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We investigate interactions between the proton spin, the deuteron spin, and the orbital angular momentum
in the electronic ground state of the HD molecule. These interactions lead to hyperfine splittings of molecular
energy levels. Our numerical results for the first rotational level agree well with the currently most accurate
measurement performed by Ramsey et al. in the 1950s. Knowledge of the hyperfine structure of other levels
is necessary for the accurate determination of rovibrational transition energies in spectroscopic measurements.
We present theoretical predictions and share the numerical code used to perform numerical calculations. This
work sets the ground for high precision spectroscopic tests of hyperfine interactions in molecular systems. In
particular we determine the value of the deuteron quadrupole moment Q = 0.2856(2) fm2 and give outlook for
improving its accuracy by three orders of magnitude.

I. INTRODUCTION

Current theoretical predictions for the hyperfine structure
(hfs) in simple molecules are far less accurate than the exper-
imental values obtained in original microwave measurements
by Ramsey et al. [1, 2] half a century ago. For HD these mea-
surements were performed, regrettably, only for the lowest ro-
tational level. On the other hand, theoretically predicted hy-
perfine structure (hfs) of many other molecular levels is neces-
sary for a contemporary determination of transition frequen-
cies, due to the complexity of the line shape. For instance,
several recent measurements [3–5] of a specific transition fre-
quency in HD significantly disagree with each other, presum-
ably because of a different line shape modeling that has been
employed. Therefore, the knowledge of the hyperfine split-
ting and corresponding individual transition rates is of crucial
importance in a correct interpretation of precision molecular
spectroscopy.

The first step in this direction is the recent work of Dupré
[6], which presents results for low lying vibrational levels with
the rotational number J = 1, however without any uncer-
tainties. In this work we present a systematic derivation and

numerical calculation of leading hyperfine interactions for all
molecular levels in the HD molecule, including individual hfs
transition rates between them, within the Born-Oppenheimer
(BO) approximation. Due to this approximation our results
will have about 10−3 relative accuracy, which nevertheless is
sufficient for the current experimental precision of rovibra-
tional transitions. Moreover, we present hyperfine splittings
for an arbitrary rovibrational level of HD in terms of a freely
available computer code [7]. As well as application in molec-
ular spectroscopy, our results could also be useful in precision
tests of hyperfine interactions in the HD molecule, provided
the theory for relativistic and quantum electrodynamic cor-
rections is developed.

Considering theory for the leading molecular hyperfine
structure [8], there are three angular momenta in the ground
electronic state of the HD molecule: the proton spin ~Ip, that
of the deuteron ~Id, and the rotational angular momentum ~J .
All of them interact with each other, and using the Ramsey
notation (e.g. [9]), the effective Hamiltonian describing these
interactions reads

Hhfs = − cp ~Ip · ~J − cd ~Id · ~J +
5 d1

(2 J − 1)(2 J + 3)

[
3

2
(~Ip · ~J) (~Id · ~J) +

3

2
(~Id · ~J) (~Ip · ~J)− (~Ip · ~Id) ~J 2

]
+

5 d2

(2 J − 1)(2 J + 3)

[
3 (~Id · ~J)2 +

3

2
(~Id · ~J)− ~I 2

d
~J 2

]
. (1)

One observes the lack of a separate ~Ip · ~Id coupling. The di-
rect scalar nuclear spin-spin interaction vanishes, while the
electron-mediated nuclear spin-spin interaction is of higher
order in the fine structure constant α. Namely, it is α2-times
smaller than the above tensor interactions and therefore is ne-
glected here as are all the other α2 corrections.

The above coefficients cp, cd, d1, and d2 are related, re-

spectively, to the interactions between: the proton spin and
molecular rotation, the deuteron spin and rotation, the proton
and deuteron spins, and the electric quadrupole moment of the
deuteron with the electric field gradient. All of these constants
depend on the molecular level, identified by the vibrational v
and the rotational J quantum numbers.

In the following Sections, we present a short derivation of
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all the constants, followed by their numerical calculation as
functions of the internuclear distance R. Their values for a
particular molecular state are obtained by averaging with the
nuclear wave function χv,J

Hhfs(v, J) = 〈v, J |Hhfs(R)|v, J〉 . (2)

This is an approximate treatment that relies on the BO ap-
proximation, but it is a good starting point for future more ac-
curate nonadiabatic calculations. Ramsey, in his monograph
on molecular beams [10], presented a basic theory of nuclear
and rotational magnetic moment coupling. Here, we present
a concise and rigorous derivation of all molecular hfs interac-
tions, which can also be a basis for the derivation of relativistic
as well as QED corrections.

II. NUCLEAR SPIN-ROTATION CONSTANTS cp AND cd

The following derivation of spin-rotation constant is based
on our former work [11], from which we adopt the notation.
Let us consider a Hamiltonian for a particle with charge e,
mass M , spin I , and a gyromagnetic factor g, interacting with
the electromagnetic field (~ = c = 1),

H =
~π2

2M
+ eA0 − e g

2M
~I · ~B

− e (g − 1)

4M2
~I · ( ~E × ~π − ~π × ~E) , (3)

where ~π = ~p − e ~A. If this particle is the proton or deuteron,
then e coincides with the elementary charge. The gyromag-
netic factors

gp =
µp

µN Ip
= 5.585 695 . . . (4)

gd =
µd

µN Id

md

mp
= 1.714 025 . . . (5)

are related to the magnetic moment of the proton
µp = 2.792 847 344 63(82)µN and the deuteron µd =
0.857 438 2338(22)µN , respectively [12]. The g-factor is a
dimensionless quantity which is more convenient to use in
formulas than the magnetic moment. If the electromagnetic
field comes from the other nucleus or from the electron, it is
of the form

