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The quantum electrodynamic correction to the energy of the hydrogen molecule has been evaluated without
expansion in the electron-proton mass ratio. The obtained results significantly improve the accuracy of theo-
retical predictions reaching the level of 1 MHz for the dissociation energy, in a very good agreement with the
parallel measurement [Hölsch et al, Phys. Rev. Lett. LZ15618]. Molecular hydrogen has thus become a corner-
stone of ultraprecise quantum chemistry, which opens perspectives for determination of fundamental physical
constants from its spectra.

Introduction – The spectra of hydrogenic atoms are being
used for determination of physical constants and for preci-
sion tests of the fundamental interactions theory. However,
the finite lifetime of excited states makes further progress in
accuracy very challenging. It would require, among others,
determination of the resonance frequency to at least one part
in 10,000 of the observed line width [1]. In contrast, the hy-
drogen molecule (H2) has many narrow lines, which in prin-
ciple can be measured very accurately [2–7]. In this work, we
demonstrate that they can also be calculated very accurately,
namely with 1 MHz uncertainty or better.

Although the hydrogen molecule is one of the simplest
molecular systems, the high-precision calculations of its en-
ergy levels have been difficult to perform, even in the nonrel-
ativistic limit. The standard Born-Oppenheimer (BO) approx-
imation gives a relative accuracy of the order of 10−3 − 10−4

only as a consequence of the omission of the coupling be-
tween electrons and nuclei movements. In principle, the fi-
nite nuclear mass corrections to the BO potential can be in-
cluded systematically within the nonadiabatic perturbation
theory (NAPT) [8]. However, evaluation of the higher order
terms of the NAPT becomes complicated [9]. For this reason
the direct nonadiabatic methods have recently been developed
in which two electrons and two protons are treated on the same
footing. This allowed the inaccuracy of the nonrelativistic en-
ergy E(2) to be reduced to the limit of 4 × 10−12 resulting
from the uncertainty in the proton mass [10].

Regarding subsequent terms in the expansion of energy in
the fine structure constant α,

E(α) = α2E(2)+α4E(4)+α5E(5)+α6E(6)+α7E(7)+. . . ,
(1)

the relativistic correction, E(4), has recently been calculated
to a high numerical precision both with direct nonadiabatic
treatment [11–13] and with the NAPT [14, 15]. Moreover, the
quantum electrodynamic (QED) E(5) [16] and the higher or-
der E(6) [17] corrections had been calculated within the BO
approximation only, while E(7) is known approximately from
the atomic hydrogen theory [18]. Neglected nonadiabatic ef-
fects of the order O(α5) had been the largest source of the
uncertainty in theoretical predictions, which for the ground

state dissociation energy equals to 2 × 10−4 cm−1 (6 MHz)
[12].

In this work, we report on calculation of the QED correction
E(5) in the framework of the direct nonadiabatic approach,
improving the accuracy of theoretical prediction for the disso-
ciation energies by an order of magnitude down to 2.6×10−5

cm−1 (0.78 MHz), the best ever theoretical prediction for any
molecule, which becomes now sensitive to the nuclear charge
radii.

Nonrelativistic wave function – The basis of the accurate
theoretical predictions is the precise nonrelativistic wave func-
tion. In the nonadiabatic approach all particles are treated on
an equal footing, and the wave function is an eigenstate of the
nonrelativistic H2 Hamiltonian of the form

H = T + V , (2)

where
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The indices 0,1 denote protons of massmp and 2,3—electrons
of mass m. In the center of mass frame the nonrelativistic
wave function depends only on the interparticle distances rij .
The most convenient approach [12] to calculate this function
is based on a variational principle with the nonadiabatic ex-
plicitly correlated Gaussian (naECG) functions. In this ap-
proach, the wave function is represented as

Ψ =

N∑
i

ci ψi(~r0, ~r1, ~r2, ~r3) , (5)

ψi = (1 + P0↔1) (1 + P2↔3)φi(~r0, ~r1, ~r2, ~r3), (6)

where Pi↔j is the particle exchange operator, which accounts
for the fact that the ground state H2 wave function Ψ is sym-
metric with respect to the exchange of nuclear and electronic
variables. The spatial functions φi in Eq. (6) are naECG func-
tions of the form
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The nonlinear a parameters are optimized variationally and
the internuclear coordinate rn01 prefactor ensures proper rep-
resentation of the vibrational part of the wave function. The
powers n of this coordinate are restricted to even integers
within the range 0 − 80 and are generated following the log-
normal distribution. The nonrelativistic wave function Ψ has

been optimized for several basis sizes to observe the conver-
gence of the nonrelativistic energy and expectation values.

