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We perform the calculation of all relativistic and quantum electrodynamic corrections of the order of α6m
to the ground electronic state of a hydrogen molecule and present improved results for the dissociation and the
fundamental transition energies. These results open the window for the high-precision spectroscopy of H2 and
related low-energy tests of fundamental interactions.
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The hydrogen atom and various hydrogenic systems like
positronium, muonium, muonic hydrogen, and He+, due to
highly accurate theoretical predictions [1], are considered for
the determination of fundamental physical constants [2] and
for the low-energy tests of the Standard Model [3, 4]. How-
ever, they are limited by uncertainties in the nuclear structure
or natural life-time of the system. The 1S − 2S transition
in H is the best example, where the precision of the mea-
surement f(1S − 2S) = 2 466 061 413 187 035(10) Hz [5]
exceeds by orders of magnitude any theoretical predictions.
This is because of the relatively large theoretical uncertain-
ties in the proton structure and resulting inaccuracies in fun-
damental constants. The lack of another sharp transition in
the hydrogen makes the determination of the Rydberg (R∞)
constant, which transforms atomic units to inverse of the tran-
sition wavelength, much less accurate than it would be if an-
other such transition was available. Here we point out that the
dissociation energy of H2 can serve this purpose, as it is sta-
ble in the ground electronic state and can be calculated with
sufficient precision. So having two accurate and calculable
transitions the two unknowns R∞ and rp can be determined,
which among others, would help resolve the proton charge ra-
dius puzzle. Another alternative systems for which high pre-
cision calculations are possible, include the helium ion He+

[6], heavy hydrogen like ions [7], and the hydrogen molecular
ion [8, 9].

The calculations for the hydrogen molecule have never been
considered to be as accurate as for the hydrogen atom due
to the lack of an analytic solution of the Schrödinger equa-
tion. However, the numerical solution of this equation, as
has been shown recently [10], can be as accurate as 10−12,
and thus it will not limit the accuracy of theoretical predic-
tions. There are obviously various corrections, such as rela-
tivistic and quantum electrodynamic (QED) ones. So far, they
have been calculated up to α5m order [11], and only in the
adiabatic approximation. Beyond this approximation, namely
the combined nonadiabatic and relativistic effects, have not
yet been obtained and they will limit the accuracy of current
predictions. Here we calculate one of the most difficult, the
α6m correction, using the so-called nonrelativistic QED ap-
proach. Next, we point out that when the higher order α7m

correction is determined, energies of the hydrogen molecule
can be obtained almost as accurately as those of the hydro-
gen atom alone, and thus may be used for determination of
the R∞ constant. Meanwhile, on the basis of the α6m correc-
tion obtained herein, we will present improved results for the
dissociation and the fundamental transition energies.

NRQED effective Hamiltonian Since there is no formula-
tion of QED theory based on a multielectron Dirac equation
with Coulomb interactions, we use an effective nonrelativis-
tic QED (NRQED) approach that is based on the Schrödinger
equation. According to QED theory, the expansion of energy
levels in powers of the fine structure constant α has the fol-
lowing form

E(α) = E(2) + E(4) + E(5) + E(6) + E(7) +O(α8), (1)

where E(n) is a contribution of order αnm and may include
powers of lnα. Each expansion term E(n) can be expressed
as an expectation value of some effective Hamiltonian with
the nonrelativistic wave function Φ. The first one, E(2) ≡ E0,
is the eigenvalue of the nonrelativistic Hamiltonian H0. In
the infinite nuclear mass approximation (in theoretical units
h̄ = c = 1)

H0 =
~p 2

1

2m
+

~p 2
2

2m
+ V, (2)

where

V = −ZA α

r1A
− ZA α
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+
α

r
+
ZA ZB α
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r = r12, and where indices 1 and 2 correspond to electrons,
whereas A and B correspond to nuclei. The next term of this
expansion E(4) is the expectation value of the well-known
Breit-Pauli (BP) Hamiltonian H(4) [12]. E(5) is the leading
QED contribution, which is well defined and can also be ex-
pressed in terms of matrix elements of somewhat more com-
plicated operators [11, 13]. The calculation of the next term
in α-expansion E(6) is the subject of the present work. This
term can be represented as

E(6) =
〈
H(6)

〉
+

〈
H(4) 1

(E0 −H0)′
H(4)

〉
, (4)
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where H(6) is the effective Hamiltonian of order α6m. Its
derivation is presented in the following paragraph. Here, the
second-order contribution, and correspondingly H(4), is split
into two parts depending on the symmetry of intermediate
states.

