One-loop binding corrections to the electron g factor

Krzysztof Pachucki ${ }^{1}$ and Mariusz Puchalski ${ }^{2}$
${ }^{1}$ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
${ }^{2}$ Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland

Abstract

We calculate the one-loop electron self-energy correction of order $\alpha(Z \alpha)^{5}$ to the bound electron g factor. Our result is in agreement with the extrapolated numerical value and paves the way for the calculation of the analogous, but as yet unknown two-loop correction.

PACS numbers:

I. INTRODUCTION

The g factor of a bound electron is the coupling constant of the spin to an external, homogeneous magnetic field. In natural units $\hbar=c=\varepsilon_{0}=1$, it is defined by the relation

$$
\begin{equation*}
\delta E=-\frac{e}{2 m}\langle\vec{\sigma} \vec{B}\rangle \frac{g}{2}, \tag{1}
\end{equation*}
$$

where δE is the energy shift of the electron due to the interaction with the magnetic field \vec{B}, m is the mass of the electron, and e is the electron charge $(e<0)$. It was found long ago [1] that in a relativistic (Dirac) theory, the g factor of a bound electron differs from the value $g=2$ due to the so-called binding corrections. For an $n S$ state, they are given by

$$
\begin{align*}
g & =\frac{2}{3}\left(1+2 \frac{E}{m}\right) \\
& =2-\frac{2}{3} \frac{(Z \alpha)^{2}}{n^{2}}+\left(\frac{1}{2 n}-\frac{2}{3}\right) \frac{(Z \alpha)^{4}}{n^{3}}+\ldots \tag{2}
\end{align*}
$$

where E is the Dirac energy. In addition, there are many QED corrections, and the dominant one comes from the socalled electron self-energy. When expanded in powers of $Z \alpha$ the one-loop electron self-energy correction reads (for the $n S$ state)

$$
\begin{align*}
g_{\mathrm{SE}}=\frac{\alpha}{\pi}[& 1+\frac{(Z \alpha)^{2}}{6 n^{2}}+\frac{(Z \alpha)^{4}}{n^{3}}\left(\frac{32}{9} \ln \left[(Z \alpha)^{-2}\right]+b_{40}(n)\right) \\
& +\frac{(Z \alpha)^{5}}{n^{3}} b_{50}+\frac{(Z \alpha)^{6}}{n^{3}}\left(b_{62} \ln ^{2}\left[(Z \alpha)^{-2}\right]\right. \\
& \left.\left.+b_{61}(n) \ln \left[(Z \alpha)^{-2}\right]+b_{60}(n)\right)+\ldots\right] \tag{3}
\end{align*}
$$

where $b_{40}(1 S)=-10.23652432[2,3], b_{50}=23.6(5)[4]$, and higher order coefficients remains unknown. What is approximately known, however, is the sum of b_{50} and higherorders terms for individual nuclear charges from all-order numerical calculations [4-7]. The subject of this work is the oneloop electron self-energy correction of the order of $\alpha(Z \alpha)^{5}$, namely the coefficient b_{50}. Although it has been obtained by extrapolation of numerical results, we aim to calculate it directly, in order to find out the best approach for the analogous two-loop contribution, which currently is the main source of the uncertainty of theoretical predictions. Due to extremely accurate measurements in hydrogenlike carbon [8], the bound
electron g factor is presently used for the most accurate determination of the electron mass [9], and in the future it can be used for determination of the fine structure constant [10] and for precision tests of the Standard Model.

II. $\alpha(Z \alpha)^{5}$ CORRECTION TO THE LAMB SHIFT

Before turning to the g factor we present a simple derivation of the analogous correction to the Lamb shift as proof of concept because the computational approach for the g factor will be very similar. The one-loop electron self-energy contribution to the Lamb shift is

$$
\begin{equation*}
E_{\mathrm{SE}}=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4} i} \frac{1}{k^{2}}\langle\bar{\psi}| \gamma^{\mu} \frac{1}{\not p+\not k-\gamma^{0} V-m} \gamma_{\mu}|\psi\rangle, \tag{4}
\end{equation*}
$$

where $V=-Z \alpha / r$. The $(Z \alpha)^{5}$ contribution is obtained from the hard two-Coulomb exchange