QED correction – The formula for the leading quantum
electrodynamic correction E(5), derived here on the basis of
QED theory in agreement with the known formulas for H [18]
and He [19], is
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where a = 0, 1, x = 2, 3, the Bethe logarithm is [20]

ln k0 =
1

D

〈
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]
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〉

(10)

ln kH0 = 2.984 128 555 765 498 (11)
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µ = mpm/ (mp +m) . (14)

In all the above formulas the expectation values are taken with
the nonrelativistic wave function Ψ. Moreover, the expecta-
tion values of singular terms 〈1/r3〉ε are obtained by integra-
tion from ε to∞ and subtraction of ln ε+γ, where the symbol
γ indicates the Euler-Mascheroni constant.

There are certain ambiguities regarding the molecular QED
correction of Eq. (8), which need to be explained. The first one
is due to the lack of the contact term between protons δ3(r01).
In fact, such a term exists, for example from the strong inter-
action Vstrong between protons [21]

δEstrong = 〈δ3(r01)〉
∫
d3rVstrong(r)

= 〈δ3(r01)〉 (−2.389) fm2 . (15)

It is of the same order as the electron vacuum polarization
correction to the Coulomb interaction between protons

δEvp = 〈δ3(r01)〉
(
− 4

15

) α2

m2

= 〈δ3(r01)〉 (−2.118) fm2. (16)

However, both contributions are totally negligible, because
〈δ3(r01)〉 ∼ 10−50 (mα)3 for the ground state of H2.

Another subtle point to be clarified is the proton self-
energy correction and the corresponding definition of the pro-
ton charge radius. This correction is insignificant for a reg-
ular hydrogen atom but non-negligible for muonic hydrogen
(µH). So, for consistency with the determination of the pro-
ton charge radius rp in µH [22], we chose to include this ef-
fect into the total energy of H2. Following [23], we do so
in a minimal way, by including only logarithmic terms, and
the nonlogarithmic terms are absorbed into the mean square
charge radius r2

p.
Numerical calculation – QED corrections involve several

nontrivial terms: the Bethe logarithm ln k0, the interparti-
cle Dirac delta 〈δ(rab)〉, and the Araki-Sucher term 〈1/r3

ab〉ε.
Because the naECG basis does not reproduce the electron-
electron and electron-nucleus cusps of the wave function, the
two latter terms exhibit a slow convergence if calculated di-
rectly from their definitions. Therefore, to increase numerical
performance, it is crucial to transform singular operators to a
more regular form, whose behavior is less sensitive to the lo-
cal inaccuracies of the wave function. For this purpose, we
generalized known relations [14, 24] and obtained the follow-
ing expectation value identities with a, b = 0, 1, 2, 3

〈4π δ3(rab)〉 =
2mamb

ma +mb
(17)

×
〈

2

rab
(E − V )−

∑
c

1

mc
~pc

1

rab
~pc

〉
,

〈
1

r3
ab

〉
ε

= (1 + γ) 〈4π δ3(rab)〉+
2mamb

ma +mb
(18)



3

×
〈

2 ln rab
rab

(E − V )−
∑
c

1

mc
~pc

ln rab
rab

~pc

〉
,

〈
1

r4
ab

〉
ε

=
mamb

ma +mb

〈∑
c

1

mc
~pc

1

r2
ab

~pc (19)

− 2 (E − V )
1

r2
ab

± 12π δ3(rab)

〉
ε

.

where + is for particles with the same and − with opposite
charges respectively. Results for the expectation values ex-
trapolated to the infinite basis size, along with their estimated
uncertainty, are presented in Table I.

TABLE I. Expectation values of the operators present in Eq. (8).
Atomic units are used throughout the Table.

