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Vojtěch Patkóš
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The complete relativistic O(α2) nuclear structure correction to the energy levels of ordinary (electronic) and
muonic hydrogen-like atoms is investigated. The elastic part of the nuclear structure correction is derived ana-
lytically. The resulting formula is valid for an arbitrary hydrogenic system and is much simpler than analogous
expressions previously reported in the literature. The analytical result is verified by high-precision numerical
calculations. The inelastic O(α2) nuclear structure correction is derived for the electronic and muonic deu-
terium atoms. The correction comes from a three-photon exchange between the nucleus and the bound lepton
and has not been considered in the literature so far. We demonstrate that in the case of deuterium, the inelastic
three-photon exchange contribution is of a similar size and of the opposite sign to the corresponding elastic
part and, moreover, cancels exactly the model dependence of the elastic part. The obtained results affect the
determination of nuclear charge radii from the Lamb shift in ordinary and muonic atoms.

PACS numbers: 31.30.jr, 36.10.Ee, 14.20.Dh

I. INTRODUCTION

The determination of the nuclear charge radii from atomic spectra is a very interesting test of the Standard Model of fun-
damental interactions. The lepton universality, namely the identical interaction strength of all leptons, ensures that the nuclear
charge radii derived from the ordinary (electronic) and the muonic atoms should be exactly the same. However, a series of ex-
periments on µH [1] and µD [2] and (still unpublished) measurements on µ3He and µ4He [3] revealed significant discrepancies
for the determined nuclear charge radii, as compared to those derived from the corresponding electronic atoms. In order to verify
these discrepancies one should carefully examine all possible sources of uncertainties in the spectroscopic determinations of the
nuclear charge radii.

The main theoretical uncertainty of the Lamb shift in light muonic atoms comes from our insufficient knowledge of the nuclear
internal structure. The nuclear structure corrections are usually divided into the elastic and the inelastic part. The elastic part
(also referred to as the finite nuclear size correction) is induced by a static distribution of the nuclear charge and can be obtained
by solving the Dirac equation. The inelastic nuclear correction is much more complicated; it encompass the nuclear dipole
polarizability and higher-order contributions. To deal with the nuclear corrections, one performs an expansion of the binding
energy in powers of the fine structure constant α and examines the expansion terms one after another.

The leading nuclear effect is of order α4 and of pure elastic origin. The first-order O(α) nuclear-structure correction (often
referred to as the two-photon exchange contribution) has both elastic and inelastic parts and was extensively studied both for the
electronic and the muonic atoms [4–8]. One of the interesting results was a significant cancellation between the elastic and the
inelastic O(α) nuclear contributions.

The next-order O(α2) nuclear structure correction comes from the three-photon exchange between the bound lepton and the
nucleus. Only the elastic part of this correction has been addressed in the literature so far [9]. In the present work we demonstrate
that the inelastic O(α2) contribution is significant and partially cancels its elastic counterpart. We also derive formulas for the
complete O(α2) nuclear correction in deuterium. Our calculation is performed in the nonrecoil limit and neglects the magnetic
dipole and electric quadrupole moments of the nucleus. The results obtained affect determinations of nuclear charge radii
from the precision spectroscopy of ordinary and muonic atoms. However, they are not able to explain the previously reported
discrepancy between the H-D and µH-µD isotope shift [2].
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We now introduce notations for the nuclear radii that will be extensively used throughout this paper. rC denotes the root mean
square (rms) charge radius of an arbitrary nucleus, rC ≡

√
〈r2〉. We will use specific notations for several important nuclei:

rC(H) ≡ rp for the rms radius of the proton, rC(D) ≡ rd for the rms radius of the deuteron, and rs for the deuteron structure
radius r2

s = r2
d − r2

p. Since we neglect the finite nuclear mass effects, there is no 3/(4m2
p) term in r2

d. We define rCC = 4
√
〈r4〉

for an arbitrary nucleus, with the specific cases of rCC(H) ≡ rpp for the proton, rCC(D) ≡ rdd for the deuteron, and rss for the
corresponding structure radius of the deuteron. rZ is the third Zemach moment defined below by Eq. (15). We will also introduce
two new effective nuclear radii of arbitrary nuclei, rC1 and rC2, defined by Eqs. (62) and (66), respectively. The corresponding
specific notations are rC1(H) ≡ rp1 and rC2(H) ≡ rp2 for the proton and rd1 and rd2 for the deuteron, respectively.

II. LEADING FINITE NUCLEAR SIZE CORRECTION

In this section we rederive well-known results for the leading nuclear correction of order α4, which is of pure elastic (finite
nuclear size) origin and induced by the one-photon exchange between the bound lepton and the nucleus. This derivation sets the
ground for our further evaluation of higher-order corrections.

Let us assume that the nucleus is a scalar particle with the charge density ρ(q2) in the momentum space. The electron-nucleus
interaction potential in momentum space is then

V (q2) = −ρ(q2)
4π Z α

q2
. (1)

The expansion coefficients of ρ in q2,

ρ(q2) = 1 + ρ′(0) q2 +
1

2
ρ′′(0) q4 + . . . , (2)

can be interpreted in terms of momenta of the nuclear charge distribution 〈r2〉 and 〈r4〉,

ρ′(0) = −〈r
2〉
6
, (3)

ρ′′(0) =
〈r4〉
60

. (4)

From the second term in the right-hand side of Eq. (2), one immediately obtains the leading finite nuclear size correction to the
potential,

δV = −ρ′(0) 4π Z α δ(3)(r) , (5)

and to the energy level of a hydrogenic system,

E
(4)
fns = 〈φ|δV |φ〉 =

2π

3
Z α 〈r2〉φ2(0) , (6)

where, for nS states,

φ2
nS(0) =

〈
δ(3)(r)

〉
=

(µZα)3

πn3
, (7)

and µ = m/(1 +m/M) is the reduced mass of the atom.
In order to establish the importance of higher-order effects, we will need numerical values of the leading finite nuclear size

effect in hydrogen and deuterium. The corresponding results, obtained assuming rp = 0.840 87 fm and rd = 2.125 62 fm, are,
for the electronic atoms,

E
(4)
fns (2S − 1S,H) = −1 368 396 r2

p = −9 67 541 Hz , (8)

E
(4)
fns (2S − 1S,D) = −1 369 513 r2

d = −6 187 818 Hz , (9)

and for the muonic atoms,

E
(4)
fns (2P − 2S, µH) = −5.197 45 r2

p = −3.674 92 meV , (10)

E
(4)
fns (2P − 2S, µD) = −6.073 18 r2

d = −27.440 22 meV . (11)
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We also observe that one of the relativistic O(α2) corrections comes from the third term in Eq. (2),

δ(2)V =
1

2
ρ′′(0) 4π Z α∇2δ(3)(r) . (12)

Since its expectation value on nS states is singular, we will use dimensional regularization and combine this part with other
O(α2) corrections to obtain a finite result.

III. TWO-PHOTON EXCHANGE NUCLEAR STRUCTURE: MUONIC ATOMS

In this section we address the leading O(α) nuclear structure contribution E(5) in muonic atoms, which originates from the
two-photon exchange between the bound lepton and the nucleus.

The elastic part E(5)
fns can be obtained from the forward two-photon scattering amplitude at zero momentum

E
(5)
fns = φ2(0)

∫
d3q

(2π)3
Tr

[
γ0 V

1

6p−m
γ0 V

(I + γ0)

4

]
, (13)

with V = −4π Z α/q2 and p = (m, ~q). This leads to the so-called Friar correction [9],

E
(5)
fns = −(4π Z α)2 φ2(0) 2m

∫
d3q

(2π)3

ρ2(q2)− 1− 2 q2 ρ′(0)

q6

= −π
3
φ2(0) (Z α)2mr3

Z , (14)

where

r3
Z =

∫
d3r1

∫
d3r2 ρ(r1) ρ(r2) |~r1 − ~r2|3 . (15)

As pointed out in Refs. [4, 5], it is important to consider the Friar correction E(5)
fns together with the corresponding inelastic

part, because of a cancellation between them, occurring both for the muonic and the ordinary atoms. For this reason, we do not
separate out E(5)

fns but absorb it in the total nuclear structure correction E(5).