$$
\begin{align*}
E_{\mathrm{SE}}^{(5)} & =e^{2} \phi^{2}(0)(Z \alpha)^{2} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{f\left(\vec{q}^{2}\right)}{\vec{q}^{4}} \tag{5}\\
f\left(\vec{q}^{2}\right) & =\int \frac{d^{4} k}{i \pi^{2}} \frac{1}{k^{2}} \operatorname{Tr}\left[\left(T_{1}+2 T_{2}+T_{3}\right)\left(\frac{\gamma^{0}+I}{4}\right)\right] \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& T_{1}=\gamma^{\mu} \frac{1}{\not t+\not k-m} \gamma^{0} \frac{1}{\not t+\not k+\not q-m} \gamma^{0} \frac{1}{\not+\nmid \nless-m} \gamma_{\mu}, \\
& T_{2}=\gamma^{0} \frac{1}{t+\not q-m} \gamma^{\mu} \frac{1}{t+\not k+\not q-m} \gamma^{0} \frac{1}{t+\not k-m} \gamma_{\mu}, \\
& T_{3}=\gamma^{0} \frac{1}{\not t+\not q-m} \gamma^{\mu} \frac{1}{\not q+\not k+\not q-m} \gamma_{\mu} \frac{1}{t+\not q-m} \gamma^{0}, \tag{7}
\end{align*}
$$

and where $t=(m, 0,0,0), t q=0, q^{2}=-\vec{q}^{2}$. Equation (5) as it stands is divergent at small \vec{q}^{2}. One subtracts leading terms in small \vec{q}^{2}, which correspond to lower order contributions to the Lamb shift, so $f\left(\vec{q}^{2}\right) \sim \vec{q}^{2}$, and

$$
\begin{equation*}
f\left(\vec{q}^{2}\right)=\vec{q}^{2} \int d\left(p^{2}\right) \frac{1}{p^{2}\left(\vec{q}^{2}+p^{2}\right)} f^{A}\left(p^{2}\right) \tag{8}
\end{equation*}
$$

function f can be expressed in terms of its imaginary part f^{A} on a cut $\vec{q}^{2}<0$

$$
\begin{equation*}
f^{A}\left(p^{2}\right)=\frac{f\left(-p^{2}+i \epsilon\right)-f\left(-p^{2}-i \epsilon\right)}{2 \pi i} . \tag{9}
\end{equation*}
$$

The correction to energy in terms of f^{A} becomes

$$
\begin{equation*}
E_{\mathrm{SE}}^{(5)}=e^{2} \phi^{2}(0)(Z \alpha)^{2} \int \frac{d p}{2 \pi} \frac{f^{A}\left(p^{2}\right)}{p^{2}} \tag{10}
\end{equation*}
$$

The imaginary part f^{A} is much easier to evaluate because it does not involve any infrared or ultraviolet divergences in k and has much simpler analytic form than the f itself. The calculations go as follows. Traces are performed with FeynCalc package [11]. The resulting expression is a linear combination of fractions with the numerator containing powers of $k^{2}, q^{2}, k t$, and $k q$, while $q t$ vanishes. Any k in the numerator can be reduced with the denominator with the help of

$$
\begin{align*}
k q & =\frac{1}{2}\left[(k+q+t)^{2}-(k+t)^{2}-q^{2}\right] \tag{11}\\
k t & =\frac{1}{2}\left[(k+t)^{2}-k^{2}-q^{2}\right] .
\end{align*}
$$

The resulting expression is a linear combination of

$$
\begin{equation*}
\frac{1}{i \pi^{2}} \int d^{4} k \frac{1}{\left[k^{2}\right]^{n}\left[(k+t)^{2}-1\right]^{m}\left[(k+t+q)^{2}-1\right]^{l}} \tag{12}
\end{equation*}
$$

with integer $n, m, l \geq 0$. Next, the powers n, m, l are reduced to 1 or 0 using integration by parts identities

$$
\begin{equation*}
\int d^{4} k \frac{\partial}{\partial k^{\mu}} \frac{p^{\mu}}{\left[k^{2}\right]^{n}\left[(k+t)^{2}-1\right]^{m}\left[(k+t+q)^{2}-1\right]^{l}}=0 \tag{13}
\end{equation*}
$$

with $p=k, q, t$. The resulting expression contains the integral

$$
\begin{equation*}
J=\frac{1}{i \pi^{2}} \int d^{4} k \frac{1}{k^{2}\left[(k+t)^{2}-1\right]\left[(k+t+q)^{2}-1\right]} \tag{14}
\end{equation*}
$$

and simpler integrals without any of these denominators. Analytic expressions for all such integrals can be taken from [12], but it is much easier to calculate the imaginary part using Feynman parameters. For example, the imaginary part of the J-integral is

$$
\begin{equation*}
J^{A}\left(p^{2}\right)=\frac{1}{p}\left[\arctan (p)-\Theta(p-2) \arccos \left(\frac{2}{p}\right)\right] \tag{15}
\end{equation*}
$$

Using J^{A} and simpler formula for other integrals the result for f^{A} is

$$
\begin{align*}
f^{A}\left(p^{2}\right)= & \frac{7}{3}-\frac{16}{p^{2}}-\frac{1}{1+p^{2}}+\left(\frac{16}{p^{3}}+\frac{4}{p}-p\right) \arctan (p) \\
& +4\left(1+\frac{1}{p^{2}}-\frac{12}{p^{4}}\right) \frac{\Theta(p-2)}{\sqrt{1-4 / p^{2}}} \\
& -\left(\frac{16}{p^{3}}+\frac{4}{p}-p\right) \Theta(p-2) \arccos \left(\frac{2}{p}\right) \tag{16}
\end{align*}
$$

The one dimensional integration in Eq. (10) leads to

$$
\begin{equation*}
\int \frac{d p}{2 \pi} \frac{f^{A}\left(p^{2}\right)}{p^{2}}=\frac{139}{128}-\frac{\ln 2}{2} \equiv C \tag{17}
\end{equation*}
$$

Finally, the result for the $\alpha(Z \alpha)^{5}$ electron self-energy contribution to the Lamb shift

$$
\begin{equation*}
E_{\mathrm{SE}}^{(5)}=m \frac{\alpha(Z \alpha)^{5}}{n^{3}} 4 C, \tag{18}
\end{equation*}
$$

is in agreement with the well-known value [9,13]. The same integration technique is used in the next paragraph for the evaluation of the analogous correction to the g factor.

III. $\alpha(Z \alpha)^{5}$ CORRECTION TO THE g FACTOR

The one-loop correction to the g factor is similar to Eq. (4)
$\delta E=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} i \frac{1}{k^{2}}\langle\bar{\psi}| \gamma^{\mu} \frac{1}{p x+\not k-e \not A-\gamma^{0} V-m} \gamma_{\mu}|\psi\rangle$
where ψ is the electron wave function which includes perturbation due to external magnetic field A, and p^{0} includes the corresponding energy shift

$$
\begin{equation*}
p_{0}=E+\langle\bar{\psi}| e \not A|\psi\rangle . \tag{20}
\end{equation*}
$$

The $(Z \alpha)^{5}$ contribution is given in analogy to the Lamb shift, by the hard two-Coulomb exchange

$$
\begin{align*}
\delta E^{(5)}=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4} i} \frac{1}{k^{2}}\langle\bar{\psi}| & \gamma^{\mu} \frac{1}{\not p+\not k-e \not A-m} \gamma^{0} V \frac{1}{\not p+\not K-e \not A-m} \gamma^{0} V \frac{1}{\not p+\not K-e \not A-m} \gamma_{\mu} \\
& +2 \gamma^{0} V \frac{1}{\not p-e \not A-m} \gamma^{\mu} \frac{1}{p p+\not K-e \not A-m} \gamma^{0} V \frac{1}{\not p+\not k-e \not A-m} \gamma_{\mu} \\
& +\gamma^{0} V \frac{1}{\not p-e \not A-m} \gamma^{\mu} \frac{1}{p+\not K-e \not A-m} \gamma_{\mu} \frac{1}{\not p+\not k-e \not A-m} \gamma^{0} V|\psi\rangle, \tag{21}
\end{align*}
$$

and by the expansion in A and in the momentum carried by A. The expansion of ψ in A is not very trivial. Since only the low momenta of the wave function ψ contribute to $(Z \alpha)^{5}$ we apply the Foldy-Wouthyusen transformation in the presence
of the magnetic field

$$
\begin{equation*}
S=-\frac{\mathrm{i}}{2 m} \vec{\gamma} \cdot \vec{\pi}, \tag{22}
\end{equation*}
$$

and the wave function can be represented as

$$
|\psi\rangle=e^{-\mathrm{i} S}\left|\begin{array}{l}
\phi \tag{23}\\
0
\end{array}\right\rangle=\left(\begin{array}{l|l}
I-\frac{1}{2 m} \vec{\gamma} \vec{\pi}+\frac{e}{8 m^{2}} \vec{\sigma} \vec{B}
\end{array}\right)\left|\begin{array}{l}
\phi \\
0
\end{array}\right\rangle,
$$

where ϕ is the spinor wave function which corresponds to the transformed Hamiltonian

$$
\begin{align*}
H^{\prime} & =e^{\mathrm{i} S}\left(H-i \partial_{t}\right) e^{-\mathrm{i} S} \\
& =\frac{p^{2}}{2 m}-\frac{Z \alpha}{r}-\frac{e}{2 m} \vec{\sigma} \vec{B}\left(1-\frac{p^{2}}{2 m^{2}}+\frac{Z \alpha}{6 m r}\right) . \tag{24}
\end{align*}
$$

