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Nuclear structure corrections of orders ZαEF and (Zα)2EF are calculated for the hyperfine
splitting of the muonic deuterium. The obtained results disagree with previous calculations and
lead to a 5σ disagreement with the current experimental value of the 2S hyperfine splitting in µD.

I. INTRODUCTION

Nuclear structure effects represent the main limitation
for precise theoretical description of atomic energy lev-
els. These effects are particularly important for muonic
atoms, where the Compton wavelength of the bound
muon ∼ 2 fm is of the same order as the nuclear size.
It is, therefore, not surprising that the uncertainty of
modern theoretical predictions of energy levels of light
muonic atoms is dominated by the uncertainty of nuclear-
structure effects. Specifically, the current theoretical
value of the hyperfine splitting (hfs) of the 2S state of
muonuic deuterium (µD) is [1]

Ehfs(2S)theo = 6.2791 (50) meV , (1)

where the uncertainty comes almost exclusively from the
deuteron polarizability (±0.0049 meV). The theoretical
value (1) was obtained in Ref. [1] by compiling two in-
dependent calculations, by Borie [2] and by Faustov et
al. [3]. The theoretical result is in good agreement with
the experimental value [4]:

Ehfs(2S)exp = 6.2747(70)stat(20)syst meV . (2)

In this work we will demonstrate that the deuteron
structure corrections to hfs in µD were previously treated
incorrectly and that the good agreement with the exper-
imental value was probably accidental. Specifically, the
calculation by Borie [2] included only the elastic part of
the nuclear structure, which does not reproduce even the
correct sign of the total nuclear structure effect. Faus-
tov and coworkers [3] included both the Zemach and the
Low corrections at the same time, which is inconsistent,
and, moreover, used an incorrect formula for the nuclear
polarizability.

In the present work we derive the nuclear-structure
corrections in µD induced by the two- and three-photon
exchange between the bound muon and the nucleus and
analyze discrepancies with the previous calculation [3]
and the experimental result [4].
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The leading-order hfs of atomic levels of light atoms is
independent of nuclear structure and is given (for the nS
states) by the Fermi contact term,

EF =
4gNm

3
r

3mpmn3
(Zα)4 〈~sN · ~sµ〉 , (3)

where n is the principal quantum number, Z is the nu-
clear charge number, α is the fine-structure constant, m
and mp are masses of the lepton and the proton, respec-
tively, mr is the reduced mass of the atom, ~sµ and ~sN are
the spin operators of the lepton and the nucleus, respec-
tively, gN is the ’modified’ g-factor of the nucleus defined
by

~µN =
Ze gN
2mp

~sN , (4)

~µN is the nuclear magnetic moment operator and e is
the elementary charge. Numerical values of EF for the
ground and the first excited state of muonic deuterium
are

EF =

{
49.0875 meV , for the 1S state ,
6.135 94 meV , for the 2S state .

(5)

If we assume the point nuclear model and account for all
known QED corrections, the theoretical result for the 2S
state is [1]

Ehfs(point) = 6.178 15(20) meV , (6)

which corresponds to the sum of entries h1 + h2 + h4 +
h5 + h7 + h8 + h9 + h9b + h12 + h13 + h14 + h18 from
Table IV of Ref. [1]. The deviation of the experimental
value (2) from the theoretical point-nucleus result (6) can
be regarded as the “experimental value” of the nuclear-
structure correction,

δEnucl = Ehfs(exp)−Ehfs(point) = 0.0966(73) meV . (7)

From the theoretical side the nuclear-structure correc-
tion for light atoms can be described within the Z α ex-
pansion,

δEnucl = δ(1)Enucl + δ(2)Enucl + . . . (8)

where δ(1)Enucl is the two-photon exchange correction of
order (Z α)EF , δ(2)Enucl is the three-photon exchange
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correction of order (Z α)2EF , and . . . denotes smaller
contributions due to exchange of larger number of pho-
tons and radiative corrections. In the following discus-
sion, we calculate the two-photon and the three-photon
exchange nuclear-structure corrections for the hfs of nS
states of muonic deuterium. Relativistic units (h̄ = c =
1) are employed throughout.

II. TWO-PHOTON EXCHANGE NUCLEAR
STRUCTURE

The most straightforward way of including the nuclear
effects is to assume that the nucleus is described by some
elastic electric and magnetic formfactors. This leads to
the so-called elastic, or finite-nuclear-size (fns) correc-
tions. The leading fns correction originates from the two-
photon exchange. It was derived long ago by Zemach [5]
and is given by

δEZem = −2mrZα rZEF , (9)

where rZ is the Zemach radius defined by

rZ =

∫
d3r1

∫
d3r2 ρM (r1) ρE(r2) |~r1 − ~r2| . (10)

(Note that the subscript Z in rZ is not related to the
nuclear charge.) In the above equation, ρE and ρM are
the charge and the magnetic-moment distributions of the
nucleus, respectively, i.e., the Fourier transform of the
corresponding formfactors. The numerical value of the
Zemach correction for the 2S state of µD, in the nonrecoil
limit, with rZ = 2.593(16) fm [6], is

δEZem = −0.1177(33) meV . (11)

We note the opposite sign of the Zemach correction as
compared to the experimental value of the total nuclear
structure (7). This demonstrates that the description of
the nucleus only through the elastic formfactors is not
adequate.