~E = − e

4π

~r

r3
, (6)

Ai =
e

4π

[
1

2 r

(
δij +

ri rj

r2

)
pj − g

2M
~I × ~r

r3

]
, (7)

where i, j are Cartesian indeces, and in the case of an elec-
tron g = 2, M becomes the electron mass m. Inserting the
above formulas to Eq. (3) one obtains the general spin-orbit
Hamiltonian

δH =
∑
α,β

eα eβ
4π

1

2 r3
αβ

[
gα

mαmβ

~Iα · ~rαβ × ~pβ

− (gα − 1)

m2
α

~Iα · ~rαβ × ~pα
]
, (8)

where the indices α and β go over both electrons and nuclei.
In particular, the coupling of the nuclear spin ~I = ~IA to the

molecular rotation is

δAH =
∑
b

eA e

4π

~I

2 r3
Ab

[
gA

mAm
~rAb × ~pb −

(gA − 1)

m2
A

~rAb × ~pA
]

+
eA eB

4π

~I

2 r3
AB

·
[

gA
mAmB

~rAB × ~pB −
(gA − 1)

m2
A

~rAB × ~pA
]
.

(9)

For convenience, following Ref. 11, we chose the reference
frame centered at the considered nucleus A and introduced
the notation ~R = ~rAB , ~P = −ı ~∇R, and ~xb = ~rbA = ~rb−~rA.
For the Σ+

g electronic state considered here, δAH takes the
form

δAH = ~Q1 · ~I + ~Q2 × ~P · ~I, (10)

~Q1 = −
∑
b

eA e

4π

gA
2mmA

~xb × ~pb
x3
b

, (11)

~Q2 = −
∑
b

eA e

4π

1

2m2
A

~xb
x3
b

− eA eB
4π

1

2mA

[
gA
mB

+
(gA − 1)

mA

] ~R

R3
, (12)

where we neglected terms of the higher order in the electron-
nucleus mass ratio. We make use of BO approximation, and
the total wave function ψ is represented as a product

ψv,J,M = φel(~xa)χv,J(R)YJ,M (~n) (13)

of the electronic wave function φel(~xa), the nuclear one
χv,J(R), and the spherical harmonic YJ,M (~n), where ~n =
~R/R. The electronic wave function φel for the ground Σ+

state is a scalar function, and thus depends only on interparti-
cle distances.

The expectation value of 〈φel| ~Q1|φel〉 vanishes and the ~Q1

operator contributes only through the nonadiabatic matrix el-
ement [11]

〈 ~Q〉(1)
el = −

~R× ~P

mnR2

〈
φel

∣∣∣∣Jjel

1

(Eel −Hel)′
Qj
∣∣∣∣φel

〉
. (14)

where ~Jel is the electronic angular momentum operator, and
1/mn = 1/mA + 1/mB , so that the total spin-rotation con-
stant cA can be inferred from

−cA ~I · ~J = −
~I · ~J
mnR2

〈φel| ~Jel
1

(Eel −Hel)′
~Q1|φel〉

+ 〈φel| ~Q2|φel〉 × ~P · ~I . (15)

The expectation value of the first term in ~Q2 (Eq. (12)) can
alternatively be expressed in terms of a derivative of the BO
energy, namely〈

φel

∣∣∣∣∣∑
b

eA e

4π

~xb
x3
b

∣∣∣∣∣φel

〉
= ~n

(
∂Eel

∂R
+
eA eB

4π

1

R2

)
,(16)

and cA in atomic units [eX = −ZX e, α = e2/(4π)] becomes
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cA = α2

[
1

R2

ZA gA
2mnmA

〈
φel

∣∣∣∣∣∑
a

~xa × ~pa
1

(Eel −Hel)

∑
b

~xb × ~pb
x3
b

∣∣∣∣∣φel

〉
+

1

R

1

2m2
A

∂Eel

∂R
+

1

R3

ZA ZB gA
2mnmA

]
. (17)

In the particular case of the proton and the deuteron in the HD molecule, we arrive at

cp =
α2

2R2mnmp

[
gp

〈
φel

∣∣∣∣∣∑
a

~xa × ~pa
1

(Eel −Hel)

∑
b

~xb × ~pb
x3
b

∣∣∣∣∣φel

〉
+
gp
R

+
mn

mp
R
∂Eel

∂R

]
, (18)

cd =
α2

2R2mnmd

[
gd

〈
φel

∣∣∣∣∣∑
a

~xa × ~pa
1

(Eel −Hel)

∑
b

~xb × ~pb
x3
b

∣∣∣∣∣φel

〉
+
gd
R

+
mn

md
R
∂Eel

∂R

]
, (19)

where the sum goes over two electrons in the HD molecule.
These formulas coincide with those derived originally in [13].

III. SPIN-SPIN CONSTANT d1

The nuclear spin-spin direct interaction comes from the 3rd
term in Eq. (3) and is of the form

δH =
eA eB

4π

gA gB
4mAmB

IiA I
j
B

R3

(
δij − 3

RiRj

R2

)
. (20)

Using the fact that for the Σ states of a diatomic molecule
~n · ~J |J,MJ〉 = 0, the matrix elements of the angular part (in
parentheses) in states with definite angular momentum J can
be expressed in terms of this J as〈

J,MJ

∣∣∣∣δij − 3
RiRj

R2

∣∣∣∣ J,M ′J〉
=

〈
J,MJ

∣∣∣∣∣3 J i Jj + 3 Jj J i − 2 δij ~J2

(2 J − 1) (2J + 3)

∣∣∣∣∣ J,M ′J
〉
. (21)