A. Muonic hydrogen

The inelastic two-photon exchange correction in µH has been extensively studied in the literature (see Ref. [10] and references
therein). It is also given by the forward scattering amplitude and can be parameterized in terms of two spin-independent structure
functions of the proton. Using dispersion relations, these functions are usually expressed in terms of the cross section of the
inelastic photon scattering off the proton, which is extracted from experiment. The main problem of this approach is that one of
the dispersion relations involves subtractions that can only be obtained from theory, and this introduces the dominant uncertainty.

There is good agreement between different calculations of the two-photon exchange correction, with the final result of
E(5)(2P1/2– 2S, µH) = E

(5)
fns + E

(5)
pol = 0.033 2(20) meV assumed by the CREMA collaboration [11] in their determina-

tion of the proton charge radius. It is convenient to parameterize this result in terms of an effective radius rpF , in analogy to
Eq. (14),

E(5)(µH) = −π
3
φ2(0) (Z α)2mr3

pF , (16)

with

r3
pF = 3.270 (197) fm3 . (17)

This parametrization will be used below in our calculation of the inelastic contribution in other muonic atoms, see Eq. (24).
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B. Muonic atoms other than hydrogen

For all nuclei other than the proton, the inelastic contribution is dominated by the electric dipole polarizability. For muonic
atoms, one may assume the nonrelativistic approximation, so the second-order correction due to the electric dipole nuclear
excitation is

E
(5)
pol0 = α2

〈
φφN

∣∣∣∣ ~d · ~rr3

1

EN + E0 −HN −H0

~d · ~r
r3

∣∣∣∣φφN〉 , (18)

where ~d is the electric dipole operator divided by the elementary charge, and H0 and HN are the nonrelativistic Coulomb
Hamiltonian for the muon and the nucleus, respectively. To the leading order in α, one may neglect the Coulomb interaction and
replace φ(r)→ φ(0) to obtain a compact formula for the leading two-photon exchange contribution,

E
(5)
pol0 = −4π α2

3
φ2(0)

〈
φN

∣∣∣∣~d√ 2m

HN − EN
~d

∣∣∣∣φN〉 , (19)

which contributes 1.910 meV to the 2P − 2S transition energy in muonic deuterium [6].
There are many corrections to the leading contribution [5–8], the most interesting of them being the one that partially cancels

the Friar correction. To show this, following Ref. [5], we consider the muonic matrix element P for the nonrelativistic two-
photon exchange

P =
∑
i,j

〈
φ

∣∣∣∣ α

|~r − ~Ri|
1

(H0 − E0 + E)

α

|~r − ~R′j |

∣∣∣∣φ〉, (20)

where H0 is the nonrelativistic Hamiltonian for the muon (electron) in the nonrecoil limit, and ~Ri is a position of the ith proton
with respect to the nuclear mass center. Using the on-mass-shell approximation, subtracting the leading Coulomb interaction,
the finite nuclear size, and the electric dipole polarizability, and expanding in the small parameter

√
2mE|~Ri − ~R′j |, we obtain

P = α2 φ2(0)

∫
d3q

(2π)3

(
4π

q2

)2(
E +

q2

2m

)−1 [
ei ~q·(

~R−~R′) − 1 +
q2

6
(~R− ~R′)2

]
(21)

≈
∑
i,j

π

3
mα2 φ2(0) |~Ri − ~R′j |3

(
1− 1

5

√
2mE|~Ri − ~R′j |+ . . .

)
.

The corresponding correction to the atomic energy is

E
(5)
pol1 = −

∑∫
dE

∫
d3Rd3R′ φ∗N (~R)φE(~R)φ∗E(~R′)φN (~R′)P (22)

Let us consider only the first, E-independent term. When φE = φN , it corresponds to the elastic part, namely, the Friar
correction given by Eq. (14). However, the inclusion of all excited states leads to

E
(5)
pol1 = −π

3
mα2 φ2(0)

Z∑
i,j=1

〈φN ||~Ri − ~Rj |3|φN 〉 , (23)

which is much different from Eq. (14), in particular it vanishes for deuterium.
There are further nuclear polarizability corrections which were extensively studied in the literature [5–8]. It is convenient

to write the final result for the two-photon exchange nuclear structure correction separating out the contribution due to the
two-photon exchange with individual nucleons,

E(5) = E
(5)
pol −

π

3
mα2 φ2(0)

[
Z r3

pF + (A− Z) r3
nF

]
, (24)

where E(5)
pol = E

(5)
pol0 + E

(5)
pol1 + . . .. Such representation of the nuclear structure correction is particularly advantageous for

calculating isotope shifts, since the individual nucleon contributions partially cancel each other in the difference, together with
the corresponding uncertainties. Calculating the two-photon exchange with individual nucleons, we take the effective proton
radius r3

pF from Eq. (17), whereas for the neutron we assume the corresponding parameter to be four times smaller than that of
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the proton, r3
nF = r3

pF /4, with uncertainty of 100%. This choice of r3
nF is in agreement with results summarized in Ref. [12]

but requires further investigations.
Despite the fact that the literature results for E(5)

pol in µD reported by different groups [5–8] are in good agreement with each
other (see a summary in Ref. [12]), one should bear in mind that a number of higher-order effects exist that have not yet been
addressed in any of the previous studies. Specifically, it has not so far been possible to include nucleon relativistic corrections
to the coupling of the nucleus to the electromagnetic field. We thus believe that all theoretical predictions of E(5)

pol in µD should
bear an uncertainty whose relative value is approximately the ratio of the average nucleon binding energy to the nucleon mass,
which is about 1%.

Summarizing our analysis of the existing literature results, we adopt the sum of entries p1 . . . p12 labelled as “Our choice” in
Table 3 in Ref. [12] as currently the best value of the two-photon nuclear polarizability correction to the 2P1/2–2S transition
energy in µD, and ascribe the uncertainty of 1% to it,

E
(5)
pol(2P1/2–2S, µD) = 1.6625 (166) meV . (25)

The above uncertainty ofE(5)
pol is about 50% larger than the corresponding estimate of±0.0107 meV given in Table 3 of Ref. [12].

Finally, we add the individual nucleon part in Eq. (24) and obtain the total two-photon nuclear structure correction to the
2P1/2–2S transition energy in µD,

E(5)(2P1/2–2S, µD) = 1.7110 (194) meV , (26)

which almost coincides with the corresponding result of 1.7096 (200) meV from Ref. [12], as given by Eq. (17) of that work.

IV. TWO-PHOTON EXCHANGE NUCLEAR STRUCTURE: ELECTRONIC ATOMS

The elastic (finite nuclear size) part of the two-photon exchange nuclear structure correction for electronic atoms is given by
the same formula as for the muonic atoms, Eq. (13).

