
Electron-correlation effects in the g-factor of light Li-like ions

V. A. Yerokhin,1 K. Pachucki,2 M. Puchalski,2, 3 Z. Harman,4 and C. H. Keitel4

1Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University,
Polytekhnicheskaya 29, 195251 St. Petersburg, Russia

2Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
3Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
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We investigate electron-correlation effects in the g-factor of the ground state of Li-like ions. Our
calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion
up to two leading orders in the fine-structure constant α, α2 and α3. The dependence of the NRQED
results on the nuclear charge number Z is studied and the individual 1/Z-expansion contributions
are identified. Combining the obtained data with the results of the all-order (in Zα) calculations
performed within the 1/Z expansion, we derive the unified theoretical predictions for the g-factor
of light Li-like ions.

INTRODUCTION

Measurements of the bound-electron g-factor in light
H-like ions [1–3] provide one of the best tests of the
bound-state QED theory as well as the most accurate
determination of the electron mass [4]. Similar experi-
ments on Li-like ions [5, 6] probe the QED theory of the
electron-correlation effects. In future, a combination of g-
factor experiments on Li-like and H-like ions can be used
as a new way to determine the fine-structure constant α
[7].

The QED effects in the g-factors of few-electron atoms
can be systematically treated within the two methods.
The first method starts with the Dirac equation for the
valence electron in a Coulomb field of the nucleus and ac-
counts for the radiative and electron-electron interaction
effects by perturbation theory. The expansion parameter
for the electron-electron interaction is 1/Z (where Z is
the nuclear charge number). This method accounts for
all orders in the nuclear binding strength parameter Zα
and thus is most effective for high-Z atoms. Extensive
QED calculations of the g-factors of Li-like ions within
the 1/Z expansion method were performed by Shabaev
and co-workers [8–12].

The starting point of the second method is the
Schrödinger equation that includes both the electron-
nucleus and the electron-electron Coulomb interactions.
The radiative and relativistic effects are accounted for
by perturbation theory, with the expansion parameters
α and Zα, respectively. This method is often denoted as
the Nonrelativistic Quantum Electrodynamics (NRQED)
approach, since the coefficients of the perturbation ex-
pansion can be derived systematically within NRQED.
In contrast to the first method, the NRQED treatment
accounts for all orders in 1/Z but expands in Zα and
thus is most effective for low-Z atoms. Calculations of g-
factors by this method were carried out by Hegstrom [13]
and, more recently, by Yan [14, 15].

The experiments on the g-factor of Li-like atoms have
been so far performed in the intermediate region of Z,
where the two methods are complementary to each other.

The optimal theoretical treatment in this region of Z
can be achieved by combining them together. To this
end, one would need to identify (i) the individual 1/Z-
expansion terms in the NRQED calculations and (ii) the
individual Zα-expansion terms in the 1/Z-expansion re-
sults. A combination of these results would then provide
a unified theory. The goal of the present investigation is
to make the first steps along this path.

In this work we perform the NRQED calculation of the
leading relativistic (∼ α2) and the leading QED (∼ α3)
corrections to the g-factor of the ground state of Li-
like ions, extending previous calculations by Yan to a
larger region of Z and improving the numerical accu-
racy. We identify the individual 1/Z expansion terms of
these corrections. In particular, we obtain the higher-
order electron-correlation contribution of the relative or-
der 1/Z3 and higher, thus removing one of the dominant
sources of the uncertainty of theoretical predictions [12].

I. NRQED APPROACH

Within the NRQED approach, the bound-electron g-
factor of a light atom is represented as an expansion in
powers of the fine-structure constant α,

g = ge + α2 g(2) + α3 g(3) + α4 g(4) + . . . , (1)

where ge is the free-electron g-factor and g(n) are the
binding corrections. The expansion coefficients g(n) can
be further expanded in powers of the electron-to-proton
mass ratio m/M ,

g(n) = g(n)∞ +
m

M
g
(n)
M + . . . . (2)

The interaction of a free nonrelativistic electron with

a constant external magnetic field ~B is described by the
Hamiltonian

H = µB (1 + κ)~σ · ~B
= µB (1 + κ) 2~s · ~B ≡ µB ge ~s · ~B , (3)
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where µB = −e/(2m) is the Bohr magneton, ~σ is the
vector of Pauli matrices, ~s is the electron spin operator,
κ is the anomalous magnetic moment of the free electron,
which is connected to the free-electron g-factor by ge ≡
2(1 + κ) = 2 + α/π + . . ..