So, for such states, this interaction takes the form (in atomic
units)

δH = α2 gp gdm
2
e

4mpmd

1

R3
× (22)

3 (~Ip · ~J) (~Id · ~J) + 3 (~Id · ~J) (~Ip · ~J)− 2 (~Ip · ~Id) ~J2

(2 J − 1) (2J + 3)

and the d1 constant is

d1 = α2 gp gdm
2
e

10mpmd

1

R3
. (23)

IV. QUADRUPOLE CONSTANT d2

The interaction of a particle possessing the electric
quadrupole moment with the gradient of the electric field is
given by

δH = − e

6
Qij ∂jE

i . (24)

For a particle with a definite spin I ≥ 1, theQij , as a traceless
and symmetric tensor, can be expressed in terms of a single
scalar electric quadrupole moment Q defined by

Qij =
Q

I (2I − 1)

(
3

2
Ii Ij +

3

2
Ij Ii − δij ~I2

)
. (25)

This definition is such that Q corresponds to the expecta-
tion value of Q33 in a state with the maximum value of MI ,
namely

Q = 〈I, I|Q33|I, I〉 . (26)

The electric field is produced by the other nucleus and all the
electrons. Let us introduce q, which is an averaged value of
the gradient of the molecular electric field

q ≡ 1

3
〈φel|e ∂jEi|φel〉

(
δij − 3

RiRj

R2

)
=

〈
φel

∣∣∣∣∣ ∂2V

∂Rid∂R
j
d

(
RiRj

R2
− δij

3

)∣∣∣∣∣φel

〉
, (27)

where V is the Coulomb interaction potential. Then, the trace-
less part of the electric field gradient is

〈φel|e ∂jEi|φel〉 =
q

2

(
δij − 3

RiRj

R2

)
(28)

and in a state with the definite angular momentum

〈J,MJ , φel|e ∂jEi|φel, J,M
′
J〉

=
q

2

〈
J,MJ

∣∣∣∣∣3 J i Jj + 3 Jj J i − 2 δij ~J2

(2 J − 1) (2J + 3)

∣∣∣∣∣ J,M ′J
〉
. (29)

Finally, the interaction of the electric quadrupole moment of
the nucleus with the gradient of the molecular electric field is

δH = −1

6

Q

I (2I − 1)

(
3

2
Ii Ij +

3

2
Ij Ii − δij ~I2

)
× q

2

3 J i Jj + 3 Jj J i − 2 δij ~J2

(2 J − 1) (2J + 3)

= −Qq
3 (~I · ~J)2 + 3

2 (~I · ~J)− ~I2 ~J2

2 I (2I − 1) (2 J − 1) (2J + 3)
. (30)
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The Ramsey constant d2 is thus

d2 = −Qq
10

, (31)

which in atomic units reads

d2 = −α2 Q

10λ2

〈
φel

∣∣∣∣∣ ∂2V

∂Rid ∂R
j
d

(
RiRj

R2
− δij

3

)∣∣∣∣∣φel

〉
,

(32)

where λ is the reduced Compton wavelength of an electron.

V. NUMERICAL CALCULATIONS OF HYPERFINE
CURVES

To evaluate the electronic matrix elements present in cp and
cd (see Eqs. (18) and (19)) we use explicitly correlated Gaus-
sian (ECG) basis functions of Σ+

φΣ = e−a1A r
2
1A−a1B r21B−a2A r

2
2A−a2B r22B−a12 r

2
12 (33)

and Π symmetry

φiΠ = (~R× ~r1)i φ = εijkRjrk1 φΣ . (34)

256 basis functions of Eq. (33) were employed to represent
the electronic wave function φel. The same number of func-
tions of Eq. (34) was used to form the internal basis set of
the resolvent 1/(Eel −Hel). Their nonlinear parameters were
determined variationally in a global optimization process in-
dependently at 44 internuclear distances. While the parame-
ters of the φel were determined by minimizing the electronic
energy, the nonlinear parameters of the internal basis were op-
timized with respect to the functional

〈φel|
∑
a

~xa × ~pa
1

Eel −Hel

∑
b

~xb × ~pb|φel〉 . (35)

Thanks to the optimization of the φΣ and φΠ functions the
relative numerical accuracy (ca. 10−5) of the spin-rotation
parameters is higher than the estimate of nonadiabatic correc-
tions, and the use of only 256 basis functions was sufficient
for this purpose. Apart from the second-order matrix element,
the spin-rotation parameters cp and cd require evaluation of
the derivative of the BO energy with respect to the intermolec-
ular distance, see Eqs. (18)-(19). This derivative can be found
from the virial theorem

∂Eel

∂R
=
〈V 〉el − 2 Eel

R
, (36)

which enables calculations with high numerical precision.
The direct spin-spin interaction constant d1 does not require

evaluation of any electronic matrix elements and, for a given
R, is fully determined by the well-known nuclear g-factors
and the electron-nucleus mass ratios.

Considering the matrix element of the quadrupole constant
d2 in Eq. (32), we integrated it by parts to obtain a less singular
form,〈

∂2V

∂Rid ∂R
j
d

(
RiRj

R2
− δij

3

)〉
=

2

R3
−
(
RiRj

R2
− δij

3

)
×
∫
d3r1 d

3r2

(
1

r1A

∂2(φ2
el)

∂ri1 ∂r
j
1

+
1

r2A

∂2(φ2
el)

∂ri2 ∂r
j
2

)
,

(37)

which is more convenient in calculations. The above expecta-
tion value was evaluated with φel expanded in an ECG basis
as large as 1024 terms, due to slow numerical convergence.
Table I supplies data which enable an analysis of this conver-
gence at different regions of the internuclear distance. This
analysis reveals that, depending on the region, 4-6 significant
digits are stable. Our numerical results are in good agreement
with the results published by Pavanello et al. [14] except for
the shortest internuclear distances, at which their values seem
to be less accurate. As a final result we take values from the
1024-term basis and note that the achieved numerical accu-
racy of the electric field gradient within the BO approxima-
tion is higher than the estimated contribution from the nona-
diabatic effects.