Operator Expectation value

E −1.164 025 030 86(3)
〈J 2〉 2.518 270 507 19(12)

4π
∑
a,x〈δ

3(rax)〉 11.346 476 34(9)

4π 〈δ3(r23)〉 0.202 830 306(6)∑
a,x〈r

−3
ax 〉ε −7.191 104 3(10)

〈r−3
23 〉ε 0.401 943 51(6)

〈r−3
01 〉ε 0.357 215 411 7(3)∑
a,x〈r

−4
ax 〉ε −5.712 727(17)∑

(a,x)<(b,y)

〈
~rax
r3ax
· ~rby
r3
by

〉
−0.254 515 18(18)

Bethe logarithm – Among all the terms in Eq. (8), the cal-
culation of the Bethe logarithm ln k0 is the most complicated
one. We express ln k0 in terms of the one-dimensional integral

ln k0 =
1

D

∫ 1

0

dt
f(t)− f0 − f2 t

2

t3
(20)

with the function f(t) defined as

f(t) =

〈
~J

k

k +H − E
~J

〉
, t =

1√
1 + 2 k

(21)

which has the following Taylor expansion

f(t) = f0 + f2 t
2 + f3 t

3 + (f4l ln t+ f4) t4 +O(t5) . (22)

with the first two coefficients

f0 = 〈J2〉, f2 = −2D . (23)

The integrand in Eq. (20), as a smooth function of t was eval-
uated at 200 equally spaced points in the range t ∈ [0, 1],
which enabled relative accuracy higher than 10−7. In the nu-
merical calculation of f(t), the resolvent in Eq. (21) was rep-
resented in terms of pseudostates of the form φΠ = ~rab φ
for all interparticle coordinates. The nonlinear parameters
of φΠ are found by a maximization of f . In the particu-
lar case of t = 1 (k = 0), f can be evaluated analyti-
cally using the generalized Thomas-Reiche-Kuhn sum rule

[25] 〈 ~J (H − E)−1 ~J〉 = 3 (1 + m/mp). We used this op-
portunity to assess the completeness of the pseudostates space
and to estimate uncertainties.

For the given size N of the wave function Ψ expansion,
the size of pseudostate basis set was chosen as N ′ = 3

2N ,
which appeared to be sufficient for most of the t points. There
are also additional factors taken into account for the accurate
representation of the resolvent in Eq. (21). The powers of
internuclear coordinate r01, analogously to the wave function,
are restricted to even integers and are generated randomly for
each basis function from the log-normal distribution within
the 0− 80 range. However, for small values of t (≤ 0.1), due
to a cancellation in the numerator of Eq. (20), an additional
tuning of the distribution was made and N ′ = 2N was set
to achieve high accuracy. Moreover, in this critical region of
small t, the function f(t) was expanded in a power series with
f3, f4, and f4l coefficients deduced from the known high-k
expansion by Korobov [26] (µ′ = µ/m)

f3 = 8
√
µ′D ,

f4l = 16µ′D , (24)

f4 =
4

µ′2

∑
(a,x),(b,y)

〈
~rax
r3
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r3
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〉
ε

− 2D
(

1 + 4µ′ ln
µ′

4
− 4µ′

)
.

The higher order expansion terms are obtained from the fit
to numerical values of f(t). As a test, f4 = 72.114 86(7)
calculated using the above formula, agrees well with 72.0(3)
obtained from the numerical fit. In order to perform integra-
tion in Eq. (20), we use a polynomial interpolation of the inte-
grand for t > 0.1, and power expansion for the critical region
t ∈ [0, 0.1].

The convergence of the Bethe logarithm with the increas-
ing size of the naECG basis is shown in Table II. Six sig-
nificant figures can be considered stable and the estimated
relative accuracy is a half ppm. Our recommended value
ln k0 = 3.018 304 9(15) is consistent with 3.0188 obtained
in the framework of adiabatic approximation [16], and the
difference between them divided by ln k0 is smaller than the
electron-proton mass ratio. An analogous difference of 0.0005
between adiabatic and nonadiabatic ln k0 has been noted for
H+

2 [16, 27].

TABLE II. Convergence of the nonrelativistic energy E and the
Bethe logarithm ln k0 with the increasing sizeN of the naECG basis
set. The final uncertainty for ln k0 is due to numerical inaccuracy of
f(t) at small t.

