} \tilde{p}_{2}^{2}$ term differentiates the right-hand-side wave function only. The specific relationship (14) can also be further employed to simplify the expectation value of the overall Breit-Pauli Hamiltonian (5) by complete elimination of the $\pi \delta^{3}(r)$ term

$$
\begin{align*}
\mathcal{E}_{\mathrm{rel}}(R)= & \langle\psi|\left[H_{\mathrm{rel}}\right]_{r}^{\prime}|\psi\rangle \tag{17}\\
{\left[H_{\mathrm{rel}}\right]_{r}^{\prime}=} & -\frac{1}{2}(\mathcal{E}-V)\left(\mathcal{E}-\frac{1}{R}-\frac{1}{r}\right) \\
& +\frac{1}{4}\left(\tilde{p}_{1}^{2} \tilde{p}_{2}^{2}+\vec{p}_{1} \tilde{V} \vec{p}_{1}+\overrightarrow{p_{2}} \tilde{V} \vec{p}_{2}\right) \\
& -\frac{1}{2} p_{1}^{i}\left(\frac{\delta^{i j}}{r}+\frac{r^{i} r^{j}}{r^{3}}\right) p_{2}^{j} \tag{18}
\end{align*}
$$

with $\tilde{V}=-1 / r_{1 A}-1 / r_{1 B}-1 / r_{2 A}-1 / r_{2 B}$. Apart from its compactness, this formula has an additional important advantage which is not readily noticeable. Due to the above cancellations, all the time-consuming integrals with three odd powers of interparticle distances do not appear in the matrix elements with r ECG functions. This non-trivial cancellation has remarkable impact on calculations of the relativistic correction.

IV. INTEGRALS WITH ECG FUNCTIONS

The variational wave function

$$
\begin{align*}
\psi & =\sum_{i} c_{i} \psi_{i}\left(\vec{r}_{1}, \vec{r}_{2}\right) \tag{19}\\
\psi_{i} & =(1+\hat{i})\left(1+P_{1 \leftrightarrow 2}\right) \phi_{i}\left(\vec{r}_{1}, \vec{r}_{2}\right) \tag{20}
\end{align*}
$$

where \hat{i} and $P_{1 \leftrightarrow 2}$ are the inversion and the electron exchange operators, can be accurately represented in the basis of ECG functions of the form

$$
\begin{equation*}
\phi_{\Sigma^{+}}=e^{-a_{1 A} r_{1 A}^{2}-a_{1 B} r_{1 B}^{2}-a_{2 A} r_{2 A}^{2}-a_{2 B} r_{2 B}^{2}-a_{12} r^{2}} \tag{21}
\end{equation*}
$$

or in the basis of the modified $r \mathrm{ECG}$ functions

$$
\begin{equation*}
\phi_{\Sigma^{+}}=\left(1+\frac{r}{2}\right) e^{-a_{1 A} r_{1 A}^{2}-a_{1 B} r_{1 B}^{2}-a_{2 A} r_{2 A}^{2}-a_{2 B} r_{2 B}^{2}-a_{12} r^{2}} \tag{22}
\end{equation*}
$$

Nonlinear a-parameters are determined variationally for every ECG or r ECG basis function, and linear c-parameters come from the solution of the general eigenvalue problem. The primary advantage of the ECG type of functions is that all integrals necessary for the calculations of nonrelativistic and relativistic operators can be evaluated very effectively as described below.

Each matrix element can be expressed as a linear combination of the following ECG integrals

$$
\begin{array}{r}
f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=\frac{1}{\pi^{3}} \int d^{3} r_{1} \int d^{3} r_{2} r_{1 A}^{n_{1}} r_{1 B}^{n_{2}} r_{2 A}^{n_{3}} r_{2 B}^{n_{4}} r_{12}^{n_{5}} \\
\times e^{-a_{1 A} r_{1 A}^{2}-a_{1 B} r_{1 B}^{2}-a_{2 A} r_{2 A}^{2}-a_{2 B} r_{2 B}^{2}-a_{12} r_{12}^{2}}(23) \tag{23}
\end{array}
$$

with integers n_{i} and real parameters a. Among all the integrals represented by the above formula, we can distinguish two subsets that can be evaluated analytically. The first subset contains the regular ECG integrals with the non-negative even integers n_{i} such that $\sum_{i} n_{i} \leq \Omega_{1}$, where the shell parameter $\Omega_{1}=0,2,4, \ldots$. These integrals can be generated by differentiation over a-parameters of the following master integral

$$
\begin{equation*}
f(0,0,0,0,0)=X^{-3 / 2} e^{-R^{2} \frac{Y}{X}} \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
X= & \left(a_{1 A}+a_{1 B}+a_{12}\right)\left(a_{2 A}+a_{2 B}+a_{12}\right)-a_{12}^{2} \tag{25}\\
Y= & \left(a_{1 B}+a_{1 A}\right) a_{2 A} a_{2 B}+a_{1 A} a_{1 B}\left(a_{2 A}+a_{2 B}\right) \\
& +a_{12}\left(a_{1 A}+a_{2 A}\right)\left(a_{1 B}+a_{2 B}\right) . \tag{26}
\end{align*}
$$

Each differentiation raises one of the n_{i} exponents by two. The second subset of integrals permits a single odd index $n_{i} \geq-1$ for which $\sum_{i} n_{i} \leq \Omega_{2}\left(\Omega_{2}=-1,1,3, \ldots\right)$. These so-called Coulomb ECG integrals can also be obtained analytically by differentiation of another master integral. For instance, when $n_{1}=-1$ the master integral reads

$$
\begin{equation*}
f(-1,0,0,0,0)=\frac{1}{X \sqrt{X_{1}}} e^{-R^{2} \frac{Y}{X}} F\left[R^{2}\left(\frac{Y_{1}}{X_{1}}-\frac{Y}{X}\right)\right] \tag{27}
\end{equation*}
$$

where $X_{1}=\partial_{a_{1 A}} X, Y_{1}=\partial_{a_{1 A}} Y$, and $F(x)=\operatorname{erf}(x) / x$.
In the standard use of ECG functions the regular integrals with $\Omega_{1}=2$ and Coulomb with $\Omega_{2}=-1$ are sufficient to evaluate matrix elements of the electronic Schrödinger equation (1) and thus to perform calculations of the nonrelativistic energy of the ground state in molecular hydrogen. If additionally analytic gradient minimization is employed, the integrals with $\Omega_{1}=4$ and $\Omega_{2}=1$ are required. Such nonrelativistic calculations have been widely used for many atomic and molecular systems [9].

The molecular ECG integrals, as opposed to the atomic ones, have no known analytic form when two or more n_{i} are odd. Such extended integrals originate from regularization of the relativistic operators, for example from V^{2} in Eq. (11), or from matrix elements of the nonrelativistic Hamiltonian with r ECG basis. The algorithm for numerical evaluation of this extended type of integrals relies on the following relation,
which decreases one of the indices by one

$$
\begin{align*}
& f\left(n_{1}-1, n_{2}, n_{3}, n_{4}, n_{5}\right)= \tag{28}\\
& \left.\quad \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \mathrm{d} y f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)\right|_{a_{1 A} \rightarrow a_{1 A}+y^{2}}
\end{align*}
$$

The right-hand-side f is understood as the integral $f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ evaluated with the $a_{1 A}$ parameter replaced by $a_{1 A}+y^{2}$. The transformation $y=-1+1 / x$ converts the infinite integration domain to the finite interval $(0,1)$ for which an m-point generalized Gaussian quadrature with logarithmic end-point singularity [10] is applied

$$
\begin{align*}
& \int_{0}^{1} d x\left[W_{1}(x)+\ln (x) W_{2}(x)\right] \\
& =\sum_{i=1}^{m} w_{i}\left[W_{1}\left(x_{i}\right)+\ln \left(x_{i}\right) W_{2}\left(x_{i}\right)\right] . \tag{29}
\end{align*}
$$

The $W_{1,2}$ are arbitrary polynomials of maximal degree $m-1$, w_{i} are weights, and x_{i} are nodes. In terms of this quadrature the integral (28) can be approximated by the formula

$$
\begin{array}{r}
f\left(n_{1}-1, n_{2}, n_{3}, n_{4}, n_{5}\right)=\frac{2}{\sqrt{\pi}} \sum_{i=1}^{m} w_{i}\left(y_{i}+1\right)^{2} \tag{30}\\
\times\left. f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)\right|_{a_{1 A} \rightarrow a_{1 A}+y_{i}^{2}}
\end{array}
$$

This quadrature is very efficient for extended integrals with two odd indices, for which typically only $m=30$ nodes allows about 16 significant digits to be obtained. These extended integrals are sufficient not only for all the relativistic operators with the regularization applied to ECG wave function, but also for the modified regularization (17)-(18) of $H_{\text {rel }}$ with r ECG wave function.

Nevertheless, calculations with $r \mathrm{ECG}$ wave function of the expectation values of the individual relativistic operators involve extended integrals with three odd indices. They can be obtained by the double numerical integration of Coulomb ECG integrals over 30^{2} nodes to achieve numerical precision of about 16 significant digits. This two dimensional integration is numerically stable but time consuming.

V. CALCULATIONS OF RELATIVISTIC CORRECTIONS

Relativistic corrections to the BO potential were calculated according to Eqs. (4), (12), and (17). In order to demonstrate the convergence of these three different approaches with ECG functions we compared results at $R=0$, i.e. for the helium atom, to the results obtained with explicitly correlated exponential (ECE) functions. Calculations with ECE functions are well known in literature (see e.g. Refs. [11] and [12]) and may serve as an excellent reference point and a rigorous test of the convergence of ECG results. The numerical values presented in Table I were obtained with $128,256,512$, and 1024 ECG basis functions. Direct and standard regularization methods
were used with ECG functions, whereas the modified regularization methods were used with r ECG functions. We observe a significant enhancement of numerical convergence of relativistic operators obtained with r ECG basis. The total relativistic correction with $N=1024$ is accurate to 9 digits in the r ECG basis, and to 5-6 digits in the ECG basis. A similar enhancement is observed for H_{2} at $R=1.4$ in Table II, where we compared our results for Dirac- δ functions with those obtained in the ECE basis. The accuracy of the extrapolated value for the total relativistic correction is estimated to have at least eight significant digits after the decimal point. In Table III we provide results for the nonrelativistic energy \mathcal{E}, for the relativistic correction $\mathcal{E}_{\text {rel }}$, and for all four individual components of the relativistic correction evaluated at $R \in(0,10)$ a.u. with the 1024 -term basis of r ECG functions. Our results for the overall relativistic correction $\mathcal{E}_{\text {rel }}$ for H_{2} are estimated to have eight significant decimal digits.

VI. VIBRATIONAL AVERAGING

In order to obtain the final value of the α^{2} relativistic component of the dissociation energy, we solved the radial Schrödinger equation for two potentials. The first potential, used as a reference, is the nonrelativistic (BO) potential $\mathcal{E}(R)$ [14], which yielded the nonrelativistic (BO) energy level E. The second was the potential augmented by the relativistic correction $\mathcal{E}_{\text {rel }}(R)$, which gave the eigenvalue corresponding to the relativistic energy level $E+E^{(2)}$. The difference between both the eigenvalues $E^{(2)}$ is the relativistic correction to molecular levels.

To establish reliable uncertainties for the final results we studied two sources of error: the convergence of single point calculations and the polynomial interpolation. As mentioned above, the relativistic correction was evaluated using basis sets of increasing size, which permitted a detailed analysis of the convergence at each internuclear distance (see Tab. II). From this analysis we estimated that in the vicinity of the equilibrium distance the $\mathcal{E}_{\text {rel }}(R)$ bears an uncertainty of $7 \cdot 10^{-9}$ a.u. equivalent to $2 \cdot 10^{-8} \mathrm{~cm}^{-1}$. The influence of the density of the points, at which $\mathcal{E}_{\text {rel }}(R)$ was evaluated, on the accuracy of the final result was assessed by doubling the number of points, which however were calculated only with 512-term basis. As a consequence $E^{(2)}$ was shifted by $5 \cdot 10^{-7} \mathrm{~cm}^{-1}$. The related uncertainty due to the selection of the degree of the interpolation polynomial was also investigated. By changing the degree in the range $5-12$, we observed changes in the relativistic correction at the level of $10^{-7} \mathrm{~cm}^{-1}$. To summarize, the largest contribution to the uncertainty of the relativistic correction $E^{(2)}$ comes from the limited number of points (and the necessity of interpolation) at which the relativistic potential was evaluated. The final relative uncertainty is assumed to be smaller than $10^{-6} \mathrm{~cm}^{-1}$.

VII. RESULTS AND SUMMARY

Results of our calculations for the dissociation energy and the two selected most accurately measured transitions in H_{2} and D_{2} are presented in Tables IV and V. The nonrelativistic energy E for H_{2} was calculated by solving the full nonadiabatic Schrödinger equation in the exponential basis [3], whereas for D_{2} using the NAPT [16] expansion with the neglect of $O(1 / \mu)^{3}$ terms. All the corrections were obtained within the adiabatic approximation. The relativistic correction $E^{(2)}$ was evaluated and reported in this work. The leading QED correction $E^{(3)}$ was obtained in Ref. [17], while the higher-order QED, namely $E^{(4)}$, in Ref. [4]. $E^{(5)}$ was estimated from the correction analogous to that of atomic hydrogen with the assumption that it is proportional to the electronnucleus Dirac- δ, and the related uncertainty was assigned to be 50%.

Our results for the leading relativistic corrections significantly differ from those by Piszczatowski et al. [5], whose compilation partially relies on the former calculations by Wolniewicz [8]. For example, our relativistic correction to D_{0} of H_{2} is $-0.533121(1) \mathrm{cm}^{-1}$ whereas Piszczatowski et al. reported $-0.5319(3) \mathrm{cm}^{-1}$. Interestingly, our result is closer to that obtained by Wolniewicz $-0.5330 \mathrm{~cm}^{-1}$, despite the differences at the level of individual operators. In our opinion, these differences come from the much more accurate calculation of relativistic matrix elements performed here.

Most importantly, our final theoretical predictions for D_{0} are now in disagreement with experimental values, in contrast to the previous theoretical results [5]. This disagreement probably comes from the underestimation of the relativistic nuclear recoil correction. We have previously assumed that these corrections are of the order of the ratio of the electron mass to the reduced mass of the nuclei, which for H_{2} is $\sim 10^{-3}$. This might be incorrect because the nonrecoil relativistic correction is anomalously small. This assertion is supported by the example of the helium atom. The nonrecoil relativistic correction to the ${ }^{4} \mathrm{He}$ ionization energy is 16904.024 MHz , while the nuclear recoil is -103.724 MHz , so the ratio is $6 \cdot 10^{-3}$, which is an order of magnitude higher than the estimate based on the helium mass ratio 10^{-4}. On the other hand, in the separated atoms limit the relativistic recoil correction exactly vanishes. Therefore, at present this correction cannot be reliably estimated.

If the relativistic nuclear recoil correction in H_{2} is underestimated, the difference between our predictions and the experimental values for D_{2} should be smaller than that for H_{2} and this is really the case (vide Tables IV and V). We emphasize that our theoretical predictions should be treated as preliminary until the relativistic nuclear recoil corrections are reliably calculated. In fact, such corrections have already been obtained by Stanke and Adamowicz [19] for purely vibrational states. However, their result for the total relativistic dissociation energy of H_{2} (with $E^{(2)}=-0.5691 \mathrm{~cm}^{-1}$), when augmented by missing higher order corrections, yields $D_{0}=36118.0318 \mathrm{~cm}^{-1}$, which differs from the experimental value by as much as $0.038 \mathrm{~cm}^{-1}$, so its numerical uncertainty is out of control. We plan to calculate these nonadia-
batic corrections using the fully nonadiabatic wave function in an exponential basis as in Ref. [3] or by using nonadiabatic perturbation theory (NAPT) [13]. Certainly, this calculation has to be performed to resolve discrepancies with H_{2} experiments.

In conclusion, the former excellent agreement of theoretical predictions with experimental D_{0} values was accidental and the improved calculations of the leading relativistic corrections result in a few σ disagreements with experimental values for dissociation energies and transition energies, which is probably caused by the unknown relativistic nuclear recoil (nonadiabatic) effects in the relativistic corrections.

ACKNOWLEDGMENTS

We wish to thank Bogumił Jeziorski for comments to the manuscript. This work was supported by the National Science Center (Poland) Grant Nos. 2012/04/A/ST2/00105 (K.P.) and 2014/13/B/ST4/04598 (M.P. and J.K.), as well as by a computing grant from the Poznan Supercomputing and Networking Center, and by PL-Grid Infrastructure.
[1] W. Ubachs, J.C.J. Koelemeij, K.S.E. Eikema, E.J. Salumbides, J. Mol. Spectr. 320, 1 (2016).
[2] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, et al., Nature 466, 213 (2010).
[3] K. Pachucki and J. Komasa, J. Chem. Phys. 144, 164306 (2016).
[4] M. Puchalski, J. Komasa, P. Czachorowski, and K. Pachucki, Phys. Rev. Lett. 117, 263002 (2016).
[5] K. Piszczatowski, G. Lach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski, J. Chem. Theory Comput. 5, 3039 (2009).
[6] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oneand Two-Electron Systems (Springer-Verlag, Berlin and New York, 1957).
[7] R. J. Drachman, J. Phys. B 14, 2733 (1981).
[8] L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993).
[9] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and K. Varga, Rev. Mod. Phys. 85, 693 (2013).
[10] K. Pachucki, M. Puchalski, and V. Yerokhin, Computer Physics Communications 185, 2913 (2014).
[11] V. I. Korobov, Phys. Rev. A 66, 024501 (2002).
[12] G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Phys. Rev. A

65, 054501 (2002).
[13] K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).
[14] K. Pachucki, Phys. Rev. A 82, 032509 (2010).
[15] K. Pachucki and J. Komasa, J. Chem. Phys. 141, 224103 (2014).
[16] K. Pachucki and J. Komasa, J. Chem. Phys. 143, 034111 (2015).
[17] J. Komasa, K. Piszczatowski, G. Łach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem. Theory Comput. 7, 3105 (2011).
[18] J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009).
[19] M. Stanke and L. Adamowicz, J. Phys. Chem. A 117, 10129 (2013).
[20] C.-F. Cheng, Y. R. Sun, H. Pan, J. Wang, A.-W. Liu, A. Campargue, and S.-M. Hu, Phys. Rev. A 85, 024501 (2012).
[21] M. Niu, E. Salumbides, G. Dickenson, K. Eikema, and W. Ubachs, J. Mol. Spectrosc. 300, 44 (2014).
[22] J. Liu, D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 132, 154301 (2010).
[23] D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, J. Mol. Spectrosc. 326, 5 (2016).

TABLE I. Convergence of matrix elements of relativistic operators at $R=0$ a.u. (helium atom limit).

Basis	Direct	Standard regularization	$r \mathrm{ECG}$ (+modified regularization)
\mathcal{E}			
128		368357561	-2.903724 366011805
256		376781020	-2.903724 776765067
512		377031170	-2.903724 377030040
1024		377034103	-2.903 724377034089
∞-Slater ${ }^{\text {a }}$			-2.903724377034119 598(1)
$p_{1}^{4}+p_{2}^{4}$			
128	108.103812847	108.178260879	108.175893984
256	108.149717136	108.176705311	108.176119036
512	108.171069063	108.176261126	108.176133296
1024	108.174593664	108.176173934	108.176134411
∞-Slater ${ }^{\text {a }}$			$108.17613445(1)$
$\delta^{3}\left(r_{1}\right)+\delta^{3}\left(r_{2}\right)$			
128	3.61807292223	3.62085592707	3.62085250490
256	3.61983231429	3.62085832771	3.62085826322
512	3.62066249308	3.62085862304	3.62085861086
1024	3.62079894559	3.62085863628	3.62085863616
$\infty-$ Slater $^{\text {a }}$			$3.62085863700(1)$
$\delta^{3}(r)$			
128	0.106521423626	0.106345075042	0.106345517181
256	0.106391759156	0.106345347318	0.106345416874
512	0.106355477797	0.106345369617	0.106345375554
1024	0.106348511028	0.106345370530	0.106345370708
∞-Slater ${ }^{\text {a }}$			$0.106345370634(1)$
$p_{1}^{i}\left(\frac{\delta^{i j}}{r}+\frac{r^{i} r^{j}}{r^{3}}\right) p_{2}^{j}$			
128	0.278		0.27818821108
256	0.278		0.27818896140
512	0.278		0.27818933907
1024	0.27		0.27818938036
∞-Slater ${ }^{\text {a }}$			$0.27818938108(1)$
$\mathcal{E}_{\text {rel }}$			
128	-1.95091394168	-1.952 03089354	-1.95174292889
256	-1.95153123551	-1.95182724821	-1.951753660 41
512	-1.951 70604993	-1.95177065311	-1.951754 69640
1024	-1.951739 83039	-1.95175970900	-1.951754765 23
∞-Slater ${ }^{\text {a }}$			-1.951754768(1)

${ }^{a}$ The reference values were evaluated with the atomic ECE basis functions $\phi=\exp \left(-\alpha r_{1}-\beta r_{2}-\gamma r\right)$.

TABLE II. Convergence of matrix elements of relativistic operators at the equilibrium distance $R=1.4$ a.u.

Basis	Direct	Standard regularization	r ECG (+modified regularization)
\mathcal{E}			
128	-1.174475621659802		-1.174 475640130736
256	-1.174475711731700		-1.174475711200533
512	-1.174475714 117150		-1.174475714015654
1024	-1.174475714217171		-1.174 475714203071
$\infty-\mathrm{JC}^{a}$			-1.1744757142204434(5)
$p_{1}^{4}+p_{2}^{4}$			
128	13.214563	13.2387714	13.237780507
256	13.231849	13.2383081	13.237929826
512	13.235568	13.2380459	13.237954576
1024	13.237266	13.2379814	13.237956021
∞	13.2387 (10)	13.237960 (16)	$13.23795618(7)$
$\sum_{a, X} \delta^{3}\left(r_{a X}\right)$			
128	0.9175507	0.91933127850	0.91933132106
256	0.9188789	0.91933592794	0.91933574110
512	0.9191535	0.91933617260	0.91933612742
1024	0.9192855	0.91933621005	0.91933619174
∞	$0.91937(7)$	$0.9193362112(18)$	$0.919336206(7)$
$\mathrm{JC}^{\text {b }}$			$0.919336211(2)$
$\delta^{3}(r)$			
128	0.016742915	0.016742915953	0.016743529776
256	0.016771639	0.016743229495	0.016743316316
512	0.016750461	0.016743274514	0.016743287361
1024	0.016745258	0.016743277598	0.016743278963
∞	$0.0167435(4)$	0.0167432781 (7)	0.0167432783 (5)
$\mathrm{JC}^{\text {b }}$			0.0167432783 (3)
$p_{1}^{i}\left(\frac{\delta^{i j}}{r}+\frac{r^{i} r^{j}}{r^{3}}\right) p_{2}^{j}$			
128	0.09527122230		0.09526656634
256	0.09526930816		0.09526858845
512	0.09526901011		0.09526888381
1024	0.09526898979		0.09526897683
∞	0.095268 986(6)		$0.095268987(4)$
$\mathcal{E}_{\text {rel }}$			
128	-0.205 34230	-0.205 80042	-0.205672 23422
256	-0.205 55444	-0.205 73326	-0.20568563769
512	-0.20565450	-0.205699 82	-0.20568836337
1024	-0.205 67565	-0.20569167	-0.205688516 45
∞	-0.205682(8)	-0.205689(2)	-0.205 688526 (7)

[^0]TABLE III. The electronic energy \mathcal{E}, expectation values of individual relativistic operators, and the relativistic correction of Eq. (17) evaluated with 1024-term r ECG basis for H_{2} (all entries in a.u.).

R	\mathcal{E}	$p_{1}^{4}+p_{2}^{4}$	$\sum_{a, X} \delta^{3}\left(r_{a X}\right)$	$\delta^{3}(r)$	$p_{1}^{i}\left(\frac{\delta^{i j}}{r}+\frac{r^{i} r^{j}}{r^{3}}\right) p_{2}^{j}$	$\mathcal{E}_{\text {rel }}$
. 0	∞	108.17613441	7.2417172739	0.106345370636	0.27818938106	-1.951754765
0.05	17.1048405957338	97.88343711	6.4890431775	0.105003823908	0.27626636142	-1.850 717847
0.1	7.1272167311799	87.35944120	5.7705971486	0.101570564053	0.27127375954	-1.672040 901
0.2	2.1978032952426	69.10609540	4.5689318402	0.091368192666	0.25582595608	-1.302 271866
0.4	-0.120 2303411732	44.92674848	3.0079742620	0.068873279242	0.21811509421	-0.783614393
0.6	-0.769 6354294740	31.45554441	2.1355542202	0.050763240175	0.18303648908	-0.509 463149
0.8	-1.020 0566663407	23.55141269	1.6165590023	0.037667878063	0.15386526748	-0.363 237148
1.0	-1.1245397195256	18.63189259	1.2881958110	0.028345276112	0.13021059568	-0.281549 312
1.1	-1.150 0573677202	16.86266910	1.1685384371	0.024725634292	0.12012130961	-0.254680 537
1.2	-1.164935 2434217	15.41702626	1.0699189128	0.021643994354	0.11101250931	-0.234013225
1.3	-1.172 3471490151	14.22596331	0.9879494323	0.019008309934	0.10276409419	-0.218043 755
1.4	-1.1744757142023	13.23795602	0.9193361917	0.016743278963	0.09526897686	-0.205688516
1.4011	-1.1744759313760	13.22806227	0.9186457757	0.016720183220	0.09519036690	-0.205569553
1.45	-1.1740570714499	12.80752610	0.8892304836	0.015730076395	0.09177395700	-0.200 610272
1.5	-1.172 8550795518	12.41401628	0.8615729317	0.014787413515	0.08843282423	-0.196 156821
1.6	-1.1685833733462	11.72427668	0.8127287476	0.013090471717	0.08217314696	-0.188864898
1.7	-1.162 4587268749	11.14559108	0.7712986957	0.011611319478	0.07641801659	-0.183 376700
1.8	-1.155 0687375868	10.65982714	0.7360971574	0.010316180045	0.07110490035	-0.179 362896
1.9	-1.146 8506970016	10.25263362	0.7061806011	0.009177235715	0.06617943868	-0.176571 891
2.0	-1.1381329571022	9.91253644	0.6807907434	0.008171495990	0.06159453696	-0.174809213
2.1	-1.1291638360667	9.63026686	0.6593121815	0.007279910924	0.05730939671	-0.173922 389
2.2	-1.1201321168151	9.39825583	0.6412403665	0.006486644310	0.05328892414	-0.173790 035
2.3	-1.1111817651695	9.21024640	0.6261570146	0.005778509183	0.04950304198	-0.174313461
2.4	-1.102 4226059759	9.06099378	0.6137109920	0.005144501580	0.04592628003	-0.175410463
2.5	-1.093 9381299201	8.94602998	0.6036032828	0.004575430210	0.04253733371	-0.177010 457
2.6	-1.085 7912373625	8.86147693	0.5955750005	0.004063603931	0.03931882634	-0.179 050818
2.7	-1.078 0284841479	8.80389842	0.5893978526	0.003602589090	0.03625688742	-0.181473897
2.8	-1.070683 2334498	8.77018399	0.5848665704	0.003186984950	0.03334102116	-0.184 225040
2.9	-1.0637780087717	8.75745814	0.5817929471	0.002812250937	0.03056370383	-0.187250 948
3.0	-1.057 3262688383	8.76301572	0.5800014505	0.002474548852	0.02792005906	-0.190 498823
3.2	-1.045 7996613902	8.81876665	0.5796085282	0.001897578330	0.02302537071	-0.197450 152
3.4	-1.036 0753951531	8.91801344	0.5824483317	0.001434600771	0.01865530993	-0.204664704
3.6	-1.028 0463083390	9.04310919	0.5873998954	0.001068345909	0.01482089794	-0.211757192
3.8	-1.021 5497953795	9.17885316	0.5934913579	0.000783739899	0.01152959176	-0.218405 205
4.0	-1.016 3902529178	9.31327923	0.5999421995	0.000566901578	0.00877312169	-0.224 378488
4.2	-1.012 3599596533	9.43806455	0.6061874544	0.000404933730	0.00652243889	-0.229550 124
4.4	-1.009 2565162188	9.54839599	0.6118724265	0.000286163107	0.00472959559	-0.233888328
4.6	-1.006 8952237883	9.64234777	0.6168193211	0.000200467812	0.00333424931	-0.237433 284
4.8	-1.0051160060122	9.72004626	0.6209804279	0.000139467088	0.00227142658	-0.240 269571
5.0	-1.003 7856585418	9.78286262	0.6243914654	0.000096514570	0.00147803156	-0.242 501813
5.2	-1.002 7968162807	9.83276296	0.6271329697	0.000066524898	0.00089718478	-0.244 236803
5.4	-1.002 0650571894	9.87187041	0.6293032907	0.000045719642	0.00048029837	-0.245573020
5.6	-1.001525 2518178	9.90220197	0.6310015807	0.000031354765	0.00018750516	-0.246595529
5.8	-1.001 1278808276	9.92554176	0.6323187721	0.000021470798	-0.000 01291240	-0.247 374807
6.0	-1.000 8357076028	9.94339293	0.6333334205	0.000014686948	-0.000 14560665	-0.247967362
6.5	-1.000 4005479461	9.97147881	0.6349460878	0.000005668125	-0.000 29318606	-0.248899 471
7.0	-1.000 1979144266	9.98548243	0.6357607627	0.000002183134	-0.000 30790117	-0.249 373815
7.5	-1.000 1021060380	9.99243990	0.6361697989	0.000000839980	-0.000 27491015	-0.249 621706
8.0	-1.0000556046110	9.99592278	0.6363762591	0.000000323028	-0.000 23037686	-0.249756677
8.5	-1.000 0321717017	9.99770001	0.6364822180	0.000000124123	-0.000 18810444	-0.249 834155
9.0	-1.000 0197816909	9.99863262	0.6365379911	0.000000047661	-0.000 15228986	-0.249 881211
9.5	-1.000 0128559933	9.99914248	0.6365684974	0.000000018282	-0.000 12334587	-0.249 911507
10.0	-1.000 0087556935	9.99943461	0.6365860088	0.000000007007	-0.000 10039054	-0.249 932046
∞	-1.0	10.0	0.6366197723	0.0	0.0	-0.25