A. Electronic hydrogen

We calculate the elastic part of the nuclear structure correction for hydrogen according to Eq. (13) and using the result for the
third Zemach moment from Ref. [13] obtained by averaging values measured in scattering experiments,

rpZ = 1.587 (26) rp . (27)

The corresponding result for the 2S–1S transition is

E
(5)
fns (2S–1S, eH) = 0.0307 (15) kHz . (28)

The inelastic part of the two-photon exchange nuclear structure correction E(5)
pol was derived in the logarithmic approximation

in Ref. [14],

E
(5)
pol(2S–1S, eH) = −mαφ2(0)

[
5αp − βp

]
ln
Ēp
m

, (29)

where Ēp is the average proton excitation energy and αp and βp are the static proton polarizabilities extracted from experi-
ment. Using the same average proton excitation energy Ēp = 410 MeV as in Ref. [14] and the updated results for the proton
polarizabilities [15],

αp = 10.65 (35)(20)(30) fm3 ,

βp = 3.15 (35)(20)(30) fm3 , (30)

we obtain the result for the 2S–1S transition of

E
(5)
pol(2S–1S, eH) = 0.0567 (85) kHz , (31)

where, following Ref. [14], we assumed a 15% uncertainty due to the leading logarithmic approximation.
The total result for the two-photon nuclear structure correction in electronic hydrogen is

E(5)(2S–1S, eH) = E
(5)
fns + E

(5)
pol = 0.0874 (86) kHz , (32)

which could be compared with the corresponding result of 0.091 (11) kHz from Ref. [16].
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B. Electronic atoms other than hydrogen

Similarly to the muonic atoms, it is convenient to write the total two-photon exchange nuclear structure correction separating
out the contribution due to the interaction with individual nucleons,

E(5) = E
(5)
pol −mαφ2(0)

[
π

3
αZ r3

pZ + Z
[
5αp − βp

]
ln
Ēp
m

+ (A− Z)
[
5αn − βn

]
ln
Ēn
m

]
. (33)

In the above formula, the first and the second terms in the brackets represent the elastic and the inelastic interactions with
individual protons, respectively, whereas the third term comes from the inelastic interaction with individual neutrons. The
parameters for the protons are the same as for hydrogen, whereas for the neutrons we use the experimental polarizabilities [15],

αn = 11.55 (125)(20)(80) fm3 ,

βn = 3.65 (125)(20)(80) fm3 , (34)

and the same value of Ēn = 410 MeV as for the proton. We note that the elastic interaction of the bound electron with the
nucleus as a whole is absorbed in E(5)

pol, reflecting the fact that the third Zemach moment correction for a compound nucleus
largely cancels out between the elastic and inelastic parts in the same way as in muonic atoms.

Similarly to the muonic atoms, the nuclear polarizability correction E(5)
pol in Eq. (33) comes from the electric dipole polariz-

ability, which, however, takes a very different form for the electronic atoms. Since in this case the nonrelativistic approximation
is not valid, one should consider the complete two-photon exchange and keep the relativistic form of the matrix elements,

E
(5)
pol = i e2 φ2(0)

∫
dω

2π

∫
d3k

(2π)3
ω2

(
δik − ki kk

ω2

)
ω2 − k2

(
δjl − kj kl

ω2

)
ω2 − k2

×Tr

[(
γj

1

6p− 6k −m
γi + γi

1

6p+ 6k −m
γj
)

(γ0 + I)

4

]
×
〈
φN

∣∣∣∣d k 1

EN −HN − ω
d l
∣∣∣∣φN〉+ . . .

= E
(5)
pol1 + E

(5)
pol2 + E

(5)
pol3 + . . . , (35)

where p = (m,~0). Assuming that the electron mass is much smaller than the nuclear excitation energy, the leading nuclear
polarizability correction becomes

E
(5)
pol1 = −mα2 φ2(0)

2

3

〈
φN

∣∣∣∣~d 1

HN − EN

[
19

6
+ 5 ln

2 (HN − EN )

m

]
~d

∣∣∣∣φN〉 . (36)

The corresponding contribution to the 2S–1S transition in ordinary deuterium is 19.26 (6) kHz [17].
Various small corrections to the electric dipole polarizability for electronic atoms were considered by Friar in [4]. In par-

ticular, it was shown there that the Zemach contribution for deuterium vanishes in the same way as for the muonic deuterium.
Furthermore, the higher-order terms in the m/(HN − EN ) expansion of Eq. (35) give rise to a correction

E
(5)
pol2 = −m3 α2 φ2(0)

2

3

〈
φN

∣∣∣∣~d 1

(HN − EN )3

[
−283

80
+

15

4
ln

2 (HN − EN )

m

]
~d

∣∣∣∣φN〉 , (37)

which contributes 0.106 kHz to the 2S–1S transition in ordinary deuterium [4]. Another important correction is the one due to
the magnetic suceptibility [4],

E
(5)
pol3 = mα2 φ2(0)

2

3

〈
φN

∣∣∣∣~µ 1

(HN − EN )′

[
−1

6
+ ln

2 (HN − EN )

m

]
~µ

∣∣∣∣φN〉 , (38)

where µ is the magnetic moment operator divided by an elementary charge. It leads to a correction of −0.307(2)(6) kHz to the
2S–1S transition in eD [4].

There were further corrections to the electric dipole polarizability considered in Ref. [4]. However, we are convinced that they
were not treated correctly and, moreover, that there are many more relativistic corrections of the same order. For this reason we
disregard the additional corrections from Ref. [4] and assume the total polarizability correction to be the sum of Eqs. (36), (37),
and (38). Specifically, the result for the nuclear polarizability to the 2S–1S transition in electronic deuterium is

E
(5)
pol(2S–1S,D) = 19.06 (20) kHz . (39)
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Adding the individual nucleon part contribution of 0.149 (22) kHz, we obtain the total two-photon exchange nuclear structure
contribution of

E(5)(2S–1S,D) = 19.21 (20) kHz , (40)

which could be compared with the sum of the nuclear polarizability correction and the third Zemach contribution from Ref. [16],
18.70 (7) + 0.51 = 19.21 (7) kHz, perfect agreement of the numerical values being probably accidental.

V. THREE-PHOTON EXCHANGE ELASTIC CONTRIBUTION

This contribution has been studied by different methods and a number of authors, of note analytically by Friar in Ref. [9],
and numerically by solving the Dirac equation in the field of finite size nucleus [18]. Here we present an alternative analytical
approach, which leads to much simpler analytic formulas. A numerical verification of our formulas is given in Appendix B.

In the standard analytic approach, one applies the perturbation theory to the Dirac energies with the perturbing potential
δV = V − V0 where V0 = −Z α/r and V is the Coulomb potential from the finite size nucleus,

δ(1)E = 〈ψ̄|δV |ψ〉 (41)

δ(2)E = 〈ψ̄|δV 1

( 6p− γ0 V0 −m)′
δV |ψ〉 (42)

δ(3)E = 〈ψ̄|δV 1

( 6p− γ0 V0 −m)′
(
δV − 〈δV 〉

) 1

( 6p− γ0 V0 −m)′
δV |ψ〉 (43)

One can use the exact Dirac wave function and the reduced Dirac propagators to calculate the O(α2) correction to the finite
nuclear size [9], which we call the elastic three-photon exchange correction. However, we will not use the above formulas but
employ a different approach, which we call the scattering amplitude approach. In this approach, theO(α2) relativistic correction
to the finite nuclear size is induced by the elastic three photon exchange. The corresponding correction can be divided into the
low and the high energy momentum exchange parts, E(6)

fns = EL + EH . These parts are calculated as follows.

A. Three-photon exchange: low energy part

The low-energy part EL is again split into two parts

EL = EL1 + EL2 , (44)

EL1 = 〈δV 1

(E −H)′
δV 〉+ 〈δ(2)V 〉 , (45)

EL2 = 〈φ| 1

8m2
∇2(δV ) +

1

4m2
~σ · ~∇(δV )× ~p|φ〉

+2 〈φ|δV 1

(E −H)′

[
− p4

8m3
+
π Z α

2m2
δ3(r)

]
|φ〉 , (46)

where EL1 is the nonrelativistic contribution proportional to r4
C , and EL2 is the relativistic part proportional to r2

C . All these
matrix elements are calculated in d = 3− 2 ε dimensions. The following results are obtained for the nS states,

EL1(nS) = [ρ′(0)]2
16 (Z α)6

n3

[
− 1

n
− 1

2
+ γ − ln

n

2
+ Ψ(n)

]
+(Z α)3

[
−1

ε
+ 4 ln(Z α)

]
4 [ρ′(0)]2 〈π δ(d)(r)〉+

4 (Z α)6 ρ′′(0)

n5
, (47)

EL2(nS) = ρ′(0)
4 (Z α)6

n3

[
9

4n2
− 1

n
− 5

2
+ γ − ln

n

2
+ Ψ(n)

]
+(Z α)3

[
−1

ε
+ 4 ln(Z α)

]
ρ′(0) 〈π δ(d)(r)〉 , (48)

and for the nP states,

EL(nP1/2) = (Z α)6

(
−9

4
ρ′(0) + 3 ρ′′(0)

)
R′n1(0)2 , (49)

EL(nP3/2) = (Z α)6 3 ρ′′(0)R′n1(0)2 , (50)
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where

R′n1(0)2 =
4

9n3

(
1− 1

n2

)
. (51)

For all higher-L states EL vanishes.

B. Three-photon exchange: high energy part

We start by introducing the two potentials in d-dimensions that will appear in the evaluation of the high energy-part EH ,

Vd(r) = 4π

∫
ddq

(2π)d
ei~q·~r

ρ(q2)

q2
, (52)

V
(2)
d (r) = 4π

∫
ddq

(2π)d
ei~q·~r

ρ(q2)

q4
. (53)

Their large r asymptotics are

Vd(r) = V(r) + local terms , (54)

V
(2)
d (r) = V(2)(r) + ρ′(0)V(r) + local terms , (55)

and in d = 3,

V (r) =
1

r
+ local terms , (56)

V (2)(r) = −r
2

+
ρ′(0)

r
+ local terms , (57)

where the local terms vanish outside the nucleus.
Now we proceed to the derivation of the high-energy part EH . It is given by the three-photon scattering amplitude with

momenta pi = (m, ~qi),

EH = −(4π Z α)3 φ2(0)

∫
ddq1

(2π)d

∫
ddq2

(2π)d
ρ(q2

1)

q4
1

ρ(q2
2)

q4
2

ρ((~q1 − ~q2)2)

(~q1 − ~q2)2

×Tr

[
(6p1 +m) γ0 ( 6p2 +m)

(γ0 + I)

4

]
. (58)

The above trace equates to 4m2 + ~q1 ~q2, so we can split EH into the nonrelativistic and relativistic parts,

EH = EH1 + EH2 . (59)

The nonrelativistic part EH1 is

EH1 = −(4π Z α)3 φ2(0) 4m2

∫
ddq1

(2π)d

∫
ddq2

(2π)d
ρ(q2

1)

q4
1

ρ(q2
2)

q4
2

ρ((~q1 − ~q2)2)

(~q1 − ~q2)2

= −φ2(0) (Z α)3 4m2

∫
ddr Vd(r)

[
V

(2)
d (r)

]2
. (60)

In order to calculate this integral, we split the integration region into r < Λ and r ≥ Λ. The first integral is finite in d = 3 but
diverges at large Λ, and in the second integral one can use the asymptotic form of potentials,

EH1 = −φ2(0) (Z α)3 4m2

{
4π

∫ Λ

drr2 V (r)
[
V (2)(r)

]2
+

∫
Λ

ddr V(r)
[
V(2)(r) + ρ′(0)V(r)

]2}
= φ2(0) (Z α)3 4m2 4π

∫ ∞
dr ln(r/rC)

d

dr
r3

{
V (r)

[
V (2)(r)

]2
− 1

r

(
r

2
− ρ′(0)

r

)2}
−φ2(0) (Z α)3 4m2 ρ′(0)2

{
4π ln(Λ/rC) +

∫
Λ

ddr V(r)3

}
. (61)
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The expression under the first integral is a local function of r, so this integral is effectively over the nuclear size, which allows
us to introduce an effective nuclear radius rC1 as

ln
rC1

rC
+ 2 =

36

r4
C

∫ ∞
dr ln(r/rC)

d

dr
r3

{
V (r)

[
V (2)(r)

]2
− 1

r

(
r

2
− ρ′(0)

r

)2}
. (62)

So, the first O(α2) correction EH1 is represented in the following form

EH1 = 4π φ2(0) (Z α)3 4m2 r
4
C

36

[
1

4 ε
+

5

2
+ γ + ln(rC1m)

]
. (63)

The relativistic part EH2 is

EH2 = −(4π Z α)3 φ2(0)

∫
ddq1

(2π)d

∫
ddq2

(2π)d
ρ(q2

1)

q4
1

ρ(q2
2)

q4
2

ρ((~q1 − ~q2)2)

(~q1 − ~q2)2
~q1~q2

= φ2(0) (Z α)3

∫
ddr

{
2π ρ(r)V

(2)
d (r)− [Vd(r)]

2

}
V

(2)
d (r) , (64)

and we proceed in a similar way as in the case of EH1, namely

EH2 = φ2(0) (Z α)3

{
4π

∫ Λ

drr2

[
2π ρ(r)V (2)(r)− [V (r)]

2

]
V (2)(r)

−
∫

Λ

ddr [V(r)]
2 (V(2)(r) + ρ′(0)V(r)

)}
= −φ2(0) (Z α)3 4π

∫ ∞
dr ln(r/rC)

d

dr
r3

[
2π ρ(r)

[
V (2)(r)

]2
− [V (r)]

2
V (2)(r)

− 1

r2

(
r

2
− ρ′(0)

r

)]
− φ2(0) (Z α)3 ρ′(0)

[
4π ln(Λ/rC) +

∫
Λ

ddr [V(r)]
3

]
. (65)

The expression under the first integral is a local function, so we can introduce the second effective nuclear radius rC2 as

ln
rC2

rC
− 1 =

6

r2
C

∫ ∞
dr ln(r/rC)

d

dr
r3

[
2π ρ(r)

[
V (2)(r)

]2
− [V (r)]

2
V (2)(r)− 1

r2

(
r

2
− ρ′(0)

r

)]
. (66)

So, the second O(α2) correction is given by

EH2 = −4π (Z α)3 φ2(0)
r2
C

6

[
1

4 ε
− 1

2
+ γ + ln(rC2m)

]
. (67)

C. Three-photon elastic exchange: total result

The complete O(α2) finite nuclear size correction for an arbitrary nucleus is given by the sum E
(6)
fns = EL + EH = EL1 +

EL2 + EH1 + EH2, with the result

E
(6)
fns (nS) = −(Z α)6m3 r2

C

2

3n3

[
9

4n2
− 3− 1

n
+ 2 γ − ln

n

2
+ Ψ(n) + ln(mrC2 Z α)

]
+(Z α)6m5 r4

C

4

9n3

[
− 1

n
+ 2 + 2 γ − ln

n

2
+ Ψ(n) + ln(mrC1 Z α)

]
+(Z α)6m5 r4

CC

1

15n5
, (68)

E
(6)
fns (nP1/2) = (Z α)6m

(
m2 r2

C

6
+
m4 r4

CC

45

)
1

n3

(
1− 1

n2

)
, (69)

E
(6)
fns (nP3/2) = (Z α)6m5 r4

CC

1

45n3

(
1− 1

n2

)
, (70)

E
(6)
fns (nLJ) = 0 for L > 1 , (71)
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TABLE I: Various results for the exponential and the Gaussian models of the nuclear charge distributions, rCC = 4
√
〈r4〉, rC1 is defined in

Eq. (62), rC2 in Eq. (66).

Exponential Gaussian

ρ(q2) λ4

(λ2+q2)2
exp
(
a q2

2

)
ρ(r) λ3

8π
e−λ r 1

(2πa)3/2
exp
(
− r2

2 a

)
rC

2
√
3

λ

√
3 a

V (r) 1
r
− e−λ r

r
− λ

2
e−λ r 1

r
erf
(

r√
2 a

)
V (2)(r) − r

2
− 2

λ2 r
+ 1

2λ
e−λ r + 2

λ2
e−λ r

r
−
√

a
2π

exp
(
− r2

2 a

)
−
(
a+r2

)
2 r

erf
(

r√
2 a

)
rC1/rC 1.090 044 0.558 872
rC2/rC 1.068 497 1.014 281
rCC/rC 1.257 433 1.136 219
rZ/rC 1.558 965 1.514 599

where r4
CC = 〈r4〉 and the effective nuclear charge radii rC1 and rC2 defined by Eqs. (62) and (66) encode the high-momentum

contributions and are expected to be of the order of rC . Equations (68)-(71) are valid both for electronic and muonic atoms.
However, in the case of the electronic atoms, the terms proportional to r4

C and r4
CC in these formulas are smaller than the

next-order correction and thus should be neglected.
Equations (68)-(71) depend on the nuclear model through the effective nuclear charge radii rC1 and rC2. However, as we

demonstrate below, the terms with rC1 and rC2 exactly cancel in the sum with the corresponding inelastic contribution, so their
model dependence is irrelevant for the finite result.

Table I presents our results for the effective charge radii rC1 and rC2, for two models of the nuclear charge distribution. The
ratios listed in the table are proven to be independent of the nuclear model parameters λ and a, thus making the corresponding
results valid for an arbitrary nucleus and both for the electronic and muonic atoms.

The formulas for E(6)
fns have been derived in the nonrecoil limit, i.e., assuming the infinite nuclear mass. This is different from

the approach by Friar in Ref. [9], in which he replaced the lepton mass by the reduced mass of the system. We do not think such
a replacement is valid. However, recoil corrections for muonic atoms are significant and can be partially accounted for by the
(µ/m)3 scaling factor that comes from the square of the nonrelativistic wave function at origin.

Equations (68)-(71) can be compared with the analytical results by Friar derived within a different approach [9]. However,
the formulas of Ref. [9] are so complicated that a direct comparison is not possible, except for the state dependence which is in
perfect agreement. A comparison of numerical results presented in Sec. VIII shows a reasonable but not perfect agreement. In
order to verify our formulas, we performed a high-precision numerical calculation, by solving the Dirac equation numerically
and identifying the O(α2) finite nuclear size contribution, as described in Appendix B. Perfect agreement between analytical
and numerical approaches confirms the correctness of Eqs. (68)-(71).

VI. INELASTIC THREE-PHOTON EXCHANGE CORRECTION IN MUONIC DEUTERIUM

The inelastic three-photon exchange nuclear structure correction has not yet been studied in the literature and is the main
topic of this work. With momenta of order q ∼

√
2mΛ, which is much lower than the inverse of the nuclear size, the muon

kinetic energy becomes comparable to the characteristic nuclear excitation energy Λ, and thus the muon starts to probe the
nuclear structure and see individual nucleons. It means that the total correction does not involve contributions coming from
muon momenta of the order of the inverse of nuclear size, and there is no place for the elastic high energy parts encoded in rC1

and rC2 effective nuclear radii.
We represent the total nuclear structure correction E(6) as a sum of several parts,

E(6) = E
(6)
1 + E

(6)
2 + EC + E(6)

np = E
(6)
fns + E

(6)
1,pol + E

(6)
2,pol + EC + E(6)

np , (72)

where the elastic part E(6)
fns = E

(6)
1,fns + E

(6)
2,fns was calculated in the previous section, E(6)

1 and E(6)
1,pol are proportional to r4

C ,

E
(6)
2 and E(6)

2,pol are proportional to r2
C , EC is the known Coulomb distortion correction [5, 7], and E(6)

np is the contribution due
to the inelastic interaction with individual nucleons.

Below we calculate E(6)
1 and E(6)

2 . Because the two-photon exchange nuclear structure correction E(5)
pol was previously shown

to be dominated by the electric dipole types of the nuclear polarizability, we will assume that the same holds for the three-photon
exchange nuclear structure correction.
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A. Inelastic contribution ∝ R2

We represent the total E(6)
2 correction as a sum of several parts

E
(6)
2 = EL2 + EC + ER + EH2(p) , (73)

calculated in the following. Let us consider the two radiative photon exchange between the muon and the nucleus, taking into
account the Coulomb interaction V . The corresponding energy shift is

δE = i e2

∫
dω

2π

∫
d3k1

(2π)3

∫
d3k2

(2π)3
ω2

(
δik − ki1 k

k
1

ω2

)
ω2 − k2

1

(
δjl − kj2 k

l
2

ω2

)
ω2 − k2

2

×
[〈
ψ̄

∣∣∣∣γj ei~k2~r 1

6p− γ0 V − γo ω −m
γi ei

~k1~r

∣∣∣∣ψ〉
+

〈
ψ̄

∣∣∣∣γi ei~k1~r 1

6p− γo V + γ0 ω −m
γj ei

~k2~r

∣∣∣∣ψ〉]
×
〈
φN

∣∣∣∣d k 1

EN −HN − ω
d l
∣∣∣∣φN〉, (74)

where ~d is the dipole moment operator divided by the elementary charge. In the case of deuteron ~d is equal to the position of
the proton with respect to the mass center ~d = ~R. In the nonrelativistic limit, δE takes the well known form of Eq. (16). The
corresponding low-energy α6 contribution is obtained from Eq. (74) by assuming that the muon momenta are of the order of
mα. Then E0 −H0 can be neglected in comparison to EN −HN and one obtains (with d = 3− 2 ε),

δLE = α2

〈
φ

∣∣∣∣ 1

r4

∣∣∣∣φ〉
ε

1

d

〈
φN

∣∣∣∣~R 1

EN −HN

~R

∣∣∣∣φN〉 , (75)

and 〈
φ

∣∣∣∣ 1

r4

∣∣∣∣φ〉
ε

=
〈[
∇V(r)

]2〉
=

〈
1

r4

〉
+ φ2(0) 4π

(
− 1

2 ε
+ 2 lnα+ 2

)
, (76)

were 〈1/r4〉 is defined as an integral from a small radius a to infinity with the 1/a and ln a+ γ terms subtracted out. The high-
energy α6 part is obtained by assuming that muon momenta are of the order

√
2mΛ. Then we can use the explicit Coulomb

correction

δHE = −i e2

∫
dω

2π

∫
d3k1

(2π)3

∫
d3k2

(2π)3
ω2

(
δik − ki1 k

k
1

ω2

)
ω2 − k2

1

(
δjl − kj2 k

l
2

ω2

)
ω2 − k2

2

4π α

(~k1 + ~k2)2

Tr

[(
γj

1

6p+ 6k2 −m
γ0 1

6p− 6k1 −m
γi + γ0 1

6p− 6k1− 6k2 −m
γj

1

6p− 6k1 −m
γi

+γj
1

6p+ 6k2 −m
γi

1

6p+ 6k1+ 6k2 −m
γ0

)
(γ0 + I)

4

]
φ2(0)

×
[〈
φN

∣∣∣∣R k 1

EN −HN − ω
R l

∣∣∣∣φN〉+

〈
φN

∣∣∣∣R l 1

EN −HN + ω
R k

∣∣∣∣φN〉] , (77)

where k1 = (ω,~k1), k2 = (−ω,~k1), and p = (m,~0). Assuming that (HN − EN )/m is small, one performs an expansion and
obtains

δHE = −π α3 φ2(0)
1

d

[〈
φN

∣∣∣∣~R 4

HN − EN

(
1

2 ε
− 1 + ln 2− ln

(HN − EN )

m

)
~R

∣∣∣∣φN〉
+

〈
φN

∣∣∣∣~R( 1

2 ε
+

13

2
− 13 ln 2− 5 ln

(HN − EN )

m

)
~R

∣∣∣∣φN〉] . (78)

The sum of δLE in Eq. (75) and δHE in Eq. (78) gives the leading Coulomb distortion correction EC ,

EC = −1

3

〈
1

r4

〉〈
φN

∣∣∣∣~R 1

HN − EN
~R

∣∣∣∣φN〉
−4π

3
φ2(0)

〈
φN

∣∣∣∣ ~R 1

HN − EN

[
1 + ln

(
2mα2

HN − EN

)]
~R

∣∣∣∣φN〉 , (79)



12

where 〈
1

r4

〉
nS

=
8

n3

[
−5

3
+

1

2n
+

1

6n2
+ γ + Ψ(n)− ln

n

2

]
, (80)〈

1

r4

〉
nP

=
2 (3n2 − 2)

15n5
, (81)

and the relativistic correction ER,

ER = −π α3 φ2(0)
r2
s

6

(
1

ε
+

41

3
− 26 ln 2− 10 ln

〈E〉2
m

)
, (82)

where r2
s = 〈R 2〉 is the deuteron structure radius and

ln
〈E〉2
m

=
1

r2
s

〈
φ

∣∣∣∣~R ln
(HN − EN )

m
~R

∣∣∣∣φ〉 . (83)

Although there is no elastic high-energy part, the individual proton contributes

EH2(p) = −π α3 φ2(0)
r2
p

6

[
1

ε
− 2 + 4 γ + 4 ln(rp2m)

]
. (84)

The last contribution EL2 is exactly the same as the one of Eq. (48) with the deuteron radii.
Finally, the total nuclear structure contribution E(6)

2 ∝ R2 is given by the sum of the elastic and inelastic parts,

E
(6)
2 (nS) = EC(nS)− α6m3 2

3n3

[
r2
d

(
9

4n2
− 3− 1

n
+ 2 γ − ln

n

2
+ Ψ(n) + lnα

)
+r2

s

(
47

12
− 13

2
ln 2− 5

2
ln
〈E〉2
m
− γ
)

+ r2
p ln(rp2m)

]
. (85)

It is remarkable that the part of the elastic contribution depending on the effective deuteron radius rd2 does not show up in total
E

(6)
2 . Separately, the expression for the inelastic contribution is

E
(6)
2,pol = E

(6)
2 − E(6)

2,fns − EC = −2α6m3

3n3
δl0

[
r2
s

(
47

12
− 13

2
ln 2− 5

2
ln
〈E〉2
m

)
(86)

+r2
p

(
γ + ln(rp2m)

)
− r2

d

(
γ + ln(rd2m)

)]
.

The averaged excitation energy 〈E〉2 has been calculated using the well known AV18 potential [19] with the result

〈E〉2 = 7.37(7) MeV, (87)

where the 1% uncertainty is our guess for dependence on the potential model. 〈E〉2 is exactly the same as for µD and eD,
because the lepton mass cancels out between the left and the right side of Eq. (83).

B. Inelastic contribution ∝ R4

We represent the total E(6)
1 correction as a sum of four parts

E
(6)
1 = EL1 + EQ + E′Q + EH1(p) . (88)

The middle energy contribution EQ comes from momenta q ∼
√

2mΛ. We derive it by considering the nonrelativistic three
Coulomb photon exchange,

EQ = −
〈
φ, φN

∣∣∣∣ α

|~r − ~R|
1

E −H0 + EN −HN

α

|~r − ~R|
1

E −H0 + EN −HN

α

|~r − ~R|

∣∣∣∣φ, φN〉 , (89)
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where H0 is the lepton kinetic energy operator. In the corresponding electronic matrix element PQ, one neglects the lepton
binding energy E,

PQ = −φ2(0)α3 4m2 (4π)3

∫
ddq1

(2π)d
ddq2

(2π)d
ei ~q

~R1

q2

1

q2 + 2mΛ

e−i (~q+~q′)~R2

(~q + ~q′)2

1

q′2 + 2mΛ′
ei ~q
′ ~R3

q′2
, (90)

expands in Ri, keeping terms ∝ R4, with the result

EQ = −φ2(0)α3m2 π

[
〈R4〉

(
4

15
ln 2− 2

5

)
+ 〈R2〉2

(
−10

27
+

2

3
ln 2 +

2

9
ln
〈E〉1
m
− 8

9
β − 1

9 ε

)]
, (91)

where

ln
〈E〉1
m

= − 1

〈R2〉2

[
〈0|R2 ln

(H − E)′

m
R2|0〉 − 6

5
〈0|Ri ln

(H − E)′

m
R2Rj |0〉

+
3

10
〈0|(RiRj − δij R2/3) ln

(H − E)′

m
(RiRj − δij R2/3)|0〉

]
. (92)

The average energy 〈E〉1 does not depend on the lepton mass m, since the dependence on m cancels out between the left and
right side of above equation. We calculate 〈E〉1 by using the AV18 deuteron potential [19], with the result

〈E〉1 = 2.93(3) MeV . (93)

Equation (91) involves the dimensionless parameter β defined by

β = −
∑

Λ1,Λ2

′
[
〈0|RiRj + 3 δij R2|Λ1〉 〈Λ1|Ri|Λ2〉 〈Λ2|Rj |0〉

+ 〈0|Ri|Λ1〉 〈Λ1|δij R2 − 3RiRj |Λ2〉 〈Λ2|Rj |0〉

+ 〈0|Ri|Λ1〉 〈Λ1|Rj |Λ2〉 〈Λ2|δij R2 − 3RiRj |0〉
] 3

10 〈R2〉2
f

(
Λ1

Λ2

)
, (94)

with

f(x) = x ln

(
1 +

1√
x

)
−
√
x− ln(1 +

√
x) . (95)

Since f weakly depends on its argument, one can replace the argument of f in Eq. (94) by its averaged value to obtain

β = f

(〈
Λ1

Λ2

〉)
. (96)

For the estimation of β we will assume that 〈Λ1/Λ2〉 = 1, 2, 1/2 and thus obtain β = −1.0 (0.2).
There is an additional contribution E′Q that includes the finite proton size. It is obtained by inserting the proton electric

formfactor in the Coulomb interaction in Eq. (89) and expanding in Ri up to the second order,

E′Q = φ2(0)α3m2 r2
s r

2
p

4π

9

(
13

3
+

1

2 ε
− 5 ln 2− 1

r2
s

〈0|~R ln
(H − E)

m
~R|0〉

)
. (97)

The remaining contributions EL1 is given by Eq. (47) with the deuteron radii, whereas EH1(p) is given by Eq. (63) with the
proton charge radii.

Adding all parts together, the total nuclear structure contribution E(6)
1 ∝ R4 is

E
(6)
1 (nS) = α6m5 4

9n3

[
r4
d

(
− 1

n
+ γ − ln

n

2
+ Ψ(n) + lnα

)
+ r4

dd

3

20n2
(98)

−r4
ss

(
3

5
ln 2− 9

10

)
+ r4

s

(
1

3
− 3

2
ln 2− 1

2
ln
〈E〉1
m

+ 2β

)
+r4

p

(
2 + γ + ln(rp1m)

)
+ r2

s r
2
p

(
10

3
− 5 ln 2− ln

〈E〉2
m

)]
.
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Again, the part of the elastic contribution depending on the effective deuteron radius rd1 is not present in total E(6)
1 . The

expression for the separate inelastic contribution is

E
(6)
1,pol = E

(6)
1 − E(6)

1,fns =
α6

n3
m5 δl0

[
−r4

ss

(
4

15
ln 2− 2

5

)
+

2

9
r4
s

(
2

3
− 3 ln 2− ln

〈E〉1
m

+ 4β

)
+

4

9
r4
p

(
2 + γ + ln(rp1m)

)
+

4

9
r2
s r

2
p

(
10

3
− 5 ln 2− ln

〈E〉2
m

)
− 4

9
r4
d

(
2 + γ + ln(rd1m)

)]
.

(99)

C. Total inelastic part

The sum E
(6)
1,pol + E

(6)
2,pol, as given by Eqs. (99) and (86), is the total three-photon exchange inelastic nuclear structure con-

tribution, which is the main result of this work. It should be pointed out that several approximations have been made in our
derivation of this result. First, we ignored the magnetic dipole and the electric quadrupole moments of deuteron. Second, we
neglected the higher orders in (HN − EN )/m. These approximations contribute to the uncertainty of the inelastic part, which
we estimate as 10%.

The remaining part of the total three-photon exchange nuclear structure contribution of Eq. (72) is the contribution due to
the interaction with individual nucleons E(6)

np . We have little knowledge about the inelastic three-photon exchange between the
muon and the proton but we expect it could be accounted for in terms of the same effective radii rp1 and rp2 as in the elastic part.
We estimate the uncertainty associated with E(6)

np in µH and in µD by applying Eq. (68) to the proton (rC → rp) and making the
following substitution,

ln rp1 → ln rp1 ± 1 ,

ln rp2 → ln rp2 ± 1 . (100)

It should be mentioned that E(6)
np does not contribute to the µD-µH isotope shift difference.

VII. INELASTIC THREE-PHOTON EXCHANGE CORRECTION IN ORDINARY DEUTERIUM

The total inelastic nuclear structure α6 correction for ordinary deuterium is split into three parts,

E(6) = EL2 + ER + EH2(p) + E(6)
np , (101)

where EL2 is given by Eq. (48) with the deuteron radii, and EH2(p) by Eq. (67) with the proton radii, while ER is a Coulomb
correction to the electric dipole polarizability, as given by Eq. (77), and E

(6)
np is the correction due to the interaction with

individual nucleons.
Assuming that HN − EN is much larger than the electron mass m, we obtain

ER = −π α3 φ2(0)
1

d

〈
φN

∣∣∣∣R k

[
1

2 ε
+

5

2
− 2 ln

2 (HN − EN )

m

]
R k

∣∣∣∣φN〉+O

(
m

HN − EN

)
. (102)

We note that the neglected O(m/(HN − EN )) terms do not vanish for the l > 0 states. Therefore, the nuclear polarizability
correction does not vanish for the l > 0 states, but it is additionally suppressed by the ratio of the electron mass to the nuclear
excitation energy.

The correction due to the interaction with individual nucleons E(6)
nucleon is expected to be small and, moreover, it cancels out

in the eD-eH isotope shift difference. In order to estimate the three-photon exchange of the bound electron with the proton, we
use the same argumentation as in Ref. [14] to obtain

E(6)
np (p) =

2π

3
α3 φ2(0) r2

p ln
Ēp
m

, (103)

and assume the uncertainty of 100%. The above correction is proportional to the squared charge radius, so the corresponding
contribution for the neutron is negligible.
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Our final result for the three-photon exchange nuclear structure correction in deuterium is given by

E(6)(nS) = −α6m3 2

3n3

[
r2
d

(
9

4n2
− 3− 1

n
+ γ − ln

n

2
+ Ψ(n) + lnα

)
(104)

+r2
s

(
23

12
− ln

2 〈E〉2
m

)
+ r2

p

(
γ + ln(rp2m)

)]
+ E(6)

np .

Separately, the inelastic part E(6)
pol = E(6) − E(6)

fns is

E
(6)
pol = −2α6

3n3
m3 δl0

[
r2
s

(
23

12
− ln

2 〈E〉2
m

)
+ r2

p

(
γ + ln(rp2m)

)
− r2

d

(
γ + ln(rd2m)

)]
+ E(6)

np . (105)

We note that the fermion mass m cancels exactly in the expression in square brackets in the above equation.

VIII. RESULTS AND SUMMARY

Our numerical results for the three-photon exchange nuclear structure corrections are presented in Table II. The elastic part
has been calculated with the exponential model of the nuclear charge distribution. It is displayed in the table separately for the
comparison with the literature results. This part does not bear any uncertainty because its dependence on the charge distribution
model cancels out exactly in the sum with the inelastic part. We observe a reasonable (although not perfect) agreement with the
literature results summarized in Table II.

The inelastic three-photon exchange nuclear structure correction was calculated only for the electronic and muonic deuterium
atoms; the corresponding results are presented in Table II. We find that the inelastic contribution for deuterium is of opposite
sign as compared to its elastic counterpart and changes significantly the total mα6 nuclear structure contribution. In the case of
eD, the change is of about 30%, while for µD, the inelastic part reverses the sign of the overall contribution. For electronic and
muonic hydrogen, we present only estimations for the inelastic three-photon exchange contribution.

Our results for the three-photon exchange nuclear structure corrections affect determinations of the hydrogen-deuterium nu-
clear charge radii differences derived from the spectroscopic observations of the isotope shifts in electronic and muonic hydrogen
and deuterium [2, 20, 21]. For the electronic H-D isotope shift of the 1S–2S transition, our result shifts the total theoretical pre-
diction by 0.8 kHz, which is slightly larger than the theoretical error of 0.6 kHz assumed in Ref. [21]. There are, however, further
corrections to the summary of theoretical contributions presented in Ref. [21], so we had to update it. Our review of the present
status of the theory of the H-D isotope shift described in Appendix C leads us to the updated result for the nuclear charge radius
difference determined from the measurement of the H-D isotope shift of the 1S–2S transition [20],

δr2[electronic] ≡ r2
d − r2

p = 3.820 70 (31) fm2 , (106)

which agrees with but is twice as accurate as the previous value of 3.820 07 (65) fm2 obtained in Ref. [21].
For muonic hydrogen and deuterium, our result for the inelastic three-photon exchange nuclear structure contribution to the

2P1/2–2S transition energy of 0.008 75 (88) meV shifts the deuteron-proton charge radius difference determined in Ref. [2] by
0.0014 fm2, with the result

δr2[muonic] ≡ r2
d − r2

p = 3.8126 (34) fm2 . (107)

The results derived from the electronic and muonic atoms disagree by about 2σ, which confirms the discrepancy previously
observed in Ref. [2].

In summary, we have calculated the complete three-photon exchange O(α2) nuclear structure correction to energy levels and
the isotope shift of hydrogen-like muonic and electronic atoms. Our formula for the elastic contribution is valid for an arbitrary
hydrogenic system and is much simpler than corresponding formulas in the literature [9]. The inelastic part has been derived for
muonic and electronic deuterium only. Calculations of the three-photon inelastic contribution for He+ and heavier elements are
possible but are more complicated. At the same time, one may expect the inelastic contribution to be as large as the elastic part,
which is a sizeable correction in He+, about 1% of the total nuclear nuclear size effect.
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TABLE II: Numerical results for the three-photon exchange nuclear structure corrections. Numerical values include the leading recoil effect
by the multiplicative reduced-mass prefactor (µ/m)3. Elastic contributions are obtained with the exponential parametrization of the nuclear
charge distribution, with the following values of nuclear radii: rp = 0.84087 fm, rd = 2.12562 fm, rC(3He) ≡ rh = 1.973 fm [22],
rC(

4He) ≡ rα = 1.681 fm [23].

transition units Elastic Inelastic Sum Elastic by others

E(6)(2S−1S, eH) Hz −584 −344 (344) −928 (344) −587 (2)a

E(6)(2S−1S, eD−eH) Hz −2 846 817 (41) −2 029 (41) −2 834 (13)a

E(6)(2P1/2−2S, µH) meV −0.001 27 ±0.000 27 −0.001 27 (27) −0.001 34b

E(6)(2P1/2−2S, µD) meV −0.006 56 0.008 75 (88)(27)† 0.002 19 (88)(27)† −0.006 50 (60)c

E(6)(2P1/2−2S, µ3He+) meV −0.384 7 unknown −0.378 6 (60)d

E(6)(2P1/2−2S, µ4He+) meV −0.304 8 unknown −0.311 5 (140)e

a CODATA [16].
b Ref. [11], the difference of entries “Our choice” and “Non-rel. finite-size” in Table 2 of that work, −0.0019 r2p .
c Ref. [12], the sum of entries r3 and r′3 in Table 2 of that work, −0.002 124 (4) r2d + 0.003 10 (60) meV .
d Ref. [24], the sum of entries r3 and r′3 in Table 2 of that work, −0.1288 (13) r2h + 0.1177 (33) meV .
e Ref. [25], the sum of entries r3 and r′3 in Table 4 of that work, −0.1340 (30) r2α + 0.0672 (112) meV.
† the second uncertainty comes from the interaction with individual nucleons and cancels in the µD-µH isotope shift.
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Appendix A: Dimensional regularization for bound states

The principles of dimensional regularization for bound states have been described in Ref. [26]. Here we only present formulas
without derivation which have been used in the presented calculations. The dimension of space is assumed to be d = 3 − 2 ε.
The surface area of the d-dimensional unit sphere is

Ωd =
2πd/2

Γ(d/2)
. (A1)

The Coulomb potential in d dimensions is of the form

V(r) =

∫
ddk

(2π)d
4π

k2
ei
~k·~r =

C1

r1−2 ε
, (A2)

where

C1 = πε−1/2 Γ(1/2− ε) . (A3)

The elastic contribution involves another potential of the form

V(2)(r) =

∫
ddk

(2π)d
4π

k4
ei
~k·~r = C2 r

1+2 ε, (A4)

where

C2 =
1

4
πε−1/2 Γ(−1/2− ε). (A5)

Futher, we used the following integration formulas∫
Λ

ddr
[
V(r)

]3
= −[(4π)ε Γ(1 + ε)]2 4π

[
1

4 ε
+

1

2
+ γ + ln(Λ)

]
, (A6)∫

ddk

(2π)d
1

k2α

1

(k − q)2β
=

[q2]
d
2−α−β

[4π]
d
2

Γ(α+ β − d
2 ) Γ(d2 − α) Γ(d2 − β)

Γ(d− α− β) Γ(α) Γ(β)
, (A7)

and [31]

I =

∫
ddk

(2π)d

∫
ddq

(2π)d
1

[k2]n1

1

[(k − q)2 +m2
2]n2

1

[q2 +m2
3]n3

=
m

2 (d−n1−n2−n3)
3

(4π)d
Γ(d/2− n1) Γ(n1 + n2 − d/2) Γ(n1 + n3 − d/2) Γ(n1 + n2 + n3 − d)

Γ(2n1 + n2 + n3 − d) Γ(n2) Γ(n3) Γ(d/2)

×2F1(n1 + n2 + n3 − d, n1 + n2 − d/2, 2n1 + n2 + n3 − d, 1−m2
2/m

2
3) . (A8)

Appendix B: Numerical verification of the elastic contribution

The finite nuclear size (fns) correction can be calculated numerically to all orders in Zα, by computing the energy eigenvalue
of the Dirac equation with the extended-size nuclear potential and subtracting the analytical point-nucleus result. Knowing the
leading α4 and α5 fns corrections analytically, we also can identify the higher-order fns residual from the numerical all-order
results.

The main problem in determining the fns correction numerically is that the corresponding effect is very small for light elec-
tronic atoms. So, for the 2s state of hydrogen, the relativistic O(α2) fns correction yields a 1 × 10−13 fraction of the binding
energy. In order to make an extensive comparison between the numerical and analytical approaches, we performed numerical
calculations for Z as low as Z = 0.25. To make sure that possible numerical uncertainties do not interfere with the comparison,
we determined the binding energies with a 20-digit numerical precision.

In order to compute the eigenvalues of the Dirac equation, we use the Dual Kinetic Balance method [27] with the finite basis
set of B-splines. Because of high accuracy demands, we implemented this method in quadruple (about 32 digits) arithmetics,
similarly as it was done recently in calculations of the recoil corrections [28]. About 200-250 basis functions were sufficient to
reach the required 20-digit numerical accuracy for the binding energies.



18

We obtained the relativistic fns correction E(6+)
fns that contains contributions of order (Zα)6 and higher as

E
(6+)
fns = Efns − E(4)

fns − E
(5)
fns , (B1)

where Efns is determined numerically by solving the Dirac equation, E(4)
fns is given by Eq. (6), E(5)

fns is given by Eq. (14), and rZ
is evaluated for the same nuclear model as in the numerical calculation.

The comparison of our all-order numerical results for E(6+)
fns with the analytical (Zα)6 result E(6) given by Eq. (68) is pre-

sented in Fig. 1. Both numerical and analytical results are obtained with the exponential model of the nuclear charge distribution
(see Table I). We plot the scaled function with the leading Zα, rC , and n dependence removed,

F
(6+)
fns =

E
(6+)
fns

m3(Zα)6 r2
C/n

3
. (B2)

As can be seen from the figure, agreement between the numerical and analytical results is excellent.
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FIG. 1: The relativistic finite nuclear size correction for the hydrogenic 1s state is plotted as a function of Z for three different nuclear radii:
rC = 1 fm (upper row), rC = 10 fm (middle row), and rC = 100 fm (lower row). In each row, the left graph shows a comparison of the
numerical function F (6+)

fns (filled dots and solid line, green) with the analytical function F (6)
fns (dash-dotted line, red); the right graphs show the

remainder function δF = F
(6+)
fns − F (6)

fns .
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Appendix C: Hydrogen-deuterium 1S–2S isotope shift

In this section we update the summary of all available theoretical contributions for the eH-eD isotope shift of the 1S–2S
transition frequency reviewed previously by Jentschura et al. [21]. We use the following values for the fundamental constants,
the fine-structure constant,

α−1 = 137.035 999 139 (31) ,

and the Rydberg constant,

R∞c = 3.289 841 960 355 (19)× 1015 Hz ,

from CODATA 2014 [16]. The electron-proton mass ratio we take from the recent measurement by Heiße et al. [29],
mp

me
= 1 836.152 673 346 (81) .

We note that this value is twice as accurate but 3σ off from the CODATA 2014 value [16]. For the electron-deutron mass ratio
we use the CODATA value [16],

mD

me
= 3 670.482 967 85 (13) .

In the present section we follow the notations and conventions of Ref. [21]. We will not repeat the full review of the theory
but only indicate the entries therein that need to be updated. The changes are as follows.

(i) The updated result for the leading (Dirac) contribution to the isotope shift (Eq. (28) of Ref. [21]) is

∆fi = 671 004 071.107 (64) kHz , (C1)

the change being due to the updated values of the electron-nucleus mass ratios.
(ii) Our present result for the two-photon exchange nuclear structure correction specified by Eqs. (32) and (40),

E(5)(H–D, 1S–2S) = 19.12 (20) kHz , (C2)

replaces the sum of ∆ν9 given by Eq. (40) of Ref. [21] and ENS,(b) given by Eq. (45) therein, amounting to 19.11 (2) kHz.
(iii) Our present result for the three-photon exchange nuclear structure correction,

E(6)(H–D, 1S–2S) = −2.029 (41) kHz , (C3)

replaces the sum of ENS,(c) given by Eq. (47) of Ref. [21] and ∆ν11 = ±0.5 kHz given by Eq. (43) therein, amounting to
−2.828± 0.5 kHz.

(iv) The entry for the higher-order pure recoil ν5 = −3.41 (32) kHz (Eq. (33) of Ref. [21]) is replaced by the complete
all-order (in Zα) result by Yerokhin and Shabaev [28, 30]. The corresponding correction to the energy is

δE(nS) =
m2

M

(Zα)5

πn3

[
Zα

(
4 ln 2− 7

2

)
π + (Zα)2Grec + δfnsP

]
, (C4)

where Grec(1S,Z = 1) = 9.720 (3), Grec(2S,Z = 1) = 14.899 (3), δfnsP (nS,H) = −0.000 184 (1) in the case of hydrogen
and δfnsP (nS,D) = −0.000 786 (6) for deuteron [28, 30]. In the result, the updated contribution is

∆ν5 = −3.058 kHz . (C5)

(v) For the radiative recoil contribution (Eq. (36) of Ref. [21]), we use the estimation of uncertainty from Ref. [16], which is
about three times larger than the one of Ref. [21],

∆ν6 = −5.38 (35) kHz . (C6)

The final theoretical value of

∆fth = 670 999 567.88 (42) kHz , (C7)

replaces the previous result ∆fth([21]) = 670 999 566.90 (89) kHz. Combining the theoretical value ∆fth with the experimen-
tal result from [20, 21], we obtain the updated result for the mean-square charge-radii difference

r2
d − r2

p = 3.820 70 (31) fm2 , (C8)

which agrees with but is twice as accurate as the previous value of 3.820 07 (65) fm2 [21].