Many years ago Hegstrom [13] derived the Hamilto-
nian describing the interaction of an atom with the mag-
netic field, which accounts for the leading relativistic,
QED, and nuclear recoil effects. The resulting Hamilto-
nian is complete through orders of α2, α3, α2m/M , and
α3m/M . The corresponding numerical calculations for
Li-like atoms were performed by Yan [14, 15].

In the present work, we address the leading relativistic
and QED corrections to the g-factor of of Li-like atoms.

These corrections are induced by the effective Hamilto-
nian δH, which, for the case of the S states, can be sim-
plified to take a very compact form,

δH =
∑
a

µB Qa ~σa · ~B , (4)

Qa = Q(2)
a + κQ(3)

a , (5)

Q(2)
a =

1

3

(
−2 p2a +

Z

ra
−
∑
b 6=a

1

rab

)
, (6)

Q(3)
a =

1

3

(
−p

2
a

2
+
Z

ra
−
∑
b6=a

1

rab

)
, (7)

where the indices a and b = (1, 2, 3) numerate the elec-
trons in the atom.

Expectation values of the operators Qa are evaluated with the nonrelativistic wave function ψ. This function is the
antisymmetrized product (A) of the spacial function φ and the spin function χ,

ψ = A[φ(~r1, ~r2, ~r3)χ] , (8)

χ = [α(1)β(2)− β(1)α(2)]α(3) , (9)

where σz α(.) = α(.) and σz β(.) = −β(.). Matrix elements of a spin-independent operator H, after eliminating spin
variables, can be expressed as

〈ψ′|H|ψ〉 =
〈
φ′(r1, r2, r3)

∣∣H ∣∣2φ(r1, r2, r3) + 2φ(r2, r1, r3)− φ(r2, r3, r1)− φ(r3, r2, r1)− φ(r3, r1, r2)− φ(r1, r3, r2)
〉
.

(10)

Matrix elements of the spin-dependent operators are expressed as

〈ψ′|
∑
a

Qa ~σa|ψ〉 =
∑
a

〈φ′|Qa|φ〉F 2 ~S , (11)

where ~S =
∑
a ~sa and∑

a

〈φ′|Qa|φ〉F =
〈
φ′(r1, r2, r3)

∣∣∣2Q3 [φ(r1, r2, r3) + φ(r2, r1, r3)]− (Q1 −Q2 +Q3) [φ(r2, r3, r1) + φ(r3, r2, r1)]

− (Q2 −Q1 +Q3) [φ(r1, r3, r2) + φ(r3, r1, r2)]
〉
. (12)

The corresponding corrections to the g-factor are

g(2)∞ = 2
∑
a

〈
Q(2)
a

〉
F
, (13)

g(3)∞ =
1

π

∑
a

〈
Q(3)
a

〉
F
. (14)

We calculated the matrix elements (13) and (14) by us-
ing accurate variational wave functions in the Hyleraas
basis. The method is described in our previous investi-

gations [16–18]. Our numerical results for g
(2)
∞ and g

(3)
∞

are presented in Tables I and II, respectively. The values
listed in the tables were obtained by using the basis with
the expansion parameter Ω = n1+n2+n3+n4+n5+n6 =
12. The specified uncertainties were obtained by taking

the differences of the results with Ω = 12 and 11. For
lithium, we find good agreement with the previous cal-
culations by Yan [14, 15], our results being several digits
more accurate. For lithium-like ions we observe small
deviations outside of the Yan’s error bars.

A. Relativistic correction g
(2)
∞

The leading relativistic correction of order α2 can be
expanded in 1/Z as follows

g(2)∞ (Z) = −Z
2

6
+

940

2187
Z + c(2,0) +

H(2,−1)(Z)

Z
, (15)
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where H(2,−1)(Z) is the remainder function that incor-
porates all higher orders in 1/Z, H(2,−1)(Z) → c(2,−1)

as Z → ∞. The leading coefficient of the expansion
(15) follows from the hydrogenic limit summarized in
Appendx A, whereas the second coefficient is derived in
the present work. The higher-order coefficients were ob-

tained by fitting the numerical results for g
(2)
∞ , as de-

scribed in Appendix B.
Our fitting results for the first higher-order expansion

coefficients are

c(2,0) = −0.128 204 (9) , c(2,−1) = 0.028 78 (46) . (16)

We would like to stress that in order to achieve such pre-
cision of the fitted coefficients, it was important to have

highly accurate numerical results for g
(2)
∞ for a sufficiently

wide range of Z. In particular, if we apply the same fit-
ting procedure to the analogous results of Yan [14, 15],
we get results consistent with Eq. (16) but much less ac-
curate.