EA =

〈
HA

1

(E0 −H0)′
HA

〉
, EC =

〈
HC

1

E0 −H0
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〉
(5)

where
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8m3
− α
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and

HC =
(~σ1 − ~σ2)

2

[
ZA

4m2

(
~r1A

r3
1A

× ~p1 −
~r2A

r3
2A

× ~p2

)
(7)

+
ZB

4m2

(
~r1B

r3
1B

× ~p1 −
~r2B

r3
2B

× ~p2

)
+

1

4m2

~r

r3
× (~p1 + ~p2)

]
.

The first term EA as well as 〈H(6)〉 are separately divergent,
but their sum is finite. We follow the approach of Ref. [14]
and use the technique of dimensional regularization to elimi-
nate these divergences from the matrix elements. HA in the
above equation should therefore be written in d-dimensions,
but for simplicity we write only the d = 3 form.

The effective Hamiltonian H(6) is derived in an analogous
way as for the He atom in Ref. [14]. There is no additional
complication for the case of H2, except obviously for the pres-
ence of two Coulomb fields instead of one. It is expressed as a
sum of various contributions,H(6) = HQ+HH+HR1+HR2.
HQ is a sum of all terms that come from one- and two-photon
exchange of the low-energy photons k ∼ αm. We do not
write their explicit expression because it is too long. They are
divergent at high photon momenta, or equivalently at small
distances r and raX . This divergence cancel out with the
second-order contribution EA and with the hard three-photon
exchange, which in d = 3− 2 ε dimensions is [15]

HH =

(
4 lnm−1

ε
−39 ζ(3)

π2
+

32

π2
−6 ln(2)+

7

3

)
π α3

4m2
δd(r).

(8)
Later in Eq. (18) and Table I we present a simplified and regu-
larized form ofHQ. The remaining contributions are radiative
corrections, which at the order α6m are proportional to Dirac
δ-functions, and they are known from the hydrogenic case.
The one-loop correction is [1]
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and the two-loop correction is [1]
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At this point we have considered all contributions of the order
of α6m. The higher order term is estimated on the basis of the
dominant double logarithmic contribution, which for ZA =
ZB = 1 is

H(7)≈− α
4

m2
ln2
(
α−2

)[
δ3(r1A)+δ3(r2A)+δ3(r1B)+δ3(r2B)

]
(11)

Elimination of Singularities The second-order matrix ele-
ment EA in Eq. (5) requires subtractions of 1/ε singularities.
For this we use the transformation

HA = H ′A +
{
H0 − E0, Q

}
, (12)

where

Q = −1

4
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+
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+
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)
+

1

2 r
, (13)

so that EA = E′A + E′′A, where

E′A =

〈
H ′A

1

(E0 −H0)′
H ′A

〉
, (14)

E′′A =
〈
Q (E0 −H0)Q

〉
+ 2 〈HA〉 〈Q〉 −
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HA , Q

}〉
.

(15)

E′A is finite in the limit ε→ 0, and

H ′A|Φ〉 =

{
−1

2
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1

2 r

(
δij +

ri rj

r2

)
pj2

+
1

4
~∇2

1
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4
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1

4
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}
|Φ〉,

where the action of ~∇2
1
~∇2

2 on Φ in the above is understood as
a differentiation with omission of δ3(r), and Vi is defined in
the caption of Table I.

The expression for E(6), after subtraction and elimination
of all singularities, is the main result of this work and has the
following form

E(6) = E′Q+E′H +E′A+EC +ER1 +ER2− ln(α)π 〈δ3(r)〉
(17)

where E′H is the expectation value of HH with dropping 1/ε
and lnm terms,E′A is defined in Eq. (14),EC in Eq. (5),ER1,
and ER2 are mean values of the Hamiltonians (9) and (10),
correspondingly. The logarithmic term in Eq. (17) agrees with
that obtained for helium in Ref. [16]. The sum of the “soft”
photon exchange contributionsE′Q = 〈HQ〉+E′′A for the case
of H2 after (1↔ 2) simplification becomes
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E′Q = −E
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2
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1

4
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1

8
Q30 (18)

where R = rAB , ER = E0 − 1/R and Qi are defined in
Table I. These operators agree with those obtained previously
for helium in the R→ 0 limit, as they should.