In contrast to previously described magnetic interactions,
the electric quadrupole interaction constant d2 depends on the
electric quadrupole moment of the deuteron Q, which is not
well known from independent measurements. In fact, it is the
old Ramsey measurement [2], which allows the most accu-
rate determination of the deuteron quadrupole moment. For
this purpose we use the measurement for the J = 1 level of
the D2 molecule, for which d2 is found with the highest ac-
curacy and the nonadiabatic effects are smaller in comparison
to the HD molecule. This determination of Q is described
in detail in the next Section, however, we use this value here
for evaluation of the d2 curve. The final numerical results for
the spin-rotation (cp and cd, Eqs. (18) and (19)), spin-spin
(d1, Eq. (23)), the electric field gradient (q, Eq. (27)), and
quadrupole (d2, Eq. (32)) constants for all the internuclear dis-
tances are presented in Table II. The conversion factor from
energies in atomic units to frequencies in Hz is 2Ry c, where
Ry is the Rydberg constant and c is the speed of light in a
vacuum. For small R, all curves exhibit R−3 dependence as
they should, while for large R they vanish faster than R−3.

VI. HYPERFINE CONSTANTS

The data in Tab. II were interpolated at internuclear dis-
tances R between 0 and 5 bohrs, and extrapolated for R > 5
bohrs by fitting a8/R

8 + a9/R
9 + a10/R

10 + a11/R
11. This

particular choice of powers of R being in agreement with nu-
merical data, does not affect averaged results within five sig-
nificant digits for the low lying levels. The averaged values,
according to Eq. (2), were evaluated with the nuclear wave
function corresponding to a (v, J) rovibrational level. This
function is a solution of the radial nuclear equation, with nu-
clear masses and with the highly accurate BO potential ob-
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TABLE I. Convergence of the electric field gradient q defined in
Eq. (27) with the growing basis set size K at selected internuclear
distances R in comparison with the most accurate literature data (all
data in atomic units).

K R = 0.4 R = 1.4 R = 5.0

128 30.082 378 0.338 173 −0.001 890 827
256 30.082 224 0.338 084 −0.001 887 565
512 30.082 195 0.338 078 −0.001 888 152

1024 30.082 184 0.338 073 −0.001 890 408

[14]a 30.405 155 0.338 070 −0.001 890 88
[15]b 0.336 30

a Pavanello et al. (2010) [14].
b Reid and Vaida (1973) [15].

tained in [16], using the DVR method [17, 18]. Numerical
results for selected low lying states of HD are shown in Ta-
ble III, while for an arbitrary rovibrational level they can be
obtained from the updated version of the publicly available
H2Spectre computer code [7].

Considering the quadrupole moment of deuteron, it can be
determined from the electric quadrupole coupling constant d2,
obtained from Ramsey measurements performed for HD in
J=1 level [1], and for D2 in J=1 and J=2 levels [2] in the
ground vibrational state. Among them, the most accurate is
the value

d2 = −22.5037(14) kHz (38)

obtained from the measurement for the J=1 level of D2, which
was later refined in [15]. Our value for the gradient of the
electric field for this level is

〈q〉 = 0.33535(18) a.u. (39)

The quadrupole moment, obtained using this value and
Eq. (32), is

Q = − d2

2Ry c

10λ2

α2 〈q〉
= 0.2856(2) fm2 . (40)

Its uncertainty comes from the neglected nonadiabatic effects,
which are of the order of the ratio of the electron mass to the
reduced nuclear massmn(D2). This quadrupole momentQ is
used in Tab. II to obtain the electric quadrupole constant d2 as
a function of R and in Tab. III for various rovibrational levels.

A similar relative uncertainty of 1/mn(HD)≈ 0.8 · 10−3

due to the omitted nonadiabatic effects is assumed for all
hyperfine constants in Tables III and IV. Because this un-
certainty is larger than our numerical uncertainties, the latter
were neglected. Moreover, we expect that theoretical predic-
tions for d2 shall be in fact more accurate due to partial can-
cellation between nonadiabatic effects in D2 and HD. Indeed,
in comparison to measurements performed by Ramsey et.al.
[1], see Table IV, all our values differ by about σ, with the
exception of d2, which differs by only σ/3. In conclusion, all
our results are in agreement with experimental values.

TABLE II. The hyperfine splitting parameters (in kHz) and electric
field gradient q (in a.u.) evaluated with ECG wave functions at dif-
ferent internuclear distances, R (in a.u.). According to Eq. (23),
d1(R)R

3 = 49.7735. The deuteron quadrupole moment used here
is Q = 0.2856(2) fm2, see Eq. (40). The relative numerical uncer-
tainty of cp and cd is about 10−5, while that of q and d2 is below
10−4 with the exception of large distances i.e. R > 4 a.u.