Using the result for c(2,0) from Eq. (16), we can extract
the remainder function H(2,−1)(Z) from our numerical

data for g
(2)
∞ . The corresponding results are presented in

the last column of Table I. The errors of the listed values
of H(2,−1) come from the uncertainty of c(2,0). In the case
of silicon, we obtain H(2,−1)(14) = 0.024 77 (13) , which
agrees with but is more precise than the correspond-
ing result of 0.024 4 (15) obtained by the Configuration-
Interaction Dirac-Fock (CI-DF) method in Ref. [12]. We
note that H(2,−1) previously yielded one of the two main
errors of the total theoretical g-factor predictions.

B. QED correction g
(3)
∞

The leading QED correction of order α3 can be ex-
panded in 1/Z as follows

g(3)∞ (Z) =
1

24π
Z2 − 274

2187π
Z +H(3,0)(Z) , (17)

where H(3,0)(Z) is the remainder that incorporates the
higher orders in 1/Z, H(3,0) → c(3,0) as Z → ∞. The
leading coefficient of the expansion (17) comes from the
hydrogenic limit, Eq. (A2), whereas the second term was
derived in Ref. [9].

Using the known results for the first two terms of
the expansion (17), we identify values of the remainder

function H(3,0)(Z) from our numerical results for g
(3)
∞ ,

with the corresponding results presented in the last col-
umn of Table II. In particular, for silicon we obtain
H(3,0)(14) = 0.022 467 9 , which agrees with the corre-
sponding value of 0.0224 (10), obtained in Ref. [9] by fit-
ting the results of Yan [14, 15].

Our fitting results for the first expansion coefficients of
H(3,0)(Z) are

c(3,0) = 0.022 412 (2) , c(3,−1) = 0.000 53 (7) . (18)

These results can be used for estimating the H(3,0)(Z)
function for higher values of Z.

We note that g
(3)
∞ is induced by the one-loop part of the

anomalous magnetic moment (AMM), α/π. According
to Eq. (5), analogous corrections due to the n-loop part

of the AMM differ from g
(3)
∞ only by a prefactor. In

particular, the two-loop part of g
(4)
∞ is

g
(4)
twoloop =

2A2

π
g(3)∞ , (19)

where A2 is the two-loop contribution to the AMM de-
fined in Eq. (A6).

C. Recoil correction g
(2)
M

The leading recoil correction of order α2m/M can be
expanded in 1/Z as follows

g
(2)
M (Z) =

1

4
Z2 + Z H

(2,1)
M (Z) , (20)

where the leading coefficient follows from the hydrogenic

limit, Eq. (A8), and H
(2,1)
M (Z) is the higher-order remain-

der function, H
(2,1)
M → c

(2,1)
M as Z →∞.

In the present work we obtain the remainder function

and the coefficient c
(2,1)
M by fitting the results of Yan [14,

15]. Our value for the coefficient

c
(2,1)
M = −0.860 3 (8) (21)

disagrees with the corresponding result of −0.825 (5)
from Ref. [9] obtained by fitting the same results of Yan.
We do not know the reason for this disagreement. Our fit-

ting procedure was the same as used for the g
(2)
∞ and g

(3)
∞

corrections and it reproduces well the analytical value of
the leading coefficient in Eq. (20). We also obtain the
remainder function for silicon as

H
(2,1)
M (14) = −0.832 9 (1) . (22)

D. Radiative recoil correction g
(3)
M

The radiative recoil correction of order α3m/M can be
expanded in 1/Z as follows

g
(3)
M (Z) = − 1

12π
Z2 + Z H

(3,1)
M (Z) , (23)

where the leading coefficient follows from the hydrogenic

limit, Eq. (A8), and H
(3,1)
M (Z) is the higher-order remain-

der, H
(3,1)
M → c

(3,1)
M as Z →∞.

