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We investigate the modification of the transverse electromagnetic interaction between two point-like particles
when one particle acquires a finite size. It is shown that the correct treatment of such interaction cannot be
accomplished within the Breit approximation but should be addressed within the QED. The complete QED
formula is derived for the finite-size nuclear recoil, exact in the coupling strength parameter Zα. Numerical
calculations are carried out for a wide range of Z and verified against the (Zα)5 contribution. The comparison
with the Zα expansion identifies the contribution of order (Zα)6, which is linear in the nuclear radius and
numerically dominates over the lower-order (Zα)5 term.

Introduction.—The relativistic spin-1/2 particle in the
Coulomb field of the infinitely heavy nucleus is described
by the Dirac equation. In contrast to the nonrelativistic case,
the finite nuclear mass effects, often called the nuclear recoil,
cannot be incorporated into the Dirac equation but should be
addressed within QED theory. The QED calculations of the
nuclear recoil started with pioneering works of Salpeter [1]
in 1952. In late 1980s it was proven [2–6] that the linear
in m/M nuclear recoil can be described by a closed-form
formula valid to all orders in the electron-nucleus coupling
strength Zα (where m is the electron mass, M is the nu-
clear mass, Z is the nuclear charge number and α is the
fine-structure constant). The numerical calculations were per-
formed in Refs. [7, 8]. Later, this formula has been general-
ized for the external homogenous magnetic field, which stimu-
lated extensive research on the bound electron g-factor [9, 10].
All these studies considered the nuclear recoil effect only for
the point-like nucleus.

Let us now consider a finite-size nucleus. The modification
of the electrostatic potential by the finite size is straightfor-
ward and can be immediately incorporated in the Dirac equa-
tion. By contrast, the corresponding modification of the nu-
clear recoil turns out to be highly nontrivial and has not yet
been properly performed in the literature. Within the Breit ap-
proximation, the finite-size nuclear recoil correction was de-
rived by Borie and Rinker [11] and later rederived in Ref. [12].
In this Letter we show that these derivations were incomplete
and obtain the exact formula for the Breit interaction for a
finite nucleus. It is remarkable that the Breit-approximation
formula, even the correct one, should not be used for compari-
son with experiment since it contains [13] a spurious contribu-
tion ∼rC (Zα)5m/M linear in the nuclear charge radius that
overshadows the main contribution ∼ r2C (Zα)4m/M . The
correct handling of the finite-size nuclear recoil is possible
only within the QED.

In this Letter we obtain the complete formula for the finite-
size nuclear recoil correction and perform numerical calcu-
lations for the whole range of Z. Within an alternative ap-
proach, we derive the contribution of order (Zα)5m/M . The
comparison of the all-order (in Zα) results with the Zα-

expansion calculations gives us access to the contribution of
order (Zα)6m/M , which is linear in the nuclear charge radius
and numerically dominates over the previous-order contribu-
tion.

Expansion in the small nuclear charge.— Let us denote by
Efns the shift in the binding energy of a hydrogenic system
due to the finite nuclear size (fns). For a light atom we can
perform the expansion of Efns in the small nuclear charge

Efns = E
(4)
fns + E

(5)
fns + E

(6)
fns + . . . (1)

where the superscript indicates the order in Zα. The leading-
order nuclear contribution is of order (Zα)4 and given by a
simple formula,

E
(4)
fns =

2π

3
Zαφ2(0) r2C , (2)

where φ(0) is the nonrelativistic wave function of the elec-
tron at the position of nucleus, rC is the root-mean-square
charge radius of the nucleus, r2C =

∫
d3r r2 ρ(~r), and ρ(~r)

is the nuclear charge distribution. Eq. (2) includes the exact
dependence on the finite nuclear mass M through φ2(0) =
m3
r (Zα)

3/(πn3), where mr = mM/(m+M).
(Zα)5 finite nuclear size.— The description of fns effects

for an arbitrary mass ratio at the order (Zα)5 is much more
complicated. We here thus briefly discuss the approximations
and assumptions needed to derive this correction. Let us start
from the general expression for the nuclear-structure contri-
bution of order (Zα)5,

E
(5)
nucl =−

(Z e2)2

2
φ2(0)

∫
d4q

(2π)4 i

1

q4

×
[
Tµσ(I,M)− tµσ(I,M)

