
One-loop binding corrections to the electron g factor

Krzysztof Pachucki1 and Mariusz Puchalski2
1Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

2Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland

We calculate the one-loop electron self-energy correction of order α (Z α)5 to the bound electron g factor.
Our result is in agreement with the extrapolated numerical value and paves the way for the calculation of the
analogous, but as yet unknown two-loop correction.
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I. INTRODUCTION

The g factor of a bound electron is the coupling constant
of the spin to an external, homogeneous magnetic field. In
natural units ~ = c = ε0 = 1, it is defined by the relation

δE = − e

2m
〈~σ ~B〉 g

2
, (1)

where δE is the energy shift of the electron due to the interac-
tion with the magnetic field ~B, m is the mass of the electron,
and e is the electron charge (e < 0). It was found long ago [1]
that in a relativistic (Dirac) theory, the g factor of a bound
electron differs from the value g = 2 due to the so-called
binding corrections. For an nS state, they are given by
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)
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where E is the Dirac energy. In addition, there are many
QED corrections, and the dominant one comes from the so-
called electron self-energy. When expanded in powers of Z α
the one-loop electron self-energy correction reads (for the nS
state)
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π
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where b40(1S) = −10.236 524 32 [2, 3] , b50 = 23.6(5) [4],
and higher order coefficients remains unknown. What is ap-
proximately known, however, is the sum of b50 and higher-
orders terms for individual nuclear charges from all-order nu-
merical calculations [4–7]. The subject of this work is the one-
loop electron self-energy correction of the order of α (Z α)5,
namely the coefficient b50. Although it has been obtained by
extrapolation of numerical results, we aim to calculate it di-
rectly, in order to find out the best approach for the analogous
two-loop contribution, which currently is the main source of
the uncertainty of theoretical predictions. Due to extremely
accurate measurements in hydrogenlike carbon [8], the bound

electron g factor is presently used for the most accurate deter-
mination of the electron mass [9], and in the future it can be
used for determination of the fine structure constant [10] and
for precision tests of the Standard Model.

II. α (Z α)5 CORRECTION TO THE LAMB SHIFT

Before turning to the g factor we present a simple deriva-
tion of the analogous correction to the Lamb shift as proof of
concept because the computational approach for the g factor
will be very similar. The one–loop electron self-energy con-
tribution to the Lamb shift is

ESE = e2
∫

d4k

(2π)4 i

1

k2
〈ψ̄|γµ 1

6p+ 6k − γ0 V −m
γµ|ψ〉,

(4)
where V = −Z α/r. The (Z α)5 contribution is obtained
from the hard two-Coulomb exchange

E
(5)
SE = e2 φ2(0) (Z α)2

∫
d3q

(2π)3
f(~q 2)

~q 4
, (5)

f(~q 2) =
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4
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,(6)

where
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and where t = (m, 0, 0, 0), t q = 0, q2 = −~q 2. Equation
(5) as it stands is divergent at small ~q 2. One subtracts leading
terms in small ~q 2, which correspond to lower order contribu-
tions to the Lamb shift, so f(~q 2) ∼ ~q 2, and

f(~q 2) = ~q 2

∫
d(p2)

1

p2 (~q 2 + p2)
fA(p2) (8)

function f can be expressed in terms of its imaginary part fA

on a cut ~q 2 < 0

fA(p2) =
f(−p2 + i ε)− f(−p2 − i ε)

2π i
. (9)
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The correction to energy in terms of fA becomes

E
(5)
SE = e2 φ2(0) (Z α)2

∫
d p

2π

fA(p2)

p2
. (10)

The imaginary part fA is much easier to evaluate because it
does not involve any infrared or ultraviolet divergences in k
and has much simpler analytic form than the f itself. The
calculations go as follows. Traces are performed with Feyn-
Calc package [11]. The resulting expression is a linear com-
bination of fractions with the numerator containing powers of
k2, q2, k t, and k q, while q t vanishes. Any k in the numerator
can be reduced with the denominator with the help of

k q =
1

2

[
(k + q + t)2 − (k + t)2 − q2

]
, (11)
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]
.

The resulting expression is a linear combination of

1

i π2
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with integer n,m, l ≥ 0. Next, the powers n,m, l are reduced
to 1 or 0 using integration by parts identities∫

d4 k
∂

∂kµ
pµ

[k2]n [(k + t)2 − 1]m [(k + t+ q)2 − 1]l
= 0

(13)
with p = k, q, t. The resulting expression contains the integral

J =
1

i π2

∫
d4 k

1

k2 [(k + t)2 − 1] [(k + t+ q)2 − 1]
(14)

and simpler integrals without any of these denominators. Ana-
lytic expressions for all such integrals can be taken from [12],
but it is much easier to calculate the imaginary part using
Feynman parameters. For example, the imaginary part of the
J-integral is
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Using JA and simpler formula for other integrals the result
for fA is
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The one dimensional integration in Eq. (10) leads to∫
d p

2π

fA(p2)

p2
=

139

128
− ln 2

2
≡ C. (17)

Finally, the result for the α (Z α)5 electron self-energy contri-
bution to the Lamb shift

E
(5)
SE = m

α (Z α)5

n3
4C, (18)

is in agreement with the well-known value [9, 13]. The same
integration technique is used in the next paragraph for the
evaluation of the analogous correction to the g factor.