Gaussian integrals Almost all the calculations of matrix
elements with α6m operators are performed in this work by
using the explicitly correlated Gaussian (ECG) functions.

φΣ+ =
(

1+
r12

2

)
e−a1A r21A−a1B r21B−a2A r22A−a2B r22B−a12 r212

(19)
In order to satisfy the electron-electron cusp condition, we in-
clude an explicit factor (1 + r12/2) in the wave function. It
not only improves the numerical convergence, but also it is
crucial for obtaining a correct numerical value for some of the
nearly singular matrix elements, especially E′A, otherwise the
result would be incorrect. The other second-order matrix ele-
ment EC does not have any singularities, so the (1 + r12/2)
factor can be dropped. It involves intermediate states of Σ−

and Π symmetries, which have the following representations:
φΣ− = ~R · (~r1A × ~r2A)φΣ+ and ~φΠ = (~R× ~r1A)φΣ+ .

The primary advantage of ECG functions is that all inte-
grals with operators in Table I, as well as in the second-order
elements, can be performed either analytically or numerically
as follows. All the matrix elements are expressed as a linear
combination of the following integrals

f(n1, n2, n3, n4, n5) =
1

π3

∫
d3r1

∫
d3r2 r

n1

1Ar
n2

1Br
n3

2Ar
n4

2Br
n5
12

×e−c1A r21A−c1B r21B−c2A r22A−c2B r22B−c12 r212 (20)

The ECG integrals with even powers of inter-particle distance
can be generated by differentiation over nonlinear parameters
of the master integral

f(0, 0, 0, 0, 0) = A−3/2e−R
2 B

A (21)

where

A = (c1A + c1B + c12)(c2A + c2B + c12)− c212 (22)
B = (c1B + c1A)c2Ac2B + c1Ac1B(c2A + c2B)

+c12(c1A + c2A)(c1B + c2B) (23)

If one of the nk indices is odd, the ECG integrals can also be
obtained analytically by differentiation of other master inte-
grals. An exemplary master integral for the case of n1 = −1
reads

f(−1, 0, 0, 0, 0) =
1

A
√
A1

e−R
2 B

AF

[
R2

(
B1

A1
− B

A

)]
,

(24)

where A1 = ∂c1A A, B1 = ∂c1A B, and F (x) = erf(x)/x.
Molecular ECG integrals, as opposed to the atomic case, have
no known analytic form when two or more nk are odd. In this
case we use numerical integration with the quadrature adapted
to the end-point logarithmic singularity [17]. This approach
appears to be very efficient for all the integrals with two and
three odd indices, which are required in the evaluation of ma-
trix elements of all the α6m operators.

Numerical calculations The nonrelativistic wave function
Φ used for the ground electronic state is the symmetrized
(1↔ 2, A↔ B) linear combination ofN = 128, 256, or 512
basis functions φΣ+ from Eq. (19). All individual nonlinear
parameters are carefully optimized, and the precision achieved
for the ground state energy is about 10−12 with N = 512 ba-
sis. The separate optimization with the same basis size N
was performed to accurately represent the resolvent of Π and
Σ− symmetry in the second-order matrix elementsEC . More-
over, forE

′

A we use an additional non-optimized constant sec-
tor of φΣ+ basis functions, where non-linear parameters come
from the Σ+ wave function of the size N/2. This is because
the electronic ground state has to be subtracted from the re-
solvent. The global optimization of all nonlinear parameters
ensures high accuracy for matrix elements. Nevertheless, in
some cases, like for Q10, we transform matrix elements to a
more regular but equivalent form to further improve the nu-
merical accuracy [18]. Moreover, for Q27, Q28, and Q30 op-
erators it was essential to use the basis functions with 1 + r/2
prefactor, so the wave function satisfies exactly the electron-
electron cusp condition. Particular attention should be paid
to the second-order matrix element E′A with the regularized
Breit-Pauli Hamiltonian. The use of 1 + r/2 prefactor was
necessary to subtract the δ3(r) term from the ~∇2

1
~∇2

2 differ-
entiation of the outer wave function, and it also significantly
improves the numerical convergence of E′A.