]
tµσ(1/2,m) , (3)

where Tµσ(I,M) and tµσ(1/2,m) are the forward virtual
Compton scattering amplitudes off the nucleus (with the spin
I and mass M ), and the electron (with the spin 1/2 and mass
m), respectively. Furthermore, tµσ(I,M) is the point-nucleus
limit of Tµσ(I,M). The subtraction of the point-nucleus limit
in above equation is necessary because it is already included
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into the (Zα)5 nuclear recoil correction [1, 14]. For the elec-
tron, the scattering amplitude is very simple and given by

tµσ(1/2,m) = Tr

[
γµ

1

m 6 t+ 6q −m
γσ

γ0 + I

4

]
+ (q → −q) ,

(4)

with ν = q0 and t = (1, 0, 0, 0). By contrast, for the nu-
clear scattering amplitude Tµν we usually do not have much
information. Nevertheless, the gauge invariance requires that
qµ T

µσ = 0 and therefore Tµσ can be expressed in terms of
only two Lorentz invariant functions T1 and T2,

Tµσ =−
(
gµσ − qµ qσ

q2

)
T1
M

+

(
tµ − ν

q2
qµ
)(

tσ − ν

q2
qσ
)
T2
M

. (5)

Using this parametrization, we evaluate Eq. (3) as

E
(5)
nucl = −2 (Z e2)2 φ2(0) m

M

∫
d4q

(2π)4 i

× [T2 − t2(I,M)](q2 − ν2)− [T1 − t1(I,M)] (q2 + 2 ν2)

q4 (q4 − 4m2ν2)
,

(6)

where t1 and t2 are the point-nucleus limits of T1 and T2,
respectively.

Let us now split the nuclear contribution into the fns and
polarizability parts, E(5)

nucl = E
(5)
fns + E

(5)
pol . The separation is

not unique and was carried out in different ways in the litera-
ture. We here separate the fns part by assuming that nucleus
is described only by the elastic formfactors; this definition is
often referred to as the Born contribution. For the spin-zero
nuclei, there is only the charge formfactor ρ(−q2). For an ar-
bitrary spin I , there are in addition the magnetic, quadrupole
and possibly other formfactors. However, to the zeroth and
the first order inm/M only the charge formfactor contributes.
Under this assumption, the fns contribution becomes

E
(5)
fns = − 2 (Z e2)2 φ2(0)

m

M

∫
d4q

(2π)4 i

[
ρ2(−q2)− 1

]
× t2(I,M)(q2 − ν2)− t1(I,M) (q2 + 2 ν2)

q4 (q4 − 4m2ν2)
. (7)

We now claim that the nonrecoil and the leading recoil cor-
rections do not depend on the nuclear spin, which allows us to
set I = 1/2 and obtain t1, t2 from Eq. (4). Next we perform
the angular integration in the Euclidean momentum space,

E
(5)
fns = − (Zα)2 φ2(0)m

∫ ∞
0

dp

p
T (p2) , (8)

and expand T (p2) in large M as

T (p2) = T (0)(p2) +
T (1)(p2)

M
+O

( 1

M

)2
. (9)

The leading term T (0) = (16/p3)
[
ρ2(p2) − 1 − 2 p2 ρ′(0)

]
corresponds to the non-recoil limit. Performing the momen-
tum integration as ∫ ∞

0

dp

p
T (0) = r3F

π

3
, (10)

where r3F =
∫
d3r1

∫
d3r2 ρ(r1) ρ(r2) |~r1 − ~r2|3, we repro-

duce the well-known Friar correction [15],

E
(5)
fns (M =∞) = −π

3
φ2(0) (Zα)2mr3F . (11)

The leading recoil term in expansion of T in the mass ratio is

T (1) =
8

p2

[√
1 + a2 −

(
1 +

√
1 + a2

)−2][
1− ρ2(p2)

]
+ 16 a ρ′(0) , (12)

where a = 2m/p. The momentum integral is represented in
the coordinates space as∫ ∞

0

dp

p
T (1) =

[7
6
− 2 γ − 2 ln(mrL)

]
r2C , (13)

with the effective radius rL defined by∫
d3r1

∫
d3r2 ρ(~r1) ρ(~r2) |~r1 − ~r2|2 ln(m |~r1 − ~r2|)

≡ 2 r2C ln(mrL) . (14)