N E ln k0

128 −1.164 023 669 155 3.016 586 1
256 −1.164 024 987 878 3.018 137 0
512 −1.164 025 027 334 3.018 258 91

1024 −1.164 025 030 593 3.018 301 73
2048 −1.164 025 030 843 3.018 303 90
∞ −1.164 025 030 86(3) 3.018 304 9(15)

Higher order QED – Because of the significant increase in
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the accuracy of the QED correction achieved in this work, the
dominating contribution to the uncertainty comes from the
higher order E(7) correction. Currently, an explicit form of
this correction is unknown, which prevents its accurate evalu-
ation. Its first estimation, made within the BO approximation
framework, was reported in Ref. [17]. Here, we account for
several additional terms, namely

E(7) ≈ π
〈∑
a,x

δ3(rax)
〉{ 1

π

[
A60 +A61 lnα−2 (25)

+A62 ln2 α−2
]

+
1

π2
B50 +

1

π3
C40

}
− 2E(7)(H),

and assume a conservative 25% uncertainty. All the coeffi-
cients A, B, and C can be found in Ref. [18], and we use
the values for the 1S state of H. The dominating term is the
one containing A62 = −1 and inclusion of all the other terms
decreases E(7) by about 14%.

Summary – Theoretical predictions for all the known con-
tributions to D0,0 and D0,1 are assembled in Table III. By
Dv,J we denote there the dissociation energy of the hydro-
gen molecule in the state with the vibrational number v and
rotational J . The nonrelativistic contribution was calculated
directly forD0,0 andD0,1. All the corrections were calculated
forD0,0 and separately for the rotational excitation energy us-
ing NAPT. However, the QED correction for this excitation
energy was calculated within the BO approximation only, but
the related uncertainty is small. Finally, the dissociation en-
ergy D0,1 was obtained as the difference between D0,0 and
the rotational excitation.

The improved theoretical result for the ground state disso-
ciation energy D0,0 of the hydrogen molecule is in very good
agreement with the most recent measurements [2, 7], but their
uncertainties are an order of magnitude larger. The situation
is more intriguing for the dissociation energy D0,1 of the first
rotationally excited state. Although, our theoretical prediction
differs by 2σ from the equally accurate recent measurement
[6], it is in very good agreement with the twice as accurate
measurement reported in parallel to this work [32], see Table
III.

Conclusions – This work concludes efforts to increase the
accuracy of theoretical predictions for the dissociation energy
of H2, feasible within the framework of the existing theory.
Further progress is likely, provided an explicit formula for the
E(7) term in the expansion Eq. (1) is found. Currently, the
main uncertainty of 25× 10−6 cm−1 (0.75 MHz) comes from
this correction, which for the time being, is estimated using
the known atomic hydrogen formula, see Eq. (25). Despite
this approximation, the new results for dissociation energies
of the hydrogen molecule become the most accurate ever ob-
tained for any molecule.

Regarding the possibility of determination of the Rydberg
constant or the proton charge radius, let us point out that in
the atomic hydrogen, apart from 1S-2S transition, there is no
other narrow transition, and the present charge radius deter-
mination relies on an average of many transitions with much

larger natural linewidth than the accuracy of individual mea-
surements. The alternative route suggested by Merkt [31] is to
use the ionization energy of the hydrogen molecule, as a sec-
ond transition, because its natural width is exactly zero. The
determination of the dissociation energy in Refs. [2, 6, 7, 32]
is in fact the measurement of the ionization energyE(H2, IP),

E(H2, IP) = D0(H2) + E(H, IP)−D0(H+
2 ) (26)

which for ortho-H2 amounts to about 124 357 cm−1 [6]. The
ratio with the precisely known 2S-1S transition 82 259 cm−1

[33] is independent of the Rydberg constant, but depends on
the proton charge radius through

E(H2, IP)

E(H, 2S-1S)
= 1.512 . . .− 1.4 · 10−10 r2

p/fm
2 . (27)

Consequently, one needs to achieve

δE(H2, IP) = E(H, 2S-1S) 2 · 0.01 · 1.4 · 10−10 r2
p/fm

2

= 1.6 · 10−7 cm−1 (5 kHz) (28)

accuracy for the ionization energy of H2 to obtain the pro-
ton radius with 1% precision. Among the contributions to
E(H2, IP) in Eq. (26), the last two are known with much
higher precision [34] than required. Therefore, it is only
D0(H2) which needs to be improved. This can be achieved
by the evaluation of the nonadiabatic E(6), E(7) in the BO ap-
proximation, and the E(8) contribution using the atomic hy-
drogen theory. Among them, the calculation of E(7) is the
most demanding task, since it has not yet been accomplished
for helium or for any other system except the hydrogen atom
and H+

2 ion [18, 35], but it is feasible using present-day tech-
nologies.
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