All numerical matrix elements have been checked against
theR→ 0 andR→∞ limits. Every operatorQi in Table I as
well as E

′

A, EC , and ER2 have a well-defined limit R→ 0 to
the corresponding helium ground state mean value [14]. How-
ever, in the particular case of Π contribution to EC the helium
limit is achieved at extremely low values of R, indicating the
significant change in the character of the electronic wave func-
tion at distances R = 0 − 0.2 where the EC(Π) curve has a
local sharp minimum. The exceptional case is ER1, which
does not go to the helium limit at R = 0. The reason for this
is that Z α expansion of the electron self-energy assumes that
all inter-particle distances are of the order of the Bohr radius.
When the inter-nuclear distances are of the order of the elec-
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tron Compton wavelength the Z α expansion takes a different
form and the proper helium limit is then achieved.

All the numerical matrix elements have also been verified
against the long-distance asymptotics R → ∞, which coin-
cide with hydrogenic values as they should. It was essen-
tial to perform all possible tests, in order to avoid mistakes in
derivation and coding of matrix elements. Moreover, matrix
elements ofQ1 . . . Q7 have also been calculated with the dou-
ble James-Coolidge basis [19] because the achieved numerical
accuracy with exponential functions is much higher than with
Gaussians. So far, we have not been able to calculate all the
matrix elements with explicitly correlated exponential func-
tions because they involve integrals that are too complicated,
but we plan to do this in the near future.

Results The exemplary expectation value at R = 1.4 au
of all Qi operators is presented in Table I. The numerical ac-

TABLE I. Expectation values of operators enteringH(6) for the 1Σ+

state at R = 1.4 au. The last digit in Q9...28 is uncertain. The
following notation was used in the table: ~r = ~r12 = ~r1 − ~r2, Vi =

1/riA + 1/riB , ~Vi = ~riA/r
3
iA + ~riB/r

3
iB , ~P = ~p1 + ~p2.

Operator Expectation value
Q1 = 4π δ3(r1A) 2.888 179 88(1)
Q2 = 4π δ3(r) 0.210 402 25(1)
Q3 = 4π δ3(r1A)/r2A 2.203 14
Q4 = 4π δ3(r1A)/r2B 2.778 58
Q5 = 4π δ3(r1A) p22 2.952 30
Q6 = 4π δ3(r)V1 0.604 74

Q7 = 4πδ(3)(r)P 2 0.859 90
Q8 = 1/r 0.587 36
Q9 = 1/r2 0.517 93
Q10 = 1/r3 0.414 34
Q11 = V 2

1 4.852 07
Q12 = V1 V2 3.265 50
Q13 = V1/r 1.193 32
Q14 = V1 V2/r 2.454 64
Q15 = V 2

1 V2 8.525 27
Q16 = V 2

1 /r 3.445 33
Q17 = V1/r

2 1.195 29

Q18 = ~V1 · ~r/r3 0.406 32

Q19 = ~V1 · ~r/r2 0.488 59
Q20 = V i

1 V
j
2 (rirj − 3 δij r2)/r 0.547 86

Q21 = p22 V
2
1 5.186 77

Q22 = ~p1 V
2
1 ~p1 5.145 61

Q23 = ~p1 /r
2 ~p1 0.554 62

Q24 = pi1 V1 (ri rj + δij r2)/r3 pj2 0.237 37
Q25 = P i (3 ri rj − δijr2)/r5 P j −0.190 40
Q26 = pk2 V

i
1 (δjk ri/r − δik rj/r

−δij rk/r − ri rj rk/r3) pj2 −0.112 60
Q27 = p21 p

2
2 1.328 10

Q28 = p21 V1 p
2
2 5.208 25

Q29 = ~p1 × ~p2 /r ~p1 × ~p2 0.386 62
Q30 = pk1 p

l
2 (−δjl ri rk/r3 − δik rj rl/r3

+3 ri rj rk rl/r5) pi1 p
j
2 −0.160 82

curacy is about five significant digits, and we observe a signif-
icant cancellation, so the sum, as expressed by EQ, is smaller
than most of the individual terms, see Table II. The overall

FIG. 1. Non-logarithmic photon exchange contribution E′Q +E′A +
EC + E′H as a function of the inter-nuclear distance R. The hor-
izontal line is located at −1/8, which is twice the atomic hydro-
gen value, and the dashed curve shows the 0.529 947 904/R2 − 1/8
asymptotics, which is obtained from the small R expansion of the
Casimir-Polder potential [20].