R cp(R)R
3 cd(R)R

3 q(R)R3 d2(R)R
3

0.00 383.478 53.8392 2 −134.306
0.05 383.343 53.8227 1.99993 −134.206
0.10 382.562 53.7266 1.99910 −134.150
0.20 378.132 53.1835 1.99045 −133.570
0.30 370.082 52.2006 1.96675 −131.979
0.40 359.411 50.9042 1.92526 −129.195
0.50 347.140 49.4211 1.86651 −125.253
0.60 334.055 47.8480 1.79257 −120.291
0.80 307.471 44.6783 1.60929 −107.992
1.00 282.174 41.6944 1.39463 −93.5873
1.10 270.345 40.3096 1.28044 −85.9243
1.20 259.127 39.0020 1.16374 −78.0931
1.30 248.527 37.7708 1.04579 −70.1780
1.40 238.531 36.6121 0.927672 −62.2517
1.50 229.121 35.5221 0.810308 −54.3760
1.60 220.252 34.4935 0.694516 −46.6057
1.70 211.885 33.5194 0.581002 −38.9883
1.80 203.974 32.5925 0.470417 −31.5675
1.90 196.458 31.7028 0.363340 −24.3820
2.00 189.296 30.8435 0.260328 −17.4693
2.10 182.429 30.0052 0.161886 −10.8634
2.20 175.786 29.1768 0.0685114 −4.59747
2.30 169.328 28.3518 −0.0193471 1.29829
2.40 162.990 27.5199 −0.101231 6.79314
2.50 156.723 26.6735 −0.176737 11.8600
2.60 150.493 25.8071 −0.245492 16.4738
2.70 144.243 24.9121 −0.307151 20.6115
2.80 137.942 23.9843 −0.361458 24.2557
2.90 131.585 23.0232 −0.408220 27.3937
3.00 125.125 22.0226 −0.447320 30.0175
3.20 111.965 19.9190 −0.502678 33.7323
3.40 98.5935 17.7071 −0.528954 35.4956
3.60 85.2803 15.4469 −0.529418 35.5267
3.80 72.4156 13.2191 −0.509111 34.1640
4.00 60.3781 11.1023 −0.473173 31.7524
4.20 49.4911 9.16421 −0.428052 28.7245
4.40 39.9395 7.44650 −0.378058 25.3697
4.60 31.7964 5.96901 −0.328370 22.0354
4.80 25.0220 4.72985 −0.279521 18.7573
5.00 19.4962 3.71147 −0.236301 15.8570
5.20 15.0626 2.88852 −0.197415 13.2476
5.40 11.5579 2.23328 −0.163798 10.9917
5.60 8.81557 1.71698 −0.134138 9.00133
5.80 6.68912 1.31383 −0.110457 7.41224
6.00 5.05561 1.00182 −0.0894048 5.99953

Considering the comparison with previous theoretical cal-
culations, our quadrupole moment of the deuteron Q =
0.2856(2) fm2 differs within uncertainties from values ob-
tained by Pavanello et al. [14] 0.285783(30) fm2, Bishop and
Cheung [19] 0.2862(15) fm2, and Reid and Vaida [20, 21]
0.2860(15) fm2. Surprisingly, the result of Ref. 14 has tighter
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TABLE III. Theoretically predicted hyperfine splitting parameters and levels (in kHz) for a selection of the lowest rovibrational levels (v, J).
The energy shifts δE±

F are labeled with the total angular momentum F and with ±, which distinguishes between hyperfine levels of the same
F but different energy.

(v, J) 〈cp〉 〈cd〉 〈d1〉 〈d2〉 δEJ+ 3
2

δE−
J+ 1

2

δE+

J+ 1
2

δE−
J− 1

2

δE+

J− 1
2

δEJ− 3
2

(0,1) 85.675 13.132 17.773 −22.459 −58.3 −1.9 54.1 −117.0 187.5 −
(0,2) 84.970 13.028 17.650 −22.212 −114.3 −30.1 67.7 −115.2 209.8 155.1
(0,3) 83.930 12.874 17.468 −21.850 −168.2 −67.3 90.8 −135.9 244.4 210.6
(0,4) 82.573 12.674 17.231 −21.377 −219.6 −105.6 115.5 −159.0 279.2 262.4
(1,1) 84.067 12.846 17.225 −22.305 −57.4 −1.6 53.8 −115.8 183.7 −
(1,2) 83.356 12.742 17.102 −22.057 −112.4 −29.0 66.8 −113.5 206.2 150.9
(1,3) 82.308 12.588 16.922 −21.691 −165.2 −65.4 89.3 −133.6 240.1 205.4
(1,4) 80.942 12.387 16.686 −21.216 −215.6 −102.9 113.4 −156.2 274.2 256.2
(2,1) 82.183 12.524 16.654 −22.043 −56.3 −1.4 53.3 −114.1 179.3 −
(2,2) 81.470 12.420 16.533 −21.794 −110.1 −27.8 65.5 −111.4 201.8 146.3
(2,3) 80.418 12.265 16.354 −21.427 −161.6 −63.3 87.5 −130.9 235.0 199.8
(2,4) 79.048 12.064 16.120 −20.950 −210.7 −99.9 111.0 −152.9 268.3 249.3

error bars than that of ours, most probably due to underesti-
mation of nonadiabatic effects.

Results of the hyperfine parameters for the HD molecule,
but without any uncertainties, have been obtained by Dupré
[6], who considered three vibrational levels (v = 0, 1, 2) with
the rotational quantum number J = 1. His results are pre-
sented in Tab. IV after conversion from a different notation
(d1 = 2 cdip/5, d2 = −cquad/10). As one can notice, his
results for the v = 0, J = 1 level differ from the experimental
ones by several hundreds of Hz. Similar difference appears
in comparison with our values and this difference grows with
the vibrational quantum number. Moreover, very recent work
[22] by the Toruń group presents results for hyperfine param-
eters for all molecular levels of HD (in the ground electronic
state), but again without any uncertainties. Differences for d1

and d2 parameters are very small and, most probably, come
from a different radial equation for the nuclear wave function
χ, while differences for cp and cd parameters are larger, but
anyhow they are in better agreement with our results.