In the present work we obtain the remainder function

and the coefficient c
(3,1)
M by fitting the results of Yan [14,

15]. Our values for the coefficient and the remainder are

c
(3,1)
M = 0.040 23 (4) , H

(3,1)
M (14) = 0.040 337 (6) . (24)
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TABLE I. The leading relativistic contribution g
(2)
∞ to the

g-factor of the ground state of Li-like atoms and the corre-
sponding higher-order remainder function H(2,−1) defined by
Eq. (15).

Z g
(2)
∞ H(2,−1)

3 −0.343 332 404 (3) −0.013 70 (3)
−0.343 332 42 (7) a

4 −1.074 312 532 (7) 0.005 23 (4)
5 −2.143 265 913 (2) 0.012 71 (5)
6 −3.546 553 940 (2) 0.016 65 (5)
7 −5.283 459 746 (4) 0.019 06 (6)
8 −7.353 784 626 (1) 0.020 69 (7)
9 −9.757 463 309 (3) 0.021 85 (8)
10 −12.494 472 721 (5) 0.022 73 (9)
11 −15.564 804 889 (4) 0.023 4 (1)
12 −18.968 457 638 (1) 0.024 0 (1)

−18.968 460 5 (2) a

13 −22.705 431 064 (2) 0.024 4 (1)
14 −26.775 726 109 (1) 0.024 8 (1)

a Ref. [15].

TABLE II. The leading QED contribution g
(3)
∞ to the g-factor

of the ground state of Li-like atoms and the corresponding
higher-order remainder function H(3,0) defined by Eq. (17).

Z g
(3)
∞ H(3,0)

3 0.023 071 092 3 (7) 0.023 344
0.023 071 11 (2) a

4 0.075 560 527 2 (1) 0.022 873
5 0.154 876 875 2 (2) 0.022 703
6 0.260 805 551 9 (3) 0.022 619
7 0.393 295 230 1 (5) 0.022 570
8 0.552 328 059 8 (1) 0.022 539
9 0.737 896 374 9 (2) 0.022 518
10 0.949 996 389 1 (4) 0.022 502
11 1.188 626 037 9 (1) 0.022 490
12 1.453 784 110 3 (1) 0.022 481

1.453 784 66 (4) a

13 1.745 469 851 3 (1) 0.022 474
14 2.063 682 768 1 (1) 0.022 468

a Ref. [15].

II. RESULTS AND DISCUSSION

The summary of individual binding corrections to the
g-factors of Li-like silicon, oxygen, and carbon ions is
presented in Tables III, IV and V, respectively. The sum
of all binding corrections gives the difference between the
g-factor of the atom and the free-electron g-factor, g−ge,
which may be compared to the experimental data and to
other theoretical predictions by using the experimental
value of the free-electron g-factor [19],

ge = 2.002 319 304 361 (6) . (25)

In the tables, the columns labelled “LO” present re-
sults for the lowest-order (in Zα) parts of the corre-

sponding corrections. The columns labelled “HO” con-
tain results for the higher-order remainders, which are
suppressed by a factor of (Zα)2 as compared to the cor-
responding LO part.

The largest contribution to g − ge comes from the
electron-electron interaction. The corresponding LO part
is discussed in Sec. I A. The 1/Z0 HO term comes from
the hydrogenic limit, Eq. (A1). The 1/Z1 HO term orig-
inates from the one-photon exchange diagrams, first cal-
culated in Ref. [8] and reevaluated in this work to a higher
precision. The 1/Z2 HO term comes from the two-photon
exchange diagrams, which were calculated to all orders in
Zα in Ref. [12]. For silicon, we identify the 1/Z2 HO term
from the all-order numerical result of Ref. [12]. For oxy-
gen and carbon, there were no results reported in there,
so we estimate the 1/Z2 HO term by scaling the silicon’s
result. E.g., for oxygen we obtain

δg = −0.000 92α2 (8/14)2 = −0.000 3α2 . (26)

We ascribe the uncertainty of 50% to this estimation.
The 1/Z3 HO term is unknown; the corresponding un-
certainty was estimated as the 1/Z3 LO term multiplied
by the ratio of the 1/Z2 HO-to-LO terms, and by a con-
servative factor of 1.5.

The LO part of the one-loop QED correction is dis-
cussed in Sec. I B. The corresponding 1/Z0 HO term
comes from the hydrogenic limit, Eq. (A2). The 1/Z1

HO term is induced by the screened QED diagrams, cal-
culated to all orders in Zα in Refs. [11, 12]. For silicon,
we take the result presented in Table II of Refs. [12] and
identify the 1/Z1 contribution by subtracting the 1/Z2+

part taken from Table V of Ref. [9]. For carbon and
oxygen, we scale the silicon result and ascribe a 100%
uncertainty to this estimate. The 1/Z2 HO term has not
been evaluated yet. We estimated its uncertainty as the
1/Z2 LO term multiplied by the ratio of the 1/Z1 HO
and LO terms, and by an additional conservative factor
of 1.5.

The LO part of the recoil correction is discussed in
Sec. I C. The only HO recoil contribution available today
for oxygen and silicon is the (Zα)4m/M correction ob-
tained in Ref. [11] in the hydrogenic limit (see Eq. (A8)).
We note that a calculation complete to all orders in Zα
was reported in Ref. [6], but only for calcium. In the
absence of such calculations for other ions, we estimate
the uncertainty due to higher orders in Zα on the basis
of the results available for the 1s state [20].

The 1/Z0 part of the two-loop QED correction is given
by Eq. (A6), whereas the 1/Z1+ part is described in
Sec. I B. The finite nuclear size correction is taken from
our previous investigation [21].

In Tables III, IV and V, we summarize all known the-
oretical contributions to g−ge for Li-like silicon, oxygen,
and carbon and compare the results with previous theo-
retical and experimental data. For silicon, we observe a
very good agreement with the theoretical prediction by
Volotka et al. [12] and with the experimental result [5].
Our prediction is slightly more accurate than that by
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Volotka et al., mainly because of the improvement in the
1/Z3+ electron-correlation correction. For oxygen and
carbon, we find a marginal agreement with the previous
theoretical calculations of Glazov et al. [9] but improve
their accuracy by a factor of 3 (oxygen) or 4 (carbon).
The main difference between the results comes from the
1/Z2+ electron-correlation correction, which was evalu-
ated by the CI-DF method in Ref. [9] and by the NRQED
method in the present work.

The largest uncertainty of our theoretical prediction
for silicon stems from the 1/Z1 part of the one-loop
QED effect, also known as the screened QED correction.
The corresponding uncertainty is the estimated error of
the numerical evaluation [12], which can be improved
by dedicated calculations. For oxygen and carbon, the
largest theoretical error comes from the 1/Z2 part of the
electron-electron interaction correction. This error can
be eliminated by extending the all-order calculation of
the two-photon exchange diagrams by Volotka et al. [12]
to lower-Z ions, or by performing the NRQED calcula-
tions of the next-order α4 effect.

Summing up, we have performed NRQED calculations
of the electron-correlation effects to the g factor of the
ground state of Li-like atoms. By fitting the Z depen-
dence of the NRQED results for the α2 and α3 effects and
the corresponding recoil corrections, we have identified
their individual 1/Z-expansion contributions. Combin-
ing the obtained data with the results of the all-order (in
Zα) calculations performed within the 1/Z expansion,
we have derived unified theoretical predictions for the g-
factor of light Li-like ions and improved the theoretical
precision.
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Appendix A: Hydrogenic limit

The g-factor of the ground state of a Li-like atom in
the hydrogenic limit (i.e., neglecting the electron-electron
interaction) coincides with the g-factor of the 2s state of
the corresponding H-like ion. In this section we summa-
rize the theory of the g-factor of the hydrogenic 2s state.

The relativistic value of the 2s g-factor is obtained from
the Dirac equation, with the (point-nucleus) result

g =
2

3

[
1 +

√
2 + 2

√
1− (Zα)2

]
= 2− (Zα)2

6
+ . . . .

(A1)

The one-loop QED correction (for the point nucleus)
is [22–24]

g
(1)
QED =

α

π

{
1 +

(Zα)2

24
+

(Zα)4

8

[
32

9
ln[(Zα)−2] + b

(1)
40

]
+

(Zα)5

8
H(1)(Zα)

}
, (A2)

where b
(1)
40 = −11.774 382 27 [23, 24] and H(Zα) is the

remainder function that incorporates all higher orders in
Zα. The self-energy part of the remainder function was
obtained numerically in Ref. [25] to be

H
(1)
SE (6α) = 22.48 (1) ,

H
(1)
SE (8α) = 22.221 (4) ,

H
(1)
SE (14α) = 21.486 (1) . (A3)

The vacuum-polarization part of the remainder function
consists of the so-called electric-loop and magnetic-loop
parts. The electric-loop part is relatively simple and eval-
uated numerically by many authors, e.g., by us,

H
(1)
VP,el(6α) = 1.46 ,

H
(1)
VP,el(8α) = 1.388 ,

H
(1)
VP,el(14α) = 1.199 6 , (A4)

whereas the magnetic-loop part is given by [26, 27]

H
(1)
VP,ml(Zα) =

7π

216
− (Zα)

8

135

[
ln(Zα) + 2.6 +

5

8

]
.

(A5)

The two-loop QED correction is

g
(2)
QED =

α2

π2

{
2A2 + 2A2

(Zα)2

24
+

(Zα)4

8

[
28

9
ln[(Zα)−2]

+ b
(2)
40 +

16− 19π2

108

]}
, (A6)

where A2 = −0.328 478 444 00 . . . is the two-loop contri-
bution to the electron anomalous magnetic moment and

b
(2)
40 = −17.157 236 58 [23, 24]. The last term O((Zα)4)

in Eq. (A6) is the light-by-light scattering contribution
recently calculated in Ref. [28].

The three and higher-loop QED corrections can be
summarized as

g
(≥3)
QED =

5∑
n=3

αn

πn

{
2An + 2An

(Zα)2

24

}
, (A7)

where [29, 30]

A3 = 1.181 234 017 . . . ,

A4 = −1.912 245 765 . . . ,

A5 = 7.79 (34) .
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The recoil correction, including the second-order recoil
O((m/M)2) and the radiative recoil O(αm/M), is [9, 22,
31, 32]

grec =
m

M

(Zα)2

4

[
1 +

11

48
(Zα)2 − m

M
(1 + Z)− α

3π

]
.

(A8)

The finite nuclear size correction including the corre-
sponding QED contribution is

gN =
2

5

(
ZαRsph)2γ

(Zα)2

2

[
1 + (Zα)2H

(0,2+)
N

]
×
[
1 +

α

π
GNQED

]
, (A9)

where γ =
√

1− (Zα)2 and Rsph =
√

5/3R the radius
of the nuclear sphere with the root-mean-square radius

R, and the remainder functions H
(0,2+)
N and GNQED were

evaluated in Refs. [7, 21, 33].

Appendix B: Fitting of the 1/Z expansion
coefficients

In this section we describe the fitting procedure used
for the identification of the coefficients of the 1/Z expan-
sion.

The general task is to fit a data set of n points (Zi, Fi),
i = 1, . . . , n, to the following model function with N
(N < n) parameters,

fN (Z) =

N−1∑
k=0

ck Z
a−k , (B1)

where a is the exponent of the leading term of the 1/Z
expansion.

In order to find the optimal values of the fitting pa-
rameters ck, we use the weighted least-squares regression.
Specifically, we minimize the functional

SN =

n∑
i=1

(
Fi − fN (Zi)

)2
δF 2

i + σ2
N (Zi)

, (B2)

where δFi are the numerical errors of Fi and σN (Z) is
the estimate of the error due to the truncation of the 1/Z
expansion in the fitting function, taken as the last term
of the fitting ansatz divided by Z,

σN (Z) = cN−1 Z
a−N . (B3)

In practice, we make our fit in two steps. First, we per-
form the least-square regression without weights. The
obtained value of the cN−1 coefficient is then used for
the estimation of the truncation error in the weighted
least-square regression performed on the second step.

In the cases relevant for the present work, one or two
first coefficients of the 1/Z expansion are known analyt-
ically. We use this fact in order to access the errors of
our fitting procedure. First, we treat one of the known
coefficients as a free fitting parameter and select three
different fitting functions that give the best approxima-
tion to the known result. After that, we set the known
coefficients to their exact values, perform the fit with the
three fitting functions, and finally take the average of the
three results and the maximal deviation between them as
the final value and its error, respectively.

Fitting the results for the α2 and α3 corrections (whose
numerical accuracy is very high), we used fitting func-
tions with 8-10 parameters. For the recoil corrections
(whose accuracy is much lower), we used 5-6 fitting pa-
rameters.
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TABLE IV. Individual binding correction to the g-factor of the ground state of 16O5+. Notations are the same as in Table III.
Nuclear parameters used in the calculation are: M/m = 29 148.949 75 and R = 2.6991 (52) fm.

Order Prefactor LO HO δg × 106

Electron-electron interaction:
1/Z0 α2Z2 −0.166 666 667 −0.000 177 823 −568.620 484
1/Z1 α2Z 0.429 812 529 0.000 505 635 183.320 201
1/Z2 α2 −0.128 204 (9) −0.000 3 (2) −6.843 (8)

1/Z3+ α2 Z−1 0.020 69 (7) 0.000 00 (7) 0.137 7 (7)
One-loop QED:

1/Z0 α3 Z2 0.013 262 912 0.001 330 41 (3) 0.362 936 (1)
1/Z1 α3 Z −0.039 879 702 −0.002 (2) −0.129 (5)

1/Z2+ α3 0.022 539 315 0.000 (1) 0.008 8 (5)
Recoil:

1/Z0 α2 (m/M)Z2 0.250 000 000 0.000 (2) 0.029 3 (2)
1/Z1+ α2 (m/M)Z −0.811 399 (3) 0.000 (9) −0.011 9 (1)

Two-loop QED:
1/Z0 α4 Z2 −0.002 773 485 −0.000 05 (6) −0.000 51 (1)
1/Z1 α4 Z 0.008 339 479 0.000 0 (2) 0.000 189 (5)

Finite nuclear size:
1/Z0 (ZαRsph)2γα2Z2 0.200 000 000 0.000 42 (6) 0.000 194 (1)
1/Z1 (ZαRsph)2γα2Z −0.570 2 (2) −0.002 4 (3) −0.000 069
1/Z2 (ZαRsph)2γα2 0.214 (5) 0.001 (1) 0.000 003

Radiative recoil:
1/Z0 α3 (m/M)Z2 −0.026 525 824 0.000 0 (3) −0.000 023

1/Z1+ α3 (m/M)Z 0.040 504 18 (6) 0.000 0 (5) 0.000 004
Second-order recoil:

1/Z0 α2 (m/M)2 Z2 −2.250 000 000 0.00 (3) −0.000 009
≥3-loop QED:

1/Z0 α5 Z2 0.003 162 903 0.000 00 (4) 0.000 004
Total g − ge:
Theory, this work −391.745 9 (96)
Theory [9] −391.700 (32)
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TABLE V. Individual binding correction to the g-factor of the ground state of 12C3+. Notations are the same as in Table III.
Nuclear parameters used in the calculation are: M/m = 21 868.663 86 and R = 2.4702 (24) fm.

Order Prefactor LO HO δg × 106

Electron-electron interaction:
1/Z0 α2Z2 −0.166 666 667 −0.000 099 947 −319.699 730
1/Z1 α2Z 0.429 812 529 0.000 284 265 137.419 421
1/Z2 α2 −0.128 204 (9) −0.000 17 (8) −6.836 (4)

1/Z3+ α2 Z−1 0.016 65 (5) 0.000 00 (3) 0.147 8 (6)
One-loop QED:

1/Z0 α3 Z2 0.013 262 912 0.000 879 11 (3) 0.197 838
1/Z1 α3 Z −0.039 879 702 −0.000 9 (9) −0.095 (2)

1/Z2+ α3 0.022 618 936 0.000 0 (8) 0.008 8 (3)
Recoil:

1/Z0 α2 (m/M)Z2 0.250 000 000 0.000 1 (9) 0.021 93 (8)
1/Z1+ α2 (m/M)Z −0.793 800 (1) 0.000 (4) −0.011 60 (6)

Two-loop QED:
1/Z0 α4 Z2 −0.002 773 485 0.000 02 (2) −0.000 281(2)
1/Z1 α4 Z 0.008 339 479 0.000 00 (8) 0.000 142 (1)

Finite nuclear size:
1/Z0 (ZαRsph)2γα2Z2 0.200 000 000 0.000 18 (9) 0.000 051
1/Z1 (ZαRsph)2γα2Z −0.570 2 (2) −0.001 4 (7) −0.000 024
1/Z2 (ZαRsph)2γα2 0.214 (5) 0.000 4 (8) 0.000 002

Radiative recoil:
1/Z0 α3 (m/M)Z2 −0.026 525 824 0.000 0 (1) −0.000 017

1/Z1+ α3 (m/M)Z 0.040 698 000 0.000 0 (2) 0.000 004
Second-order recoil:

1/Z0 α2 (m/M)2 Z2 −1.750000000 0.00 (1) −0.000007
≥3-loop QED:

1/Z0 α5 Z2 0.003 162 903 0.000 0 (1) 0.000 002
Total g − ge:
Theory, this work −188.847 (5)
Theory [9] −188.819 (19)