0 2 4 6 8

-0.01

-0.1

-1

-10
R�au

dependence of the non-logarithmic photon exchange contri-
bution EQ + EA + EC + EH = E′Q + E′A + EC + E′H on
the inter-nuclear distance is presented in Fig. 1. We observe
the minimum around 1.5 au, which is not far from the mean
internuclear distance where the radial wave function is local-
ized, so the photon exchange contribution to the dissociation
energy is relatively small.

Table II supplies all contributions to E(6) as given in Eq.
(17) at R = 1.4 au. It is worth noting that the by far
largest contribution comes from the one-loop radiative cor-
rection ER1, which legitimizes the previous estimations for
α6m contribution [11]. Table III presents a summary of all
contributions to the dissociation, fundamental vibrational and
rotational transitions. In particular, this table contains signif-
icantly more accurate results for the α2m nonrelativistic en-
ergies obtained using explicitly correlated exponential func-
tions [10].

TABLE II. Contributions to E(6) for the ground electronic state of
H2 at R = 1.4 au. ELG is the logarithmic correction, last term in
Eq. (17), ED is the α6m contribution from the Dirac equation.

α6m H2(Σ+)
E′Q 0.688 40(16)
E′H −0.043 832
E′A −0.641 4(5)
EC −0.059 54(4)

Subtotal −0.056 4(6)
ER1 9.254 583
ER2 0.142 233
ELG 0.258 811
Total 9.599 3(6)

−2ED(H) 0.125 000
−2ER1(H) −6.123 245
−2ER2(H) −0.109 212

E(6)(H2)− 2E(6)(H) 3.491 8(6)α6m

Summary We have calculated the complete α6m contri-
bution to the molecular hydrogen energy levels. This is the
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first calculation of the higher order relativistic effects ever per-
formed for molecules, except for the one-electron molecular
ion H+

2 [8]. Besides significant improvements in the H2 lev-
els, it shows how to properly incorporate electron correlations
with relativistic and QED effects.

TABLE III. Contributions to dissociation, vibrational, and rotational
transitions in H2 in cm−1. Physical constants are from [2] and
rp = 0.8409(4) fm. There are additional 10−3 uncertainties of α4,
α5, and α6m terms due to the BO approximation,which are included
in the final result only. α7m term is estimated from the known lead-
ing double logarithmic contribution in Eq. (11) and the related 50%
uncertainty is assumed. Er2p

is the finite proton size correction.

D0 v = 0→ 1 J = 0→ 1

α2m 36 118.797 746 12(5) 4 161.164 070 3(1) 118.485 260 46(3)

α4m −0.531 8(3)a 0.023 41(1)c 0.002 580(1)

α5m −0.194 8(2)b −0.021 29(2)c −0.001 022(1)

α6m −0.002 065(6) −0.000 192 3(6) −0.000 008 9(1)

α7m 0.000 118(59) 0.000 012 0(60) 0.000 000 6(3)

Er2p
−0.000 031 −0.000 003 2 −0.000 000 2

Theory 36 118.069 1(6) 4 161.166 01(4) 118.486 810(4)

[22–24] 36 118.069 62(37) 4 161.166 32(18) 118.486 84(10)

a [21]; b [11];c [23].

The improvement of the H2 levels down to the 10−7 cm−1

level will lead to more accurate determination of the R∞ con-
stant and may shed light on the proton charge radius puzzle.
The ratio of the nuclear finite size effects to the transition en-
ergy for 1S− 2S in H is 3.9 · 10−10, while for the H2 dissoci-
ation energy it is 8.6 · 10−10. Since the ratios are sufficiently
different, one can use these transitions to determine R∞ and
rp without referring to the other, less well-known transitions
in hydrogen. To achieve this, however, further improvement
in H2 levels is required, in particular the calculation of the
α7m contribution.
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