TABLE IV. Comparison of our theoretically predicted hyperfine
splitting parameters (in kHz) with the available experimental [1] and
theoretical [6] literature data.

(v, J) 〈cp〉 〈cd〉 〈d1〉 〈d2〉
(0,1) 85.675(60) 13.132(9) 17.773(12) −22.459(16)

Exper.a 85.600(18) 13.122(11) 17.761(12) −22.454(6)
Theoryb 86.2832 13.2450 17.8317 −22.66493
Theoryc 85.84 13.18 17.758 −22.4540

(1,1) 84.067(60) 12.846(9) 17.225(12) −22.305(16)
Theoryb 85.0775 13.0599 17.2842 −22.50968
Theoryc 84.63 12.99 17.211 −22.3018

(2,1) 82.183(60) 12.524(9) 16.654(12) −22.043(16)
Theoryb 83.5670 12.8280 16.7190 −22.25516
Theoryb 83.09 12.75 16.642 −22.0415

aW. E. Quinn et al. (1958) [1].
bP. Dupré (2020) [6].
bH. Jóźwiak et al. (2020) [22].

VII. HYPERFINE STRUCTURE AND INDIVIDUAL
TRANSITION RATES

The hyperfine structure for each molecular level (v, J) is
obtained by diagonalization of the Hamiltonian Hhfs(v, J)
in Eq. (1). We perform this diagonalization in the basis of
|J,MJ ; Ip,Mp; Id,Md〉 states because this basis is conve-
nient for the later calculation of transition rates. Explicit for-
mulas for eigenvalues δEF (F is the total angular momentum)
for J = 1, . . . , 4 are given in Appendix, while their numerical
values are presented in Table III. These eigenvalues represent
the shift of the molecular hyperfine level with respect to the
centroid. These hyperfine levels extend in the range of several
hundreds of kHz, e.g. 300 kHz for the (2, 1) state and 500 kHz
for the (0, 4) state, and they are still much smaller than the
discrepancy of order of 1 MHz between Hefei [5] and Amster-
dam measurement [4] of the overtone R(1) line in HD, what
remains to be explained. Uncertainties in our hyperfine levels
mainly come from the neglected nonadiabatic effects and this
is already included in the hyperfine coefficient. However, we
do not perform detailed analysis of the resulting uncertainty of
individual hyperfine levels, but in general it should be about
0.1 kHz, if not less.

Regarding hyperfine resolved transition rates, the main fac-
tor determining the line intensity is the square of the transition
electric dipole moment. Because we are interested here in rel-
ative intensities, we consider only its angular part, which is

|~dif |2 =
∑
Mi

∑
Mf

|〈Ff ,Mf |~n|Fi,Mi〉|2 , (41)

where the double sum goes over all the possible projections
of the total angular momenta of both the final and initial state.
The above matrix elements were evaluated with the eigenfunc-
tions of the Hhfs(v, J) in the previously mentioned basis of
|J,MJ ; Ip,Mp; Id,Md〉 functions.

We now turn to analysis of recent measurements. There are
several very accurate measurements reported in literature con-
cerning the infrared absorption in HD. All of them have uncer-
tainties much below 100 kHz assigned to the transition energy.



7

We have determined the hyperfine splittings for the initial and
final states involved in these transitions and estimated the rela-
tive intensities for all the hyperfine components. The obtained
stick spectra were dressed with the Lorentzian line shapes in
order to simulate the overall line shape.

1. R2(1) transition

The first transition line of interest is the R2(1) or (0, 1) →
(2, 2) line. This transition was studied by three different
experimental groups reporting the following transition en-
ergies: Fasci et al. [3] 217 105 181.581(94) MHz, Cozijn
et al. [4] 217 105 181.895(20) MHz, and Tao et al. [5]
217 105 182.79(3)(8) MHz. The disagreement between these
results can, at least partially, be attributed to the unresolved
hyperfine structure of the line. A thorough analysis of the
pressure-dependent line shapes related to the hyperfine split-
ting of the involved rovibrational levels has been performed
in [23] and resulted in a refined transition frequency for this
line equal to 217 105 181.901(50) MHz. The corresponding
theoretical prediction for this transition is 217 105 180.2(0.9)
MHz [24]. Table V and Fig. 1 present the theoretical hyperfine
spectrum for this absorption line.

TABLE V. Theoretically predicted line list of the hyperfine splitting
of theR2(1) line. F is the total angular momentum quantum number.
The label + or − distinguishes levels of the same F but different
energy (see Tab. III).