Various hfs corrections arise from excitations of the
nucleus by the bound lepton, usually referred to as the
inelastic nuclear-structure corrections. In the case of the
proton, the inelastic contribution can be obtained from
the experimentally accessible spin-dependent structure
functions by using dispersion relations [7–10]. For other
nuclei, including deuteron, the inelastic spin-dependent
structure functions are unknown, and one has to rely on
theoretical calculations.

In our calculations we consider the elastic and inelastic
contributions together, and use a perturbation expansion
over a small parameter, namely, the ratio of the average
nucleon binding energy over the nucleon mass. Specifi-
cally, the two-photon exchange correction can be repre-
sented as

δ(1)Enucl = δELow + δE1nucl + δEpol + . . . . (12)

The leading-order term δELow was first derived by Low
[11]. For the particular case of an nS state in µD, the
numerical value of Low’s correction in the point-nucleon
model is

δELow ≈ −2mr αEF
gn
gd
〈R〉 =

2.640

n3
meV . (13)

Here, R is the distance of the proton from the center
of mass. Its expectation value was calculated using the
AV18 potential [12] as 〈R〉 = 1.629 fm.

A more detailed calculation of the leading-order term
was performed by Friar and Payne [13, 14], with inclusion
of the finite nucleon size and meson exchange currents.
Their result was reported for the 1S state of ordinary
(electronic) deuterium, δELow(eD) = 87.3 kHz. Rescal-
ing it to the nS states of µD one gets

δELow =
m4
r(µD)

m4
r(eD)

m(e)

m(µ)

1

n3
δELow(eD) =

2.566

n3
meV ,

(14)
in good agreement with the approximate result of
Eq. (13).
δE1nucl is the contribution induced by individual nu-

cleons. It is given by the individual nucleon Zemach cor-
rections,

δE1nucl = −8α2

3n3

m3
r

mp +m
~sµ ·

〈∑
a

ga ~sa raZ

〉
. (15)

where raZ is the effective radius of the nucleon a. If
only the elastic part is included, the result for the proton
is rpZ = 1.086(12) fm [6] and for the neutron, rnZ =
−0.042 fm [14]. The result for the proton effective radius
that includes the recoil and polarizability contributions
can be obtained from the 1S muonic hydrogen correction
δEnucl(µH) = −1.131(24) meV obtained by Tomalak in
Ref. [15], namely rpZ = 0.883(19) fm, and for the neutron
from Ref. [16], rnZ = 0.06(1) fm.
δEpol is the contribution of the nuclear vector polar-

izability. It has been studied for ordinary atoms by
Khriplovich and Milstein [17] and later by one of us
(Pachucki) [18]. Results of Ref. [17] obtained in the log-
arithmic approximation were shown in Ref. [18] to be
incorrect, because the coefficient of logarithm for an ar-
bitrary chosen cutoff vanishes completely. Moreover, the
derivation of Ref. [17] is applicable only for the ’elec-
tronic’ atoms but not for the muonic ones. Nevertheless,
the result of Ref. [17] was later used by Faustov et al.
in their calculations of the nuclear structure in µD [3].
In the present work we derive the nuclear vector polariz-
ability correction δEpol for muonic deuterium.

Following the method of Ref. [18], we obtain the vector
polarizability corrections to hfs in µD in the form

δEpol = − e2 ψ2(0)

∫
dω

2π

∫
d3k

(2π)3
(16)

×
(
ω2 εklj + ki kk εlij − ki kl εkij

)
σj αkl

ω (ω2 + 2mω − k2) (ω2 − 2mω − k2) (ω2 − k2)
,
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where αkl is the antisymmetric part of the scattering am-
plitude tensor T kl. In the simplest case of the electric

dipole coupling − ~D · ~E, αkl takes the form

αkl = ω2

〈
Dk 1

EN − H̃N − ω
Dl+Dl 1

EN − H̃N + ω
Dk

〉
,

(17)

where H̃N = HN + k2/(2M), HN is the nuclear internal

Hamiltonian, EN = 〈HN 〉, ~D =
∑
a ea

~Ra, and ~Ra is the
nucleon position with respect to the mass center. After
integration over ω and k, and expansion in the small
parameter

X =

√
2(HN − EN )

mr
, (18)

we obtain the dipole polarizability correction as

δEpol0 = − i e
2

12π
ψ2(0)

(mr

m

)2

εijkσk
〈
DiXDj

〉
. (19)

δEpol0 vanishes in the nonrelativistic limit and its nu-
merical contribution is expected to be small, because
it requires the presence of both the spin-orbit and the
quadrupole-spin interactions between nucleons.

There are, however, other polarizability corrections
that yield significant numerical contributions. The first
one is the correction due to the magnetic quadrupole in-
teraction,

δH = −
∑
a

e ga
2mp

Ria s
j
aB

j
,i . (20)

The corresponding contribution to the scattering tensor
is

δαkl = i ω
∑
a

e ga
2mp

〈
~Ra~k (~sa × ~k)k

1

EN − H̃N − ω
Dl

+Dl 1

EN − H̃N + ω
~Ra~k (~sa × ~k)k − (k ↔ l, ω → −ω)

〉
.

(21)

The first term in the small-X expansion gives the follow-
ing correction to the hyperfine splitting of µD

δEpol1 =− 2α

3

gp − gn
gd

EF m
2
r

〈
~RX ~R

〉
. (22)

The second correction of the same order in X comes
from the magnetic dipole interaction, which is enhanced
by the factor of (gp − gn)2,

δH = − e

2mp

[∑
a

ga ~sa − gd ~sd
]
~B = −(~µ− 〈~µ〉) ~B.

(23)

The corresponding contribution to the scattering tensor
is

δαkl =

〈[
(~µ− 〈~µ〉)× ~k

]k 1

EN − H̃N − ω
[
(~µ− 〈~µ〉)× ~k

]l
+ (k ↔ l, ω → −ω)

〉
, (24)

which gives the following correction to the hyperfine split-
ting in µD

δEpol2 = − α

16

m2
r

mpm

(gp − gn)2

gd
EF 〈(~sp − ~sn)X (~sp − ~sn)〉 .

(25)

Further corrections are of higher order in X. The X2

terms vanish, as shown in Ref. [18], and the next-order
nonvanishing terms are proportional to X3. Namely, the
next-order (in X) term of the correction coming from
δαkl in Eq. (21) is

δEpol3 =
α

4

gp − gn
gd

EF
5mr − 2m

3m3
m4
r

〈
~RX3 ~R

〉
. (26)

Another X3 correction, δEpol4, comes from the follow-
ing spin dependent coupling to the electric field [18],

δH = −~T · ∂
~E

∂t
, (27)

where ~T is defined as

~T =
∑
a

(
ea

2mp
(ga − 1)− Z e

2M

)
~sa × ~xa . (28)

The corresponding vector polarizability correction is

δαkl = i ω3

〈
Dk 1

EN − H̃N − ω
T l + T l

1

EN − H̃N + ω
Dk

− (k ↔ l, ω → −ω)

〉
, (29)

and the contribution to the hyperfine splitting of µD is

δEpol4 = −α
3

gp − gn − 1

gd
EF

m4
r

m2

〈
~RX3 ~R

〉
. (30)

The last nuclear polarizability correction δEpol5 comes
from the fourth-order terms of the expansion of the vec-

tor polarizability δαkl in the small parameter ~k · ~R. In
order to derive this correction, we rewrite Eq. (16) by
using ki T ik = ω T 0k and apply the nonrelativistic ap-
proximation. The result is
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δEhfs = − e2 ψ2(0)

∫
dω

2π

∫
d3k

(2π)3

(~k × ~σ)i (T 0i − T i0)

k2 (2mω − k2)(2mω + k2)

=
e4

m
ψ2(0)

∫
d3k

(2π)3
i
(~σ × ~k)i

k4

∑
a,b

〈
j0
a e

i~k·~Ra
1

HN − EN + k2

2mr

jib e
−i~k·~Rb

〉
, (31)

where, in the nonrelativistic approximation, j0
a = 1 and jib = −i ~σb × ~k gb/(4mp). By neglecting HN − EN in the

above expression one obtains the Low correction given by Eq. (13). The quadratic terms of the expansion of Eq. (31)

in ~k · ~Ra gives δEpol1. We now consider the fourth power of ~k · ~Ra and obtain for µD the following correction

δEpol5 =
α

15
EF m

4
r

{
5

6

gp + gn
gd

〈
R2X3R2

〉
− 2

gp − gn
gd

〈
R2 ~RX3 ~R

〉
+
gp + gn
gd

〈(
RiRj −R2 δij/3

)
X3

(
RiRj −R2 δij/3

)〉}
. (32)

We are not aware of any further significant contributions,
therefore we write the nuclear vector polarizability cor-
rection as

δEpol =

5∑
i=1

δEpol i , (33)

and assume a 5% uncertainty due to omitted δEpol0 and
higher-order (in X) corrections. Our result disagrees
with the result by Faustov and Martynenko [3], because
they used incorrect formula for the polarizability correc-
tion derived for electronic atoms and included in addition
the Low correction.

The nuclear vector polarizability is presently the main
source of the theoretical uncertainty of the total nuclear-
structure correction. This means that in the future, de-
tailed investigations should reanalyze all possible contri-
butions to the nuclear vector polarizability.

III. THREE-PHOTON-EXCHANGE ELASTIC
CORRECTION

The (Zα)2EF elastic contribution to the hyperfine
splitting δ(2)Efns can be derived by following the ap-
proach developed earlier for the case of the Lamb shift in
Ref. [19]. Instead of a direct use of the Dirac equation,
which is possible but tedious, we shall split the total cor-
rection into low-energy δEL and high-energy δEH parts.
Both these parts are separately divergent, so we employ
dimensional regularization with d = 3−2ε (see Appendix
A for details) and cancel singularities ∼ 1/ε in the sum
δ(2)Efns = δEL + δEH . For convenience we assume lep-
ton mass m = 1 from now on and restore it only in the
final expression from dimensional analysis.

A. Low-energy part

In the low-energy part, where p ∼ Zα, the nonrelativis-
tic approximation is valid. The nonrelativistic Hamil-
tonian H with the nuclear electric GE and magnetic
GM formfactors (with their respective Fourier transforms
ρE , ρM ), here normalized to unity, is given by

H =
p2

2
+ V (r) +

4πZα

dmp
gp(~sp · ~sµ)ε ρM (r) , (34)

where the potential V is defined by its Fourier transform

V (p) = −GE(p2)
4πZα

p2
(35)

and where (~sp · ~sµ)ε is defined in (A3).
Because the characteristic momentum p is much

smaller than the inverse of the nuclear size, the nuclear
formfactors can be expanded in p2. We thus obtain

H = H0 +Hhfs + δV + δHhfs , (36)

where

H0 =
p2

2
− Zα

[
1

r

]
ε

, (37)

Hhfs =
4πZα

dmp
gp(~sp · ~sµ)εδ

(d)(~r), (38)

δV = − 4πZαG′E(0) δ(d)(~r), (39)

δHhfs = − 4πZα

dmp
gp(~sp · ~sµ)εG

′
M (0)∇2δ(d)(~r). (40)

and where [1/r]ε denotes a d-dimensional generalization
of the 1/r potential. The corresponding correction to the
hyperfine splitting of order (Zα)6 is

δEL = 2

〈
δV

1

(E0 −H0)′
Hhfs

〉
+ 〈δHhfs〉 . (41)
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Calculating matrix elements in d dimensions and using
G′E(0) = −r2

p/6, G′M (0) = −r2
m/6, with rp and rm be-

ing charge and magnetic radius of the nucleus, respec-
tively, we obtain the following expression for the low-
energy part,

δEL =
4

d
(rpZα)2EF

[
− 1

4ε
− 1

n
− 1

2
+ γ − ln

n

2
+

+ Ψ(n) + ln(Zα) +
r2
m

4r2
pn

2

]
. (42)

The singularity ∼ 1/ε in the above equation will cancel
out with δEH .

B. High-energy part

In the high-energy part δEH , the lepton momentum is
of the order of the inverse of the nuclear size, so one can
employ the scattering approximation. Specifically, δEH
is given by the forward three-photon exchange amplitude,
which can be represented by the three diagrams shown
in Fig. 1. The resulting expression is

δEH =δEH1 + δEH2 + δEH3 (43)

δEH1 =ψ2(0)

∫
ddp

(2π)d

∫
ddq

(2π)d
〈t̄| e~γ · ~A(−~p)

× 1

/p− 1
γ0V (~p− ~q) 1

/q − 1
γ0V (~q) |t〉 ,

δEH2 =ψ2(0)

∫
ddp

(2π)d

∫
ddq

(2π)d
〈t̄| γ0V (−~p)

× 1

/p− 1
γ0V (~p− ~q) 1

/q − 1
e~γ · ~A(~q) |t〉 ,

δEH3 =ψ2(0)

∫
ddp

(2π)d

∫
ddq

(2π)d
〈t̄| γ0V (−~p)

× 1

/p− 1
e~γ · ~A(~p− ~q) 1

/q − 1
γ0V (~q) |t〉 ,

where t = (1,~0), /p = (1, ~p)νγν , and

Ai(q) =
i Z e gp
4mp

σikp
qk

q2
GM (q2) . (44)

After performing Dirac algebra, δEH can be expressed in
the coordinate representation as

δEH =
8ψ2(0)

dmp
(Zα)3gp 〈~sp · ~sµ〉ε

×
∫
ddr

(
2πρM (r)[V(2)

E ]2 + VMVEV(2)
E

)
,(45)

where d-dimensional potentials VE and VM are defined
in Appendix A. The first term under the integral sign
is convergent due to the presence of ρM and thus can be

evaluated in three dimensions. The second term, how-
ever, contains a singularity ∼ 1/ε, which has to be sepa-
rated out. This is achieved by splitting the domain of in-
tegration into (0,Λ) and (Λ,∞). The integral over (Λ,∞)
is evaluated by using the asymptotic form of the poten-
tials in d dimensions. The final result for the high-energy
part is

δEH =
4

d
(rpZα)2EF

[
1

4ε
+ ln rpp +

1

2
+ γ

]
. (46)

Here, rpp is the effective radius defined by

ln
rpp
rp

=
1

G′E(0)

∫ ∞
0

dr ln
r

rp

d

dr
r3

{
2πρM (r)[V

(2)
E ]2

+ VMVEV
(2)
E +

1

r2

(
r

2
− G′E(0)

r

)}
, (47)

where VE(M) are three-dimensional versions of potentials
VE(M), which depend on electric and magnetic formfac-
tors, and are presented in Appendix A.

The final result for the elastic three-photon exchange
correction, δ(2)Efns = δEL + δEH , with m restored from
dimensional analysis, is

δ(2)Efns =
4

3
EF (mrpZα)2

[
− 1

n
+ 2γ − ln

n

2
+ Ψ(n)

+ ln(mrppZα) +
r2
m

4r2
pn

2

]
. (48)

This expression is valid for any nucleus, both for muonic
and electronic atoms.

For the dipole parametrization of the nuclear formfac-
tors

GE(q) = GM (q) =
1

(1 + q2/Λ2)2
, (49)

one easily obtains the following results

rm = rp , rZ/rp =
35

16
√

3
, rpp/rp = 5.274 565 . . . ,

(50)

which are independent of parameter Λ and thus valid for
any nucleus. Numerical values of the elastic (Zα)2EF
correction for the 1S and 2S states of muonic hydrogen
are

δ(2)Efns(µH) =

{
−0.0093 meV , for the 1S state ,
−0.000 96 meV , for the 2S state .

(51)

The above result for the 2S state deviates from the value
of−0.00065 meV calculated by Indelicato [20] and quoted
by Antognini et al. [21] (entry h21 in Table III of that
work). One of possible reasons could be the inclusion of
the reduced mass in Indelicato’s calculation, while our
result is obtained in the nonrecoil limit. We claim that
the recoil effect on this relativistic correction cannot be
accounted for in terms of the reduced mass. Our ana-
lytic result is verified by a numerical calculation in the
following subsection.
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FIG. 1: Three diagrams representing contributions to the high-energy part δEH . Wavy lines represent magnetic photons
carrying potential (44), and dashed lines are electric photons carrying potential (35).

C. Numerical verification

The analytical expression (48) for the fns correction of
order (Zα)2EF has been verified by comparison with the
numerical evaluation of the fns correction to all orders
in Zα. Specifically, the numerical all-order fns correc-
tion was obtained by evaluating the expectation value
of the Fermi-Breit operator Hµ with solutions of the
Dirac equation with an extended nucleus and subtracting
the point-nucleus result. The (extended-nucleus) Fermi-
Breit operator is

Hµ =
|e|
4π

α · [µ× r]

r3
F (r) , (52)

where µ is the nuclear magnetic moment operator, α
is the vector of Dirac matrices, and F (r) describes the
radial distribution of the magnetic moment, F (r) ≈ 1
outside of the nucleus. For the dipole parametrization
(49), the distribution function is given by

F (r) = 1− e−λr
(

1 + λr +
1

2
(λr)2

)
, (53)

where λ = 2
√

3/rm.
We define the relativistic fns correction that contains

orders (Zα)2EF and higher by subtracting the Zemach
contribution from the numerical fns correction,

δ(2+)Efns = Efns,num − δEZem . (54)

Results for the relativistic fns correction are presented in
Fig. 2, which demonstrates agreement between the nu-
merical and analytical approaches for Z = 0. The differ-
ence between the numerical and analytical results scales
linearly with Z, representing the contribution of orders
(Zα)3EF and higher.

IV. THREE-PHOTON EXCHANGE NUCLEAR
STRUCTURE CORRECTION

In this section we address the inelastic three-photon
exchange nuclear-structure correction ∼(Z α)2EF to the

0 1 2 3 4 5 6 7 8 9 10
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δ
E

 /
 [
E

F
 (

Z
α

)2
]
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FIG. 2: Numerical and analytical results for the fns correc-
tion normalized by the factor of EF (Zα)2, for the 1S state of
muonic hydrogen-like ions with the nuclear root-mean-square
radius 1 fm, as a function of nuclear charge Z. Solid line
and dots (red) represent numerical results (54); dashed line
(green) shows analytical results (48); dotted line and triangles
(blue) show the difference.

hyperfine splitting, which has not been studied in the
literature so far. We will perform an approximate treat-
ment of this correction and evaluate the largest contribu-
tion, namely that due to the electric dipole polarizability.
Furthermore, we will demonstrate partial cancellations
occurring between the elastic and inelastic parts for the
case of muonic deuterium, µD.

The nuclear-structure correction δ(2)Enucl can be rep-
resented as a sum of several contributions,

δ(2)Enucl = δEDP + δEL(D) + δEH(p) + δEH(pn) (55)

where δEDP is the low-energy dipole polarizability con-
tribution, δEL(D) is the elastic low-energy part, and
δEH(p) and δEH(pn) are the high-energy corrections.

It is convenient to introduce the common factor

E =
4π α

3mp
ψ2(0) , (56)

which will frequently appear in formulas below.
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A. Elastic low-energy contribution

The elastic low-energy part δEL(D) can be obtained
from Eq. (42) by replacing the proton charge rp and mag-
netic rm radii with their deuteron counterparts rd and
rmd, because at low energies muon sees the nucleon as a
whole. The resulting expression is

δEL(D) =
4

d
(rdα)2E

[
− 1

4ε
− 1

n
− 1

2
+ γ − ln

n

2
+

Ψ(n) + lnα+
r2
md

4r2
dn

2

]
gd 〈~sd · ~sµ〉ε , (57)

where 〈~sd · ~sµ〉ε is defined in Eq. (A3).

B. Polarizability contribution

We derive here the leading dipole polarizability correc-
tion δEDP and represent it as a sum of two terms

δEDP = δEDP1 + δEDP2 (58)

The first one δEDP1 is obtained by taking the second-
order matrix element with dipole interaction in the non-

relativistic approximation and perturbing it with the
magnetic dipole-dipole interaction Hhfs. The result is

δEDP1 = α2δhfs

〈
ψφN

∣∣∣∣~R · ~∇ [1

r

]
ε

(59)

× 1

EN + E0 −HN −H0

~R · ~∇
[

1

r

]
ε

∣∣∣∣ψφN〉 .
Here, ~R is the proton position with respect to the
deuteron mass center and δhfs denotes the first-order per-
turbation due to the hyperfine interaction Hhfs which is
an analog of Hhfs in Eq. (38) for the deuterium

Hhfs =
4πα

dmp
δ(d)(~r) gd(~sd · ~sµ)ε, (60)

where HN is the nuclear Hamiltonian and H0 is the non-
relativistic muon Hamiltonian defined in Eq. (37). The
perturbative treatment of Hhfs means that the polariz-
ability correction is expressed as a sum of two terms,
originating from perturbations of the denominator and
the wave function. However, the first term vanishes and
δEDP1 becomes

δEDP1 = 2α2

〈
ψφN

∣∣∣∣~R · ~∇ [1

r

]
ε

1

E0 + EN −H0 −HN

~R · ~∇
[

1

r

]
ε

1

(E0 −H0)′
Hhfs

∣∣∣∣ψφN〉 , (61)

Because we are interested in the leading correction only, we neglect the D-wave in the ground deuteron state and
neglect the Coulomb corrections, so

δEDP1 =
12

d2
α2E

∑
Λ

〈φN | ~R |Λ〉 〈Λ| ~R |φN 〉 gd 〈~sd · ~sµ〉ε
∫

ddp

(2π)d
ddq

(2π)d
4π

p2

4π

q2

~p · ~q
(~p− ~q)2

2

p2 + 2Λ
. (62)

After integration we obtain the following expression for
the polarizability correction

δEDP1 =
4

d
(rsα)2E

(
1

4ε
+

2

3
− 1

2
ln 2Ē

)
〈gd~sd · ~sµ〉ε ,

(63)
where Ē is the mean excitation energy defined by

ln
Ē

m
=

1

r2
s

〈
φN

∣∣∣∣ ~R ln

[
(HN − EN )

m

]
~R

∣∣∣∣φN〉 . (64)

and rs is the deuteron structure radius

rs =
√
〈R2〉 . (65)

The mean excitation energy (64) was calculated in
Ref. [19] using the AV18 potential [12], with the result

Ē = 7.37(7) MeV. (66)
The pion-less EFT in the next-to-leading order [22] re-
produces this result with 2 % accuracy.

The second dipole polarizability contribution δEDP2

is the Coulomb distortion correction to the leading two-
photon exchange contribution δEpol1 in Eq. (22). We
derive it by considering the nonrelativistic formula for
the second order correction to energy that comes from the
electric dipole interaction and the magnetic quadrupole
term in Eq. (20)
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δEDP2 = 4πα2 gp − gn
dmp

〈~sd · ~sµ〉ε δC
〈
ψφN |~R · ~∇

[
1

r

]
ε

1

H0 +HN − E0 − EN
~R · ~∇ δ(~r)|ψφN

〉
, (67)

where δC denotes the Coulomb correction, namely that beyond Epol1 in Eq. (22). This Coulomb correction is the
forward scattering three-photon exchange amplitude, which takes the following form in the momentum representation

δEDP2 =
3α2

d

gp − gn
gd

EF
∑
Λ′

〈φN |Rk|Λ〉 〈Λ|Ri|φN 〉
∫

ddp

(2π)d
ddq

(2π)d
4π pk

p2

4π qi

q2

2 + Λ

[
1

p2

2 + Λ

1

|~p− ~q|2
+

2

|~p− ~q |4

]
. (68)

After integration we obtain for δEDP2

δEDP2 =
4

3
(α rs)

2 gp − gn
gd

EF

(
3

4
− ln 2

)
(69)

Its value is heavily suppressed by the numerical factor in
the parentheses.

C. High-energy contribution δEH(pn)

When muon momentum is of the order of the inverse
of internucleon distance, the muon sees different posi-
tions of the proton and the neutron inside the nucleus,
and effectively one can discern which photon interacts

with which nucleon in the three-photon exchange. Be-
cause one can neglect the nuclear excitation energy in
comparison to the muon kinetic energy, the high-energy
contribution can be represented as an expectation value
of the effective interaction potential,

δEH(pn) = 〈φN |δVH |φN 〉 , (70)

where

δVH = ψ2(0)

∫
ddp

(2π)d

∫
ddq

(2π)d
[
δVH1 + δVH2 + δVH2

]
,

(71)

and

δVH1 = 〈t̄| e~γ · ~Aa(−~p)ei~p·~Ra
1

/p− 1
γ0Vb(~p− ~q)ei(~q−~p)·

~Rb
1

/q − 1
γ0e−i~q·

~RcVc(~q) |t〉 ,

δVH2 = 〈t̄| γ0Vc(−~p)ei~p·
~Rc

1

/p− 1
γ0Vb(~p− ~q)ei(~q−~p)·

~Rb
1

/q − 1
e−i~q·

~Rae~γ · ~Aa(~q) |t〉 ,

δVH3 = 〈t̄| γ0Vb(−~p)ei~p·
~Rb

1

/p− 1
e~γ · ~Aa(~p− ~q)ei(~q−~p)·~Ra

1

/q − 1
γ0e−i~q·

~RcVc(~q) |t〉 .

Indices (a, b, c) ∈ {p, n} discern whether the interact-
ing nucleon is the proton or the neutron. We neglect
all the contributions where the electric photon interacts
with the neutron (b = c = p) and thus are left with two
cases. We first consider the case when the magnetic pho-
ton hits the neutron (a = n). This gives the following
correction

δEH(pn) =
8ψ2(0)

dmp
α3gn 〈~sn · ~sµ〉ε (72)

×
〈
φN

∣∣∣∣ ∫ ddr

(
2πρM (~r + 2 ~R) [V(2)

E ]2

+ VM (~r + 2 ~R)VEV(2)
E

)∣∣∣∣φN〉 ,
which is almost the same as Eq. (45), but has magnetic
terms shifted by the proton-neutron distance. All the

potentials in Eq. (72) are functions of r, unless explic-
itly written and magnetic potentials refer to the neutron
formfactor, while electric ones to the proton one, both
through definitions (A5). The treatment of Eq. (72) fol-
lows the same pattern as that of Eq. (45). The only dif-

ference is that magnetic factors are shifted by 2 ~R, which
leads to additional terms. The result is

δEH(pn) =
4

d
(rpα)2Egn 〈~sn · ~sµ〉ε

×
(

1

4ε
+ γ − 1

2
+

3r2
pn + 2r2

s

r2
p

+ ln 2rl

)
, (73)

where rl is defined as

ln (2mrl) = 〈φN | ln (2mR) |φN 〉 (74)

and its value can be found in Table I. The effective
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proton-neutron radius rpn in Eq. (73) is defined as

2πr2
pn =

〈
φN

∣∣∣∣ ∫ d3r

(
2πρM (~r + 2 ~R)[V

(2)
E ]2 (75)

+ VM (~r + 2 ~R)VE V
(2)
E +

1

|~r + 2 ~R|

(
1

2
− G′E(0)

r2

))∣∣∣∣φN〉.
where ρM and VM correspond to the neutron, while GE
and VE correspond to the proton. It is worth noting that
in the point-nucleon limit the proton-neutron effective
radius rpn, given by Eq. (75), is equal to the deuteron
structure radius (rpn → rs).

D. High-energy contribution δEH(p)

In the case when all three photons interact with the
proton, one should use the complete four-vector current,
as in the two-photon case. We are not able to perform
such a calculation at present, and thus we assume that
the dominating contribution comes from the elastic part
in the nonrecoil limit,

δEH(p) =
4

d
(rpα)2E

[
1

4ε
+ ln rpp +

1

2
+ γ

]
gp 〈~sp · ~sµ〉ε .

(76)

E. Total three-photon exchange correction

Summing all contributions in Eq. (55) and restor-
ing m’s from dimensional analysis, we obtain the three-
photon nuclear-structure correction of order (Z α)2EF
for µD,

δ(2)Enucl =
4

3
(mα)2EF

[
r2
pn

3gn
2gd

+ r2
md

1

4n2
+ r2

s

(
gn
gd
− γ

+
gp − gn
gd

(
3

4
− ln 2

)
+

1

6
− 1

2
ln

2Ē

m

)
+ r2

d

(
2γ − 1

n
− ln

n

2
+ Ψ(n) + lnα

)
+ r2

p

(
gp ln(mrpp) + gn ln(2mrl)− gn

)
1

2gd

]
.

(77)

In deriving this final formula we made use of an approx-
imate identity 〈gd~sd〉 ≈ 〈gp~sp + gn~sn〉 / to cancel out the
ε singularity and 〈~sp〉 = 〈~sn〉 = 〈~sd〉 /2 for further sim-
plifications. Numerical values for all parameters in the
final formula are listed in Table I.

Our final results for the three-photon exchange
deuteron structure correction δ(2)Enucl are presented in
Table II. We assume a 25 % uncertainty of these results,
due to neglect of the polarizability corrections beyond
the electric dipole contribution and of the unknown in-
elastic proton contribution, although we must admit that
we can not well justify this uncertainty estimate.

TABLE I: Effective radii and g-factors for the three-photon
nuclear-structure correction for µD, given by Eq. (77).
Proton-neutron radius rpn is taken in the point-nucleon limit
(rpn = rs) and rl is obtained with the AV18 potential [12]

Variable Value Units Source

rp 0.84087(39) fm Ref. [23]

rd 2.1256(8) fm Ref. [24]

rs 1.954661(79) fm Ref. [19]

rmd 2.312(10) fm Ref. [25]

rpp 4.435 fm Eq. (47)

rpn 1.955 fm Eq. (75)

rpZ 0.883(19) fm Ref. [15]

rnZ 0.06(1) fm Ref. [16]

rl 1.339 fm Eq. (74)

gp 5.585694702(17) Ref. [26]

gd 0.8574382311(48) Ref. [26]

gn −3.82608545(90) Ref. [26]

Our results for the three-photon exchange structure
correction disagree with corresponding formulas obtained
by Faustov et al. [3] (given by Eqs. (55), (58), and
(59) of that work). The reason for this disagreement is
two-fold. First, Faustov et al. considered only the low-
energy part of the nuclear-structure correction, omitting
completely the high-energy part. Second, the term pro-
portional to the deuteron magnetic radius rmd in their
calculation contains an additional factor of 1/n3, due to
a mistake in evaluation of the matrix element presented
in Eq. (A8).

V. SUMMARY

A summary of all known nuclear-structure contribu-
tions to the hyperfine splitting of the 1S and 2S states
in µD is presented in Table II. We find that the total
theoretical result for the deuteron structure correction
for the 2S state differs from the experimental value by
about 5σ. A possible reason for this discrepancy might
be our insufficient knowledge of the spin-dependent cou-
pling of nucleus to the electromagnetic field, in particular
the unknown corrections to the nonrelativistic current in
Eq. (31). Another possible reason could be a mistake
in calculations of QED effects for the point nucleus, al-
though it looks much less probable since these calcula-
tions were performed independently by two groups [2, 3].

Summarizing, in the present work we have calculated
the two- and three-photon exchange nuclear structure
corrections to the hyperfine splitting of the nS states in
µD. The obtained results disagree with the previous the-
oretical calculation [3] and with the experimental result
[4].
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TABLE II: Nuclear structure corrections for hyperfine split-
ting of the 1S and 2S states of muonic deuterium, in meV.
Numerical results are obtained with the AV18 potential [12].

Correction 1S 2S Source

δEpol1 −1.1007 −0.1376 Eq. (22)

δEpol2 −0.0823 −0.0103 Eq. (25)

δEpol3 0.1513 0.0189 Eq. (26)

δEpol4 −0.1979 −0.0283 Eq. (30)

δEpol5 −0.0327 −0.0041 Eq. (32)

δEpol −1.2623(631) −0.1578(79) Eq. (33)

δE1nucl −0.9450(224) −0.1181(28) Eq. (15)

δELow 2.566 0.3208 Eq. (14)

δ(1)Enucl 0.3587(670) 0.0448(84) Eq. (12)

δ(2)Enucl −0.0547(137) −0.0065(16) Eq. (77)

δEnucl,theo 0.304(68) 0.0383(86) Eq. (8)

δEnucl,exp 0.0966(73) Eq. (7)

difference 0.0583(113)
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Appendix A: Dimensional regularization

In order to extend spin 1
2 into d dimensions, we define

antisymmetric tensor

σij =
i

2
[γi, γj ] , (A1)

that in the three-dimensional limit simplifies to

σij
d→3
= 2εijksk. (A2)

Additionally, for the deuteron we define σijd = σijp + σijn
and use the following convenient notation

(~sa · ~sb)ε =
1

8
σija σ

ij
b (A3)

Throughout our calculations we extensively used the fol-
lowing result for the general d-dimensional integral,

∫
ddp

(2π)d
4π

pn
ei~p·~r = 22−nπ1−d/2 Γ

(
d−n

2

)
Γ
(
n
2

) rn−d . (A4)

Two special cases are of particular importance (with d =
3− 2ε):

V(r) =
∫

ddp
(2π)d

4π
p2 e

i~p·~r = πε−1/2Γ(1/2− ε) 1

r1−2ε
,

V(2)(r) =
∫

ddp
(2π)d

4π
p4 e

i~p·~r =
1

4
πε−1/2Γ(−1/2− ε)r1+2ε.

We define also the associated potentials:

VX = 4π

∫
ddp

(2π)d
GX(p2)

p2
ei~p·~r,

V(2)
X = 4π

∫
ddp

(2π)d
GX(p2)

p4
ei~p·~r, (A5)

where X ∈ {E,M}. Asymptotic forms of these poten-
tials at r →∞ are:

VX → V + local terms,

V(2)
X → V(2) +G′X(0)V + local terms .

The corresponding three-dimensional potentials are

VX = 4π

∫
d3p

(2π)3

GX(p2)

p2
ei~p·~r,

V
(2)
X = 4π

∫
d3p

(2π)3

[GX(p2)− 1]

p4
ei~p·~r, (A6)

with the asymptotic form

VX →
1

r
+ local terms,

V
(2)
X → −r

2
+
G′X(0)

r
+ local terms. (A7)

Furthermore, we point out that in the framework of di-
mensional regularization the following matrix element
vanishes 〈

~p δ(d)(~r) ~p
〉

= 0. (A8)
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