We are now ready to perform an expansion in \mathscr{A} of Eq. (21), and split $\delta E^{(5)}$ in four parts

$$
\begin{equation*}
\delta E^{(5)}=E_{1}+E_{2}+E_{3}+E_{4} \tag{25}
\end{equation*}
$$

E_{1} comes from the last term in Eq. (23)

$$
\begin{equation*}
E_{1}=\frac{e}{4 m^{2}}\langle\vec{\sigma} \cdot \vec{B}\rangle E^{(5)}=-\frac{e}{2 m}\langle\vec{\sigma} \cdot \vec{B}\rangle \frac{g_{1}}{2}, \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}=-\frac{E^{(5)}}{m}=-\frac{\alpha(Z \alpha)^{5}}{n^{3}} 4 C . \tag{27}
\end{equation*}
$$

E_{2} comes from perturbation of ϕ due to the last term in the transformed Hamiltonian (24)

$$
\begin{equation*}
E_{2}=\frac{e}{m}\langle\vec{\sigma} \cdot \vec{B}\rangle C \alpha(Z \alpha)^{5}\left\langle\frac{5}{6 r} \frac{1}{(E-H)^{\prime}} 4 \pi \delta^{(3)}(r)\right\rangle, \tag{28}
\end{equation*}
$$

where $p^{2} / 2$ is replaced by $1 / r$. Since

$$
\begin{equation*}
\frac{1}{(E-H)^{\prime}} \frac{1}{r} \phi=-\frac{\partial}{\partial \alpha} \phi, \tag{29}
\end{equation*}
$$

the above matrix element is

$$
\begin{equation*}
\left\langle\frac{1}{r} \frac{1}{(E-H)^{\prime}} 4 \pi \delta^{(3)}(r)\right\rangle=-\frac{6}{n^{3}}, \tag{30}
\end{equation*}
$$

and g_{2} becomes

$$
\begin{equation*}
g_{2}=\frac{\alpha(Z \alpha)^{5}}{n^{3}} 20 C \tag{31}
\end{equation*}
$$

E_{3} comes from expansion of Eq. (21) in $p_{0}-m=$ $-e\langle\vec{\sigma} \vec{B}\rangle /(2 m)$,

$$
\begin{equation*}
E_{3}=-\frac{e}{2 m}\langle\vec{\sigma} \cdot \vec{B}\rangle e^{2} \phi^{2}(0)(Z \alpha)^{2} C^{\prime} \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
C^{\prime}= & \left.\frac{\partial}{\partial E}\right|_{E=1} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{\vec{q}^{4}} \int \frac{d^{4} k}{i \pi^{2}} \frac{1}{k^{2}} \\
& \times \operatorname{Tr}\left[\left(T_{1}+2 T_{2}+T_{3}\right)\left(\frac{\gamma^{0}+I}{4}\right)\right] \tag{33}\\
= & -\frac{659}{256}+\ln (2),
\end{align*}
$$

and where T_{i} are defined in Eq. (7) with $t=(E, 0,0,0)$. The corresponding correction to the g factor is

$$
\begin{equation*}
g_{3}=\frac{\alpha(Z \alpha)^{5}}{n^{3}} 8 C^{\prime} . \tag{34}
\end{equation*}
$$

The last term E_{4} comes from the expansion of $\delta E^{(5)}$ in $\vec{\gamma} \cdot \vec{A}$. A typical contribution is of the form

$$
\begin{align*}
& E_{4}=e^{2} \int \frac{d^{4} k}{i \pi^{2}} \frac{1}{k^{2}} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{Z \alpha}{(-\vec{p}-\vec{q} / 2)^{2}} \frac{Z \alpha}{(\vec{p}-\vec{q} / 2)^{2}} \phi^{2}(0) e i \epsilon^{i j k} \sigma^{k} \\
& \tag{35}\\
& \quad \operatorname{Tr}\left[\gamma^{\mu} \frac{1}{\not t+\not k-m} \gamma^{0} \frac{1}{\not t+\not p+\not q / 2+\not k-m} \not A(q) \frac{1}{\nless+\not p-\not q / 2+\not k-m} \gamma^{0} \frac{1}{\nvdash+\not k-m} \gamma_{\mu} \frac{\left(\gamma^{0}+I\right)}{16}\left[\gamma^{i}, \gamma^{j}\right]\right]+\ldots
\end{align*}
$$