Finally, the fns recoil correction of order (Zα)5 is

E
(5)
recfns = −

m

M
φ2(0) (Z α)2

[7
6
− 2 γ − 2 ln(mrL)

]
r2C ,

(15)

where we omitted the reduced-mass correction in Eq. (11)
since it is two orders of magnitude smaller for normal ”elec-
tronic” atoms. The effective radius rL for the exponential
model amounts to 1.74 rC and should not significantly differ
for other nuclear charge distributions. In comparison to the
leading fns effect given by Eq. (2), E(5)

recfns is decreased by
a factor of Zαm/M but enhanced by ln(mrL), which is
≈ −5.6 for hydrogen.

(Zα)5 effects beyond the finite nuclear size.— It is well
known that the treatment of a nucleus as a finite-size particle
omits numerous nuclear-structure effects, often termed as the
nuclear polarizability contribution. Subtracting from T1 and
T2 the fns parts, one writes the nuclear polarizability correc-
tion as

E
(5)
pol =− 2 (Z e2)2 φ2(0)

m

M

∫
d4q

(2π)4 i

× T2 (q
2 − ν2)− T1 (q2 + 2 ν2)

q4 (q4 − 4m2ν2)
. (16)

An approach used in the literature is to employ dispersion re-
lations in the variable ν to express T1(ν,−q2) and T2(ν,−q2)
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in terms of structure functions that in principle can be mea-
sured in the electron-nucleus scattering. In the case of T1,
a subtracted dispersion relation is needed, giving rise to the
subtraction function T1(0,−q2), which can not be measured
directly but needs to be calculated from the nuclear theory,
with a condition that its small-q behavior is governed by the
magnetic dipole polarizability T1 = α/M q2 βM + O(q4).
The structure functions are known experimentally only for
the proton, deuteron, and helion, and only for a part of the
kinematic space. Generally, usage of dispersion relations for
nuclei heavier than proton requires significant input from the
nuclear theory. Such calculations were recently performed for
the deuteron in Refs. [16, 17].

An alternative approach is to calculate the total nuclear
structure correction by considering the nucleus as a system of
individual interacting nucleons and do not introduce the fns
effect at all. Such calculations are nowadays feasible for light
nuclei. Specifically, the nuclear contribution of order (Zα)5

for a light composite nucleus is written as [18]

E
(5)
nucl = E

(5)
nucl1 + E

(5)
nucl2 + E

(5)
pol , (17)

E
(5)
nucl1 = − π

3
mα2φ2(0)

[
Z R3

pF + (A− Z)R3
nF

]
, (18)

E
(5)
nucl2 = − π

3
mα2φ2(0)

Z∑
i,j=1

〈φN ||~Ri − ~Rj |3|φN 〉 . (19)

Here E(5)
nucl1 comes from the two-photon exchange with the

same nucleon, E(5)
nucl2 is due to the two-photon exchange with

different nucleons, and E(5)
pol is the nuclear polarizability cor-

rection originating from the low-energy two-photon exchange.
The parameters RpF and RnF are the effective proton and
neutron radii, correspondingly. They represent the complete
two-photon exchange (with subtracted point-proton contribu-
tion) and thus include the recoil with individual nucleons. We
extract them from the calculation of Tomalak [19], with the
result RpF = 1.947 (75) fm and RnF = 1.43 (16) fm.

Unfortunately, it is not feasible at present to extend this ap-
proach to nuclei consisting of many nucleons or to effects of
higher orders in Zα. For complex nuclei, the only currently
available way is to assume the charge form factor model and
separately account for the nuclear polarizability effects as was
done in Refs. [20, 21]. We thus return to the description of nu-
cleus through the elastic charge formfactor, but keep in mind
the limitations of this very simplified picture.