|Fi〉 → |Ff 〉 δE/kHz |~dif |2∣∣ 1
2
+
〉
→

∣∣ 3
2
−
〉

−298.9 0.042∣∣ 3
2
+
〉
→

∣∣ 3
2
−
〉

−165.5 0.101∣∣ 3
2
−
〉
→

∣∣ 3
2
−
〉

−109.5 0.344∣∣ 3
2
+
〉
→

∣∣ 5
2
−
〉

−82.0 0.116∣∣ 5
2

〉
→

∣∣ 3
2
−
〉

−53.1 0.024∣∣ 5
2

〉
→

∣∣ 7
2

〉
−51.8 3.200∣∣ 1

2
+
〉
→

∣∣ 1
2

〉
−41.2 0.435∣∣ 3

2
−
〉
→

∣∣ 5
2
−
〉

−25.9 1.987∣∣ 1
2
−
〉
→

∣∣ 3
2
−
〉

5.6 1.089∣∣ 3
2
+
〉
→

∣∣ 5
2
+
〉

11.4 1.659∣∣ 1
2
+
〉
→

∣∣ 3
2
+
〉

14.3 0.857∣∣ 5
2

〉
→

∣∣ 5
2
−
〉

30.5 0.296∣∣ 3
2
−
〉
→

∣∣ 5
2
+
〉

67.5 0.317∣∣ 3
2
+
〉
→

∣∣ 1
2

〉
92.2 0.116∣∣ 5

2

〉
→

∣∣ 5
2
+
〉

123.9 0.424∣∣ 3
2
+
〉
→

∣∣ 3
2
+
〉

147.7 0.674∣∣ 3
2
−
〉
→

∣∣ 1
2

〉
148.2 0.018∣∣ 3

2
−
〉
→

∣∣ 3
2
+
〉

203.7 0.000∣∣ 5
2

〉
→

∣∣ 3
2
+
〉

260.1 0.056∣∣ 1
2
−
〉
→

∣∣ 1
2

〉
263.3 0.232∣∣ 1

2
−
〉
→

∣∣ 3
2
+
〉

318.8 0.013

-300 -200 -100 100 200 300
δE/kHz

2

4

6

8

|dif
2

R2(1)

FIG. 1. Graphical representation of theR2(1) line. Dotted line repre-
sents a Lorentzian line shape with FWHM = 150 kHz, superimposed
on the stick spectrum.

2. P2(1) transition

Diouf et al. [25] measured the P2(1) or (0, 1) →
(2, 0) absorption line and, employing the line shape anal-
ysis mentioned above, obtained the transition frequency
209 784 242 007(20) kHz. The uncertainty of 20 kHz is more
than an order of magnitude smaller than the extent of the hy-
perfine splitting (ca. 300 kHz). The calculated frequency for
this transition line is 209 784 240.1(1.0) MHz [7, 26]. The
theoretical model of the hyperfine spectrum is shown in Ta-
ble VI and Figure 2.

TABLE VI. Theoretically predicted line list of the hyperfine splitting
of the P2(1) line. F is the total angular momentum quantum number.
The label + or − distinguishes levels of the same F but different
energy (see Tab. III).

|Fi〉 → |Ff 〉 δE/kHz |~dif |2∣∣ 1
2
+
〉
→

∣∣ 1
2
−
〉

−187.5 0.232∣∣ 1
2
+
〉
→

∣∣ 3
2

〉
−187.5 0.435∣∣ 3

2
+
〉
→

∣∣ 1
2
−
〉

−54.1 0.177∣∣ 3
2
+
〉
→

∣∣ 3
2

〉
−54.1 1.156∣∣ 3

2
−
〉
→

∣∣ 3
2

〉
1.9 0.177∣∣ 3

2
−
〉
→

∣∣ 1
2
−
〉

1.9 1.156∣∣ 5
2

〉
→

∣∣ 3
2

〉
58.3 2.000∣∣ 1

2
−
〉
→

∣∣ 3
2

〉
117.0 0.232∣∣ 1

2
−
〉
→

∣∣ 1
2
−
〉

117.0 0.435

3. R1(0) transition

Fast and Meek [27] recently measured the R1(0) i.e.
(0, 0) → (1, 1) transition using double resonance spec-
troscopy in a molecular beam. The transition frequency of
111 448 815 477(13) kHz was determined with unprecedented
relative accuracy of 1.2 · 10−10. The absolute uncertainty of
13 kHz is over 20 times smaller than the 300 kHz extent of
hyperfine splitting in the upper rovibrational level. This ex-
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perimental result can be compared with the theoretically pre-
dicted frequency of 111 448 814.5(6) MHz [7, 26]. A theoret-
ical absorption spectrum pertinent to this transition is shown
in Table VII and Figure 3.

TABLE VII. Theoretically predicted line list of the hyperfine split-
ting of the R1(0) line. F is the total angular momentum quantum
number. The label + or − distinguishes levels of the same F but
different energy (see Tab. III).

|Fi〉 → |Ff 〉 δE/kHz |~dif |2∣∣ 3
2

〉
→

∣∣ 1
2
−
〉

−115.8 0.234∣∣ 1
2
−
〉
→

∣∣ 1
2
−
〉

−115.8 0.433∣∣ 3
2

〉
→

∣∣ 5
2

〉
−57.4 2.000∣∣ 3

2

〉
→

∣∣ 3
2
−
〉

−1.6 0.170∣∣ 1
2
−
〉
→

∣∣ 3
2
−
〉

−1.6 1.163∣∣ 1
2
−
〉
→

∣∣ 3
2
+
〉

53.8 0.170∣∣ 3
2

〉
→

∣∣ 3
2
+
〉

53.8 1.163∣∣ 1
2
−
〉
→

∣∣ 1
2
+
〉

183.7 0.234∣∣ 3
2

〉
→

∣∣ 1
2
+
〉

183.7 0.433

-300 -200 -100 0 100 200
δE/kHz

1

2

3

4

|dif
2

P2(1)

FIG. 2. Graphical representation of the P2(1) line. Dotted line repre-
sents a Lorentzian line shape with FWHM = 150 kHz, superimposed
on the stick spectrum.

-300 -200 -100 100 200 300
δE/kHz

1

2

3

|dif
2

R1(0)

FIG. 3. Graphical representation of theR1(0) line. Dotted line repre-
sents a Lorentzian line shape with FWHM = 150 kHz, superimposed
on the stick spectrum.