where by dots we denote all other diagrams. In addition, we perform an expansion in the momentum \vec{q} transferred by A and obtain

$$
\begin{align*}
E_{4} & =e^{2}(Z \alpha)^{2} \phi^{2}(0) C^{\prime \prime}\left(A^{i} q^{j}-A^{j} q^{i}\right) e i \epsilon^{i j k} \sigma^{k} \\
& =-2 e^{2}(Z \alpha)^{2} \phi^{2}(0) C^{\prime \prime} e \vec{\sigma} \vec{B}, \tag{36}
\end{align*}
$$

where

$$
\begin{equation*}
C^{\prime \prime}=\frac{281}{1024}+\frac{\ln (2)}{12} . \tag{37}
\end{equation*}
$$

The corresponding correction to the g factor is

$$
\begin{equation*}
g_{4}=\frac{\alpha(Z \alpha)^{5}}{n^{3}} 32 C^{\prime \prime} . \tag{38}
\end{equation*}
$$

The total $\alpha(Z \alpha)^{5}$ contribution to the bound electron g factor is the sum of individual corrections, namely

$$
\begin{align*}
g^{(5)} & =g_{1}+g_{2}+g_{3}+g_{4} \\
& =\frac{\alpha(Z \alpha)^{5}}{n^{3}}\left(16 C+8 C^{\prime}+32 C^{\prime \prime}\right) \tag{39}\\
& =\frac{\alpha(Z \alpha)^{5}}{n^{3}}\left(\frac{89}{16}+\frac{8 \ln (2)}{3}\right)
\end{align*}
$$

The numerical value for the coefficient multiplied by π is $b_{50}=23.282005$, in agreement with Yerokhin's very recent result of 23.6(5) [4]. However, what is not in agreement is the difference for $b_{50}(2 S)-b_{50}(1 S)$, which according to our calculations vanishes, but Yerokhin et al. [4] give 0.12(5). All the assumptions in performing the fit in Ref. [4] were correct, so this small discrepancy needs further investigation.

IV. SUMMARY

We have calculated the one-loop electron self-energy contribution of order $\alpha(Z \alpha)^{5}$ to the bound electron g factor, and found that it is state independent. The principal result, how-
ever, is a presentation of the computational approach, which can be extended to the yet unknown two-loop correction. This correction is presently the main source of theoretical uncertainty. The extension of the direct one-loop numerical calculation to the two-loop case is presently out of reach. In contrast, the analytic approach with an expansion in $Z \alpha$ is technically as difficult as the two-loop self-energy correction to the Lamb shift, which has been known for some time [13].

Acknowledgments

This work was supported by National Science Center (Poland) Grant No. 2012/04/A/ST2/00105.
[1] G. Breit, Nature (London) 122, 649 (1928).
[2] K. Pachucki, U. D. Jentschura, and V. A. Yerokhin, Phys. Rev. Lett. 93, 150401 (2004), [(E) ibid., 94, 229902 (2005)].
[3] K. Pachucki, A. Czarnecki, U. D. Jentschura, and V. A. Yerokhin, Phys. Rev. A 72, 022108 (2005).
[4] V.A. Yerokhin and Z. Harman, Phys. Rev. A95, 060501(R) (2017).
[5] H. Persson, S. Salomonson, P. Sunnergren, and I. Lindgren, Phys. Rev. A 56, R2499 (1997).
[6] S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. A. 55, 1857 (1997).
[7] T. Beier, I. Lindgren, H. Persson, S. Salomonson, P. Sunnergren, H. Häffner, and N. Hermanspahn, Phys. Rev. A 62, 032510 (2000).
[8] S. Sturm, F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum, Nature 506, 467470 (2014).
[9] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).
[10] V.A. Yerokhin, E. Berseneva, Z. Harman, I.I. Tupitsyn, and C.H. Keitel Phys. Rev. Lett. 116, 100801 (2016).
[11] V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207, 432 (2016), arXiv:1601.01167.
[12] G. 't Hooft and M. Veltman, Nuclear Physics B153, 365 (1979).
[13] M. I. Eides, H. Grotch, and V.A. Shelyuto, Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics 222, (2007).

