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We investigate all pure quantum-electrodynamics corrections to the np→ 1s, n = 2−4 transition
energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant
contributions up to order α5. These values are needed to extract an accurate strong interaction
shift from experiment. Many small effects, such as second order and double vacuum polarization
contribution, proton and pion self-energies, finite size and recoil effects are included with exact mass
dependence. Our final value differs from previous calculations by up to ≈9 ppm for the 1s state,
while a recent experiment aims at a 4 ppm accuracy.
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I. INTRODUCTION

Pion-Nucleon scattering lengths are quantities of fun-
damental importance in low-energy hadronic physics. For
the 1s state of pionic hydrogen (πH) , the low energy scat-
tering lengths at threshold aπ−p→π−p and aπ−p→π0n are
connected to ε1s and Γ1s, the hadronic shift and broad-
ening, through Deser formula [1]

ε1s
E1s

= − 4

rB
aπ−p→π−p (1 + δε) (1)

Γ1s

E1s
=

8Q0

rB

(
1 +

1

P

)(
aπ−p→π0n (1 + δΓ)

)2
(2)

where E1s is the 1s biding energy. The Bohr radius rB is
given by

rB =
1

µαZ
, (3)

where α ≈ 1/137.036 is the fine structure constant and Z
the atomic number. The quantities δε and δΓ are correc-
tions due to the distortion of the pion wavefunction by the
strong interaction, Q0 = 0.142 fm−1 is the momentum of
the π0 in the center of mass system and P = 1.546±0.009
is the Panofski ratio of scattering amplitudes aπ−p→π0n

and aπ−p→γn, which is derived from experiment [2].
Determination of accurate values of the scattering

length allow for tests of Chiral perturbation theory–the
low energy approach to QCD — in particular for the
extraction of chiral symmetry breaking parameters [3–6]
as well as for tests of the other approaches [7–10]. The
strong interaction shift ε1s is obtained by comparing the-
oretical, pure QED transition energies to the measured
np → 1s ones. There are many issues involved in the
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derivation of the physically meaningful scattering ampli-
tudes from the experimentally measurable parameters ε1s
and Γ1s. These issues are mainly connected to the ac-
curacy with which one can disentangle QED and QCD
contributions (see, e.g., [6, 11] for recent reviews). In the
case of aπ−p→π−p , the QED/QCD separation is present
in both the extraction of ε1s from experimental transition
energies and in the evaluation of δε. The strong interac-
tion shift is a correction of order α3 to the usual Coulomb
binding energy of the 1s level. It was evaluated in lead-
ing order in Chiral perturbation theory [3] and in next
to leading order in [5]. The ground state energy shift is
written as [3]

ε1s = −2α3µ2A{1− 2α(lnα− 1)µA}+ . . . (4)

in term of the π−p→ π−p scattering amplitude at thresh-
old A. Here 1

µ = 1
mπ

+ 1
mp

is the reduced mass, mπ,

mp denoting the charged pion and proton masses re-
spectively. The scattering amplitude at threshold is con-
nected to the isospin-invariant amplitudes a+

0+ and a−0+

as

A = a+
0+ + a−0+ + ε (5)

where ε is the isospin-symmetry breaking term due to
the electromagnetic interaction. The evaluation of ε is re-
quired to derive a+

0+ and a−0+ from experiment. The scat-

tering length a+
0+ and a−0+ are calculated in an isospin-

symmetric theory with no electromagnetic interaction
and identical masses for the up and down quarks. With
this convention one obtains at order O

(
p2
)

[3] :

ε =
mp

8π (mp +mπ)F 2
π

{
8c1
(
m2
π −m2

π0

)
− 4e2f1 − e2f2

}
,

(6)

where mπ0 is the mass of the neutral pion, e the electric
charge, Fπ =92.4 MeV the pion decay constant and c1,
f1, f2 are the low energy constants of the phenomenolog-
ical chiral pion-nucleon interaction Lagrangian. Two of
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the low-energy constants c1 = −0.9+0.2
−0.5 GeV−1 [6] and

e2f2 = −(0.97±0.38) MeV [6] can be derived from exper-
iment. The determination of f1 value, however is more
problematic and leads to the largest uncertainty in the
determination of a+

0+ and a−0+ from ε1s [5, 6]. An un-
certainty of 100 MeV represents a contribution to ε1s of
0.015 eV. Both c1 and f1 however, are also present in
the pionic deuterium energy shift and can be eliminated
in the determination of the isospin symmetric scatter-
ing length[11, 12]. The deuterium shift was measured in
several experