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The relativistic correction to the dissociation energy of H2, D2, and HD molecules has been accurately calcu-
lated without expansion in the small electron-nucleus mass ratio. The obtained results indicate the significance
of nonadiabatic effects and resolve the discrepancy of theoretical predictions with recent experimental values
for H2 and D2. While the theoretical accuracy is now significantly improved and is higher than the experimental
one, we observe about 3σ discrepancy for the dissociation energy of HD, which requires further investigation.

PACS numbers:

I. INTRODUCTION

There is only one very narrow optical transition in the hy-
drogen atom, 1S−2S, and all the other transitions have much
broader natural width. This fact limits the precision of the
Standard Model tests as well as the accuracy of the Rydberg
constant and of the proton charge radius obtained from hydro-
gen atom spectroscopy [1]. Moreover, a different value of the
proton charge radius obtained from the measurement of the
2S−2P transition in muonic hydrogen [2–4] indicates severe
problems with interpretation of high precision spectroscopic
results with the ordinary hydrogen atom [5]. Currently, sev-
eral projects are being pursued to measure the Rydberg con-
stant by other means; for example, from the 1S−2S transition
in hydrogen-like helium ion [6, 7].

In contrast to the hydrogen-like atoms, there are many tran-
sitions between rotational and vibrational levels in hydrogen
molecules which can, in principle, be measured very accu-
rately [8–11] because their natural line-width is much smaller
than that of the hydrogenic excited states. This opens up the
possibility for improved tests of quantum electrodynamic the-
ory and for the accurate determination of the electron-proton
(deuteron) mass ratio, of the Rydberg constant, and of the nu-
clear charge radius.

On the theoretical side, the rovibrational levels in the hy-
drogen molecule can in general be determined as accurately as
those for atomic hydrogen. For this purpose, one employs the
nonrelativistic quantum electrodynamic (NRQED) approach
based on an expansion in powers of the fine structure constant
[12], which was originally developed for hydrogenic systems
and applied recently in highly accurate calculations for H+

2

[13]. However, calculations for molecular hydrogen are much
more complex and computationally demanding than those for
one-electron systems, due to the importance of electron cor-
relations. Nowadays nevertheless, the variational calculations
can reach a precision, that does not limit theoretical predic-
tions for the dissociation energy. In fact, the nonrelativistic
energy has already been calculated with nonadiabatic James-
Coolidge (naJC) functions with numerical precision of about
10−13 [14, 15].

So far, all the determined corrections, i.e. relativistic α4m,
QED α5m, and higher order QED α6m have been calculated
numerically with explicitly correlated Gaussian (ECG) wave

functions using the Born-Oppenheimer (BO) approximation,
thus omitting the nuclear recoil (nonadiabatic) effect. More-
over, previous attempts to carry out nonadiabatic calculations
of the relativistic correction [16] were unreliable.

In our former works we have estimated the nonadiabatic
correction to be of the order of the electron-to-nucleus mass
ratio with coefficient equal to one and observed systematic
discrepancies with all the recently reported experimental re-
sults for the hydrogen molecule [8]. Due to these discrepan-
cies, we concluded, that most probably, relativistic nonadia-
batic effects are much larger than our previous estimate. In-
deed, Wang and Yan have recently calculated relativistic cor-
rection without the BO approximation [17]. They confirmed
the reported discrepancy for the dissociation energy of H2 as
coming from relativistic nonadiabatic effects.

In this work, we develop a method based on ECG functions
together with certain transformations of relativistic operators
suitable for the calculation of nonadiabatic energies to obtain
accurate relativistic corrections not only for H2, but also for
D2 and HD. Our results indicate the importance of the nonadi-
abatic treatment of relativistic correction in the interpretation
of high precision spectroscopic measurements and, simulta-
neously, open a route to significantly increased accuracy of
theoretical predictions for rovibrational levels of the hydrogen
molecule.

II. NONRELATIVISTIC ENERGY FROM EXPLICITLY
CORRELATED GAUSSIAN FUNCTIONS

The nonrelativistic Hamiltonian for the hydrogen molecule
as a bound system of four particles is

H = T + V , (1)

where (in atomic units)
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Indices 0,1 denote nuclei and indices 2,3 denote electrons.
The wave function Ψ depends on four particle coordinates
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Ψ = Ψ(~r0, ~r1, ~r2, ~r3). In the center of mass frame ~p0 + ~p1 +
~p2 + ~p3 = 0 and we may assume that the wave function Ψ is
translationally invariant, i.e. it depends only on the differences
~ri − ~rj . More precisely, we represent the ground electronic
state wave function as

Ψ =

N∑
i

ci ψi(~r0, ~r1, ~r2, ~r3) , (4)

ψi = (1± P0↔1) (1 + P2↔3)φi(~r0, ~r1, ~r2, ~r3), (5)

where Pi↔j is the particle exchange operator. In the ground
state of H2 and D2 the wave function is symmetric with re-
spect to the exchange of nuclear and electronic variables,
whereas in the heteronuclear HD molecule, both symmetric
and antisymmetric basis functions are employed. The func-
tions φi in Eq. (5) are the nonadiabatic explicitly correlated
Gaussians (naECG) of the form
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In the particular case of an expectation value of a certain op-
erator, φ becomes
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(7)
and exactly satisfies the interelectron cusp condition. This
correct analytic behavior significantly improves numerical
convergence for this operator, what will be explained later
on. The nonlinear a-parameters are optimized individually
for each basis function, and the powers of the internuclear co-
ordinate r01 are needed to represent accurately the vibrational
part of the wave function. They are restricted to even integers
and are generated randomly for each basis function from the
log-normal distribution within the limited 0− 80 range.

Matrix elements of the nonrelativistic Hamiltonian are ex-
pressed as a linear combination of the following ECG inte-
grals
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with real a-parameters. We can distinguish master integrals
that have very simple analytic forms

f() =
1√
A3

, f(−1i) =
2√
π

1

A
√
Ai

, (9)

where all zero valued indices have been omitted and −1i de-
notes −1 on the i-th position, A1 is the example of a symbol
Ai...k = ∂ai . . . ∂ak

A, and

A = a1a2a3 + a1a3a4 + a2a3a4 + a1a2a5 + a2a3a5 +

a1a4a5 + a2a4a5 + a3a4a5 + a1a2a6 + a1a3a6 + a1a4a6 +

a2a4a6 + a3a4a6 + a1a5a6 + a2a5a6 + a3a5a6 . (10)

In nonadiabatic molecular calculations we have an additional
complication due to the presence of the factor rn1

01 with possi-
ble large powers n1. In order to calculate these integrals, we
derive recurrence relations in n1 for integrals with n1 ≥ 1

f(n1) =
A1

2A
(n1 + 1)f(n1 − 2) (11)

and for Coulomb integrals with even n1 ≥ 2

f(n1,−1i) = g(n1,−1i) + h(n1,−1i) (12)
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where the starting point for these recursions are the integrals
defined in Eq. (9). In the calculations of the kinetic energy,
there are also integrals with even n1 and ni = 2 on the sin-
gle positions from i = 2 to 6. If gradients with respect to the
nonlinear parameters are to be used, one needs additional in-
tegrals where arbitrary ni is again increased by 2. All of the
additional recurrence relations with higher ni powers can be
derived explicitly from Eqs. (9), (11), and (12) by differen-
tiation of the above recursions with respect to corresponding
a-parameters. For calculation of matrix elements with rela-
tivistic operators, ECG integrals with two odd ni are needed.
The master ECG integral f(−1i,−1j) is known analytically
[18]; however, it is difficult to obtain compact and numeri-
cally stable recurrence relations in n1 in this case. Instead,
it is much more efficient to employ a numerical integration
with respect to a corresponding nonlinear parameter a, using
the quadrature adapted to the end-point logarithmic singular-
ity [19].

The nonrelativistic wave function Ψ has been constructed
for several basis lengths N = 128, 256, 512, 1024, 2048 to
observe the numerical convergence of the nonrelativistic en-
ergy and relativistic matrix elements. The obtained nonrela-
tivistic energy is in a very good agreement with the benchmark
value calculated with naJC wave function [14, 15], see Ta-
ble I, and the corresponding naECG wave function Ψ is used
for the evaluation of the relativistic correction. In compari-
son to former works based on different representation of ECG
functions [20] our nonrelativistic results, obtained with ap-
proximately five times smaller basis set, are more accurate for
all hydrogen molecules H2, D2, and HD, which demonstrates
the effectiveness of our new methods.

III. RELATIVISTIC CORRECTION

The relativistic correction can be expressed in terms of the
expectation value

Erel = 〈Ψ|Hrel|Ψ〉 (15)
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TABLE I: Convergence of the nonrelativistic energy E (in a.u.) with the size of the naECG basis set. The ’naJC’ line contains benchmark
values obtained with nonadiabatic James-Coolidge wave functions [14, 15]. Nuclear masses used in this work are taken from the 2014
CODATA compilation [1] mp/me = 1836.152 673 89(17), md/me = 3670.482 967 85(13).

Basis E(H2) E(HD) E(D2)

128 −1.164 023 669 155 −1.165 470 991 485 −1.167 167 911 358
256 −1.164 024 987 878 −1.165 471 628 967 −1.167 168 756 439
512 −1.164 025 027 334 −1.165 471 916 621 −1.167 168 805 491

1024 −1.164 025 030 593 −1.165 471 923 256 −1.167 168 808 953
2048 −1.164 025 030 843 −1.165 471 923 906 −1.167 168 809 193
naJC −1.164 025 030 883 1(3) −1.165 471 923 964 38(3) −1.167 168 809 284 0(1)

of the Breit-Pauli Hamiltonian
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where index x goes over 0,1 and a over 2,3. The coefficient
δs = 0 for the nuclear spin s = 0 or 1, and δs = 1 for
s = 1/2. In the above formulas, we have omitted all the elec-
tron spin dependent terms because they vanish for the ground
electronic state of 1Σ+

g symmetry. We have omitted also the
p4x/(8m

3
x) terms because their numerical values are smaller

than the uncertainty of the whole relativistic correction. In or-
der to accurately calculate the expectation value of Hrel we
use the following expectation value identities to transform it
to a numerically more regular form,
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which hold for the exact wave function Ψ. For an approximate
function Ψ̃, such expectation values are not equivalent, but the
r.h.s. quickly converges in the limit Ψ̃ → Ψ as long as Ψ̃
satisfy proper analytic properties. This feature is especially
important for the p22 p

2
3 operator in Eq. (18). In this case, the

function φ is that given by Eq. (7) and then

p22 p
2
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The new term p̃ 2
2 p̃

2
3 (in contrast to p22 p

2
3) is understood as

the differentiation ∇2
2∇2

3 of Ψ̃ as a function, thus omitting
δ3(r23). This δ3(r23) term cancels exactly with the same term
in Hrel, so it is not necessary to calculate it [21]. We never-
theless do so for the comparison with previous results.

IV. RESULTS AND DISCUSSION

The relativistic correction to the dissociation energy D0 is
shown in Table II, while results for individual operators are
presented in the Supplementary Material [22]. D0 differs

from the expectation values of Hrel by subtraction of the cor-
responding energy of separated hydrogen atoms,

Erel(H) = −1

8
+

1

4

(
1

mp

)2

+O
( 1

mp

)3
, (20)

and the overall sign. It is worth noting, that the term pro-
portional to 1/mp is not present in the above formula, so the
relativistic recoil correction for separated hydrogen atoms is
very small.

Thanks to the regularization of relativistic operators with
the use of a variational wave function which exactly satisfies
the electron-electron cusp condition, the total relativistic con-
tribution has a very good convergence with the size of the ba-
sis set. The extrapolated value is accurate to about six dig-
its. For comparison, the lower part of Tab. II contains the
expectation values of the Breit-Pauli Hamiltonian calculated
within the BO approximation. The ’difference’ line gives di-
rectly the nonadiabatic correction to the relativistic contribu-
tion, and we find that it is several times larger than the pre-
vious estimate [23]. These nonadiabatic corrections scale ap-
proximately with the inverse of the reduced nuclear mass 1/µ,
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which is demonstrated by the straight line in Fig. 1.

TABLE II: Convergence of relativistic correction to the dissociation
energy D0 (in cm−1) with the size of the naECG basis set. For com-
parison, the relativistic correction evaluated with BO approximation
is also given. The difference corresponds to the nonadiabatic correc-
tion, see also Fig. 1.

Basis H2 HD D2

128 −0.531 427 54 −0.529 979 01 −0.528 337 669
256 −0.531 194 19 −0.529 910 95 −0.528 218 423
512 −0.531 206 99 −0.529 883 50 −0.528 201 146

1024 −0.531 212 77 −0.529 886 61 −0.528 205 416
2048 −0.531 214 84 −0.529 887 30 −0.528 205 935
∞ −0.531 215 6(5) −0.529 887 5(2) −0.528 206 05(9)

BO, [21] −0.533 129(1) −0.531 337(1) −0.529 178(1)
difference 0.001 914 0.001 449 0.000 972

Our result for the nonadiabatic relativistic correction in
H2 is in significant disagreement with the earlier result of
−0.5691 cm−1 obtained by Stanke and Adamowicz [16],
which indicates the importance of regularization of relativis-
tic operators and the use of 1 + r23/2 prefactor in the naECG
functions.

Table III presents the individual contributions to the ground
state dissociation energy D0. The comparison with experi-
mental dissociation energies reveals agreement for H2 and D2,
and surprisingly 3σ disagreement for the HD molecule. To in-
vestigate this inconsistency further, we present in Fig. 1 exper-
imental and theoretical values of the recoil correction versus
1/µ. The experimental value for the relativistic nonadiabatic
correction is obtained by subtraction, from the total dissocia-
tion energy, of the exact nonrelativistic value and all the other
theoretical contributions evaluated within the BO approxima-
tion. Due to an agreement for H2 and D2, it seems that the
experimental value for dissociation energy of HD has under-
estimated uncertainty.

The theoretical uncertainty of the total dissociation en-
ergy is at present smaller than the experimental one and is
dominated by the contribution from nonadiabatic QED ef-
fects of order α5m, which has been estimated by the ratio of
the electron-to-reduced-nuclear mass with coefficient equal to

one [23]. Once this correction is calculated, the uncertainty
for the dissociation energy will be reduced to 6 · 10−5 cm−1,
and even better for vibrational and rotational transitions. Fur-
ther improvements would require the calculation of α7m con-
tribution, which will open the window for determination of
the proton mass from measurement of vibrational transition in
H2 and even determination of nuclear charge radii. However,
such calculations are very challenging and they have not yet
been performed even for atomic two-electron systems.
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