Photon propagator in the modified Coulomb gauge.— In
order to obtain a formula for the relativistic recoil correction
that is valid for an arbitrary Z, we shall construct the photon
propagator with one finite-size vertex in the Coulomb gauge.
First we consider the Feynman gauge. In this case the photon
propagator with the charge formfactor is given by

GµσF (k) = −g
µσ

k2
ρ(−k2) , (20)

where we assumed that the formfactor can be analytically con-
tinued into the complex plane with possible poles and branch

cuts on the negative real axis−k2 < 0. In the Coulomb gauge
we require that the scalar part of the propagator coincides
with the Coulomb potential of an extended nucleus, namely
G00
C = ρ(~k2)/~k2. Then the transverse part of the propagator

has to be of the form

GijC (k) =
ρ(−k2)
k2

(
δij − ki kj

(k0)2

)
− ki kj

(k0)2
ρ(~k2)

~k2
. (21)

The above formula is justified by the equivalence of GF and
GC that follows from the gauge transformation

GµσF = GµσC + kµfσ + fµ kσ , (22)

with f0 = −k0f , f i = kif , and

f =
1

2 (k0)2

[
ρ(~k2)

~k2
+
ρ(−k2)
k2

]
. (23)

The coordinate-space representation of the transverse part
of the propagator is obtained as

GijC (ω,~r) = δij D(ω, r) + ∇
i∇j

ω2

[
D(ω, r)−D(0, r)

]
,

(24)

where ω ≡ k0 and

D(ω, r) =
∫

d3k

(2π)3
ei
~k·~r ρ(

~k2 − ω2)

ω2 − ~k2
. (25)

The Breit-approximation formula for the transverse electron-
nucleus interaction is obtained by taking the limit ω → 0, with
the result

GijC (0, ~r) =
1

2

(
δij − rirj

r

d

dr

)
D(0, r) . (26)

It coincides with the result obtained previously in Ref. [22]
but disagrees with the later work [12].

Finite-size nuclear recoil for an arbitrary nuclear charge.—
In order to obtain the finite-size nuclear recoil correction we
use the formula originally derived for the point nucleus to
all orders in Zα [2–6] and replace the point-nucleus photon
propagator in the Coulomb gauge by the finite-nucleus pho-
ton propagator. This procedure can be justified by consid-
ering the electron-nucleus scattering amplitude. Every photon
exchange is described by the propagator−gµν/k2 and a form-
factor vertex on the nucleus line. Performing the nonrelativis-
tic limit for the nucleus, we arrive at the scattering amplitude
of point-like nonrelativistic particles that interact by means of
the modified photon propagator. The nuclear recoil correc-
tion was derived assuming the nonrelativistic Hamiltonian for
a point nucleus, thus for the finite-size nucleus we obtain

Erec =
m2

M

i

2π

∫ ∞
−∞

dω 〈a|
[
pj −Dj(ω)

]
×G(ω + εa)

[
pj −Dj(ω)

]
|a〉 , (27)
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where G(E) = [E − HD(1 − iε)]−1 is the Dirac-Coulomb
Green function, Dj(ω) = −4πZααiGijC (ω,~r), and αi are
the Dirac matrices.

In order to proceed further we need to specify explicitly
the model of the nuclear charge distribution. We will use the
exponential model, whose kernel in the momentum space is
ρ(~k2) = λ4/(λ2+~k2)2, where λ = 2

√
3/rC . Since the recoil

correction (27) is calculated after the Wick rotation ω → iω
(see Ref. [7]), for performing calculations for the 1s reference
state we need the photon propagator for imaginary energies
only. We obtain for ω = iω+ and ω+ ≥ 0,

D(iω+, r) = −
1

4π

[
e−ω+ r

r
− e−ω+ r

r
− λ2

2

e−ω+ r

ω+

]
,

(28)

where ω+ =
(
ω2
+ + λ2

)1/2
and D(−iω+, r) = D(iω+, r).

We performed numerical calculations of the finite-size nu-
clear recoil correction to all orders in Zα by evaluating
Eq. (27) for the extended and the point nuclear models and
taking the difference. Results of our numerical calculations
are shown in Fig. 1, in comparison with contributions of the
Zα-expansion corrections. The plotted function depends both
on Z and rC , leading to a non-smooth behaviour of the plots
in Fig. 1. We observe that the sum E

(4)
recfns + E

(5)
recfns differs

noticeably from the all-order results already for moderate val-
ues of Z. By varying separately Z and rC in our numerical
calculations, we determined that the reason is the contribution
of the next order in (Zα), which depends – very unusually
– linearly on rC . We thus deduce the contribution of order
(Zα)6 of the form

E
(6)
recfns = −

m3

M
a(6) (Zα)6 rC , (29)

where the numerical value of the coefficient a(6) ≈ 1.0. This
approximate equation is obtained for the exponential nuclear
model; for other models we might expect a different effective
radius instead of rC , but the linear dependence shall remain.
Fig. 1 demonstrates that the inclusion of the (Zα)6 contribu-
tion significantly improves agreement between the all-order
and Zα-expansion results.

In Table I we present our results of the all-order (in Zα)
calculation in comparison with the sum of the Zα-expansion
contributions up to (Zα)6. We observe excellent agreement
of the two methods in the low-Z region. By contrast, for high
Z the all-order results become larger than the Zα-expansion
estimates by an order of magnitude. In the last column of Ta-
ble I results of previous approximate treatment [13, 23, 24]
are listed (recalculated for the nuclear model and nuclear radii
adopted in this work). The previous treatment was incomplete
because the transverse part of the finite-size photon propaga-
tor was not known at that time. As seen from the table, this
incompleteness leads to effects ranging from 1.5% for Z = 1
to 9% for Z = 92.

Conclusions.— In this Letter we performed rigorous QED
calculations of the finite-size nuclear recoil (recfns) effect for
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FIG. 1. Finite-size nuclear recoil correction for the 1s state of H-like
ions, in terms of function δP = Erecfns/[(m

2/M)(Zα)5/π].

TABLE I. Finite-size nuclear recoil correction for the 1s state of H-
like ions, to be multiplied by the prefactor (m2/M)(Zα)5/π.

Z rC [fm] Zα-expansion All-order Refs. [13, 24]

1 0.8409 −0.00419 −0.00419 −0.00425
2 1.6755 −0.00849 −0.00850 −0.00874
3 2.4440 −0.01229 −0.01233 −0.01281
5 2.4060 −0.00775 −0.00782 −0.00829
10 3.0055 −0.00752 −0.00780 −0.00850
20 3.4776 −0.00829 −0.00962 −0.01042
30 3.9283 −0.01079 −0.01506 −0.01572
40 4.2694 −0.0137 −0.0246 −0.0247
50 4.6519 −0.0174 −0.0429 −0.0414
60 4.9123 −0.0210 −0.0764 −0.0717
70 5.3108 −0.0258 −0.148 −0.137
80 5.4648 −0.0296 −0.298 −0.274
92 5.8571 −0.0358 −0.819 −0.757

the Lamb shift of hydrogen-like atoms, both within the Zα-
expansion and to all orders in Zα. The resulting correction
for the 1S-2S transition frequency in hydrogen is−1.62 kHz,
which may be compared with the experimental uncertainty
of 0.01 kHz [25, 26] in hydrogen, 5.4 kHz [27] in antihy-
drogen, and the total theoretical uncertainty of 1.6 kHz [28].
The higher-order (Zα)5+ contribution is quite small for light
ions (−0.04 kHz for the 1S-2S transition in hydrogen) but
becomes increasingly important with growth of Z. Gener-
ally, the recfns correction is comparable in magnitude with
the nuclear-structure effects and should be included into con-
sideration for obtaining high-precision theoretical predictions
of the Lamb shift. In particular, the recfns effect contributes to
nonlinearities of the so-called King’s plots, which are nowa-
days considered as a promising tool for searches for new par-
ticles [29, 30].

The developed approach for describing the recoil effect
with a finite-size nucleus to all orders in Zα may find many
applications in precision studies of simple atomic systems.
It will lead to more accurate theoretical predictions of the



5

bound-electron g-factor and to improved spectra of muonic
atoms. In particular, it opens a way to a non-perturbative treat-
ment of the vacuum-polarization combined with the nuclear
recoil in muonic atoms. More specifically, in muonic atoms
the vacuum-polarization, the nuclear recoil, and the fns effects
are of comparable magnitude and are difficult to be accounted
for by perturbation theory. Our approach allows one to ac-
count for the nuclear recoil modified not only by the fns but
also by the Uehling vacuum-polarization, without any expan-
sion in Zα, which has not been accomplished so far [31, 32].
Furthermore, the developed approach can be used for deriving
the exact (in Zα) formulas for the recoil effect to the hyper-
fine splitting, which is presently unknown for medium- and
high-Z electronic and muonic atoms.

K.P. acknowledges support from the National Science Cen-
ter (Poland) Grant No. 2017/27/B/ST2/02459. V.A.Y. was
supported by the Russian Science Foundation Grant No. 20-
62-46006.
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