VIII. SUMMARY AND OUTLOOK

We performed the derivation and the numerical calcula-
tion of the leading hyperfine interactions in the HD molecule.
Moreover, we obtained hyperfine constants for all low lying
levels of HD and compared with experimental and previous
theoretical results. The accuracy of our calculations is limited
by the unknown nonadiabatic effects, which are estimated by
the ratio of the electron mass to the reduced nuclear mass.
Very good agreement is achieved with results of the mea-
surements by Ramsey [1] for the first rotational state of HD.
From the measurement of the d2 constant in the D2 molecule
[2, 15] we determined the value of the deuteron quadrupole
moment in agreement with the previous determinations, but
with greater accuracy. However, our results for the hyperfine
constants in HD differ from the previous calculations in Ref.
6 by hundreds of Hz for v = 0 and this difference grows with
the vibrational number.

All the nonadiabatic effects, which presently limit our accu-
racy, can be calculated with the use of a very accurate nona-
diabatic wave function expanded in explicitly correlated ex-
ponential [28] basis. This requires, however, the development
of integrals with quadratic inverse powers of interparticle dis-
tances, and we are presently pursuing this project.

Although we did not calculate relativistic corrections to the
hyperfine coefficients, we stress their importance in achieving
high-precision theoretical predictions for the molecular hfs.
They are of particular interest for an improved determination
of the deuteron quadrupole moment. These relativistic cor-
rections can be calculated in the BO approximation, as pre-
viously done for the nuclear spin-spin coupling [29]. To per-
form such calculations, however, appropriate formulas have
to be derived. Ramsey in 1953 [30], worked out formulas for
the nuclear spin-spin interactions. In a similar way, one can
obtain relativistic corrections to the electric quadrupole mo-
ment and to the spin-rotation constants. Having a pertinent
theoretical framework, one can calculate all these hyperfine
constants with a relative accuracy of α3/π, limited by the un-
known QED effects. Numerically it is about 10−7, and we
claim that this accuracy can be achieved for all the hyper-
fine parameters in HD, H2 and D2 molecules. Such accuracy
will give an opportunity for high precision tests of molecular
hyperfine interactions, provided that measurements of similar
accuracy are performed. We hope that the present work will
encourage experimentalists to undertake this challenge.
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Appendix A: Eigenvalues of Hhfs for the lowest J

In this section analytic formulas for the eigenvalues of
the hyperfine Hamiltonian are provided. The labeling of the
eigenvalues δE corresponds to that used in Table III. For sim-
plicity, the symbol of the rovibrational averaging was dropped

here, i.e. cp ≡ 〈cp〉 etc.

J = 1

δE5/2 = −cd −
cp
2

+
d1

2
+
d2

2
(A1)

δE±3/2 =
cp
4
− d1 − d2 ±

1

4

√
A1 (A2)

δE±1/2 =
3cd
2

+
cp
4

+
5d1

4
+

5d2

4
± 1

4

√
B1 (A3)

A1 = −16cdcp − 16d1cp + 24d2cp + 16c2d − 8d1cd

− 48d2cd + 9c2p + 21d2
1 + 36d2

2 + 12d1d2 (A4)

B1 = −4cdcp + 50d1cp − 30d2cp + 4c2d − 20d1cd

+ 60d2cd + 9c2p + 75d2
1 + 225d2

2 − 150d1d2

(A5)

J = 2

δE7/2 = −2cd − cp +
5d1

7
+

5d2

7
(A6)

δE±5/2 = −cd
2

+
cp
4
− 25d1

28
− 25d2

28
± 1

28

√
B2 (A7)

δE±3/2 = 2cd +
cp
4
± 1

4

√
A2 (A8)

δE1/2 = 3cd +
3cp
2

+
5d1

2
+

5d2

2
(A9)

A2 = −32cdcp + 40d1cp − 80d2cp + 16c2d

− 40d1cd + 80d2cd + 25c2p + 25d2
1

+ 100d2
2 − 100d1d2 (A10)

B2 = −2548cdcp − 1190d1cp + 2730d2cp

+ 1764c2d + 140d1cd − 3780d2cd + 1225c2p

+ 975d2
1 + 2025d2

2 − 150d1d2 (A11)
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J = 3

δE9/2 = −3cd −
3cp
2

+
5d1

6
+

5d2

6
(A12)

δE±7/2 = −cd +
cp
4
− 5d1

6
− 5d2

6
± 1

12

√
B3 (A13)

δE±5/2 =
5cd
2

+
cp
4
− d1

4
− d2

4
± 1

4

√
A3 (A14)

δE3/2 = 4cd + 2cp + 2d1 + 2d2 (A15)

A3 = −76cdcp + 46d1cp − 114d2cp + 36c2d

− 52d1cd + 108d2cd + 49c2p + 21d2
1

+ 81d2
2 − 78d1d2 (A16)

B3 = −936cdcp − 300d1cp + 780d2cp + 576c2d

+ 120d1cd − 960d2cd + 441c2p + 175d2
1

+ 400d2
2 − 100d1d2 (A17)

J = 4

δE11/2 = −4cd − 2cp +
10d1

11
+

10d2

11
(A18)

δE±9/2 = −3cd
2

+
cp
4
− 35d1

44
− 35d2

44
± 1

44

√
B4 (A19)

δE±7/2 = 3cd +
cp
4
− 5d1

14
− 5d2

14
± 1

28

√
A4 (A20)

δE5/2 = 5cd +
5cp
2

+
25d1

14
+

25d2

14
(A21)

A4 = −6664cdcp + 2660d1cp − 7140d2cp

+ 3136c2d − 3080d1cd + 6720d2cd

+ 3969c2p + 975d2
1 + 3600d2

2 − 3300d1d2 (A22)

B4 = −20812cdcp − 5170d1cp + 14190d2cp

+ 12100c2d + 2860d1cd − 16500d2cd

+ 9801c2p + 2325d2
1 + 5625d2

2 − 1950d1d2

(A23)