TABLE IV. Contributions to the dissociation energy D_{0} and two selected most accurate experimental transitions in H_{2} (in cm^{-1}). There are additional 10^{-3} relative uncertainties on $E^{(2)}, E^{(3)}$, and $E^{(4)}$ terms due to the BO approximation, which are included in the final result only.

Contrib.	D_{0}	$S_{3}(3)$	$Q_{1}(0)$
E	$36118.79774612(5)$	$12559.74991895(8)$	$4161.16397709(6)$
$E^{(2)}$	$-0.533121(1)^{a}$	0.065366	0.023397
$E^{(3)}$	$-0.1948(2)$	$-0.06573(6)$	$-0.02129(2)$
$E^{(4)}$	$-0.002067(6)$	-0.000599	-0.000192
$E^{(5)}$	$0.00012(6)$	$0.000037(19)$	$0.000012(6)$
E_{FS}	-0.000031	-0.000010	-0.000003
Total	$36118.0678(6)$	$12559.74898(8)$	$4161.16590(3)$
Exp.	$36118.06962(37)^{b}$	$12559.74952(5)^{c}$	$4161.16636(15)^{d}$
Diff.	$0.0018(6)(4)$	$0.00054(8)(5)$	$0.00046(3)(15)$

${ }^{a}$ For comparison, Wolniewicz [8] obtained -0.5330 , Piszczatowski et al. [5] -0.5319 , and Stanke et al. [19] $-0.5691 \mathrm{~cm}^{-1}$ (the latter value comes from nonadiabatic calculations).
${ }^{b}$ Ref. [18]; ${ }^{c}$ Ref. [20]; ${ }^{d}$ Ref. [21].

TABLE V. Contributions to the dissociation energy D_{0} and two selected most accurate experimental transitions in D_{2} (in cm^{-1}). There are additional $5 \cdot 10^{-4}$ relative uncertainties on $E^{(2)}, E^{(3)}$, and $E^{(4)}$ terms due to the BO approximation, which are included in the final result only.

Contrib.	D_{0}	$S_{2}(2)$	$Q_{1}(0)$
E	$36749.09098(8)$	$6241.12096(30)$	$2993.61488(15)$
$E^{(2)}$	$-0.529170(1)$	0.040057	0.017677
$E^{(3)}$	$-0.1982(2)$	$-0.03315(3)$	$-0.01539(2)$
$E^{(4)}$	$-0.002096(6)$	-0.000299	-0.000139
$E^{(5)}$	$0.00012(6)$	$0.000019(10)$	$0.000009(5)$
$E_{\text {FS }}$	-0.000204	-0.000032	-0.000015
Total	$36748.3614(4)$	$6241.12755(30)$	$2993.61702(15)$
Exp.	$36748.36286(68)^{a}$	$6241.12764(2)^{b}$	$2993.61706(15)^{b}$
Diff.	$0.0015(4)(7)$	$0.00009(30)(2)$	$0.00004(15)(15)$

[^1]
[^0]: ${ }^{a}$ Evaluated with James-Coolidge wave function, Ref. [14].
 ${ }^{b}$ Evaluated in this work.

[^1]: ${ }^{a}$ Ref. [22]; ${ }^{b}$ Ref. [23]; ${ }^{c}$ Ref. [21].