III. α (Z α)5 CORRECTION TO THE g FACTOR

The one-loop correction to the g factor is similar to Eq. (4)

δE = e2
∫

d4k

(2π)4i

1

k2
〈ψ̄|γµ 1

6p+ 6k − e 6A− γ0V −m
γµ|ψ〉

(19)
where ψ is the electron wave function which includes pertur-
bation due to external magnetic field A, and p0 includes the
corresponding energy shift

p0 = E + 〈ψ̄|e 6A|ψ〉. (20)

The (Z α)5 contribution is given in analogy to the Lamb shift,
by the hard two-Coulomb exchange

δE(5) = e2
∫

d4k

(2π)4 i

1

k2

〈
ψ̄

∣∣∣∣γµ 1

6p+ 6k − e 6A−m
γ0 V

1
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γ0 V

1

6p+ 6k − e 6A−m
γµ

+ 2 γ0 V
1

6p− e 6A−m
γµ

1

6p+ 6k − e 6A−m
γ0 V

1

6p+ 6k − e 6A−m
γµ

+ γ0 V
1

6p− e 6A−m
γµ

1

6p+ 6k − e 6A−m
γµ

1

6p+ 6k − e 6A−m
γ0 V

∣∣∣∣ψ〉, (21)

and by the expansion in A and in the momentum carried by
A. The expansion of ψ in A is not very trivial. Since only the
low momenta of the wave function ψ contribute to (Z α)5 we
apply the Foldy-Wouthyusen transformation in the presence

of the magnetic field

S = − i

2m
~γ · ~π, (22)
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and the wave function can be represented as

|ψ〉 = e−iS
∣∣∣∣ φ0
〉

=

(
I − 1

2m
~γ ~π +

e

8m2
~σ ~B

) ∣∣∣∣ φ0
〉
,

(23)
where φ is the spinor wave function which corresponds to the
transformed Hamiltonian

H ′ =eiS (H − i ∂t) e−iS

=
p2

2m
− Z α

r
− e

2m
~σ ~B

(
1− p2

2m2
+

Zα

6mr

)
. (24)

We are now ready to perform an expansion in 6A of Eq. (21),
and split δE(5) in four parts

δE(5) = E1 + E2 + E3 + E4 . (25)

E1 comes from the last term in Eq. (23)

E1 =
e

4m2
〈~σ · ~B〉 E(5) = − e

2m
〈~σ · ~B〉 g1

2
, (26)

where

g1 = −E
(5)

m
= −α (Z α)5

n3
4C . (27)

E2 comes from perturbation of φ due to the last term in the
transformed Hamiltonian (24)

E2 =
e

m
〈~σ · ~B〉C α (Z α)5
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5

6 r

1

(E −H)′
4π δ(3)(r)

〉
,

(28)
where p2/2 is replaced by 1/r. Since

1

(E −H)′
1

r
φ = − ∂

∂α
φ, (29)

the above matrix element is〈
1

r

1

(E −H)′
4π δ(3)(r)

〉
= − 6

n3
, (30)

and g2 becomes

g2 =
α (Z α)5

n3
20C . (31)

E3 comes from expansion of Eq. (21) in p0 − m =

−e 〈~σ ~B〉/(2m),

E3 = − e

2m
〈~σ · ~B〉 e2 φ2(0) (Z α)2 C ′ , (32)

where
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∂
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E=1

∫
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1

~q 4
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×Tr
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4

)]
(33)

= −659

256
+ ln(2) ,

and where Ti are defined in Eq. (7) with t = (E, 0, 0, 0). The
corresponding correction to the g factor is

g3 =
α (Z α)5

n3
8C ′ . (34)

The last term E4 comes from the expansion of δE(5) in
~γ · ~A. A typical contribution is of the form

E4 = e2
∫
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(2π)3
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16
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]
+ . . . (35)

where by dots we denote all other diagrams. In addition, we
perform an expansion in the momentum ~q transferred by A
and obtain

E4 = e2 (Z α)2 φ2(0)C ′′ (Ai qj −Aj qi) e i εijk σk

= −2 e2 (Z α)2 φ2(0)C ′′ e~σ ~B, (36)

where

C ′′ =
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1024
+

ln(2)

12
. (37)

The corresponding correction to the g factor is

g4 =
α (Z α)5

n3
32C ′′ . (38)

The total α (Z α)5 contribution to the bound electron g factor
is the sum of individual corrections, namely

g(5) = g1 + g2 + g3 + g4

=
α (Z α)5

n3
(
16C + 8C ′ + 32C ′′

)
(39)

=
α (Z α)5

n3

(
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16
+

8 ln(2)

3

)
.
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The numerical value for the coefficient multiplied by π is
b50 = 23.282 005, in agreement with Yerokhin’s very recent
result of 23.6(5) [4]. However, what is not in agreement is the
difference for b50(2S)− b50(1S), which according to our cal-
culations vanishes, but Yerokhin et al. [4] give 0.12(5). All
the assumptions in performing the fit in Ref. [4] were correct,
so this small discrepancy needs further investigation.

IV. SUMMARY

We have calculated the one-loop electron self-energy con-
tribution of order α (Z α)5 to the bound electron g factor, and
found that it is state independent. The principal result, how-

ever, is a presentation of the computational approach, which
can be extended to the yet unknown two-loop correction. This
correction is presently the main source of theoretical uncer-
tainty. The extension of the direct one-loop numerical calcula-
tion to the two-loop case is presently out of reach. In contrast,
the analytic approach with an expansion in Z α is technically
as difficult as the two-loop self-energy correction to the Lamb
shift, which has been known for some time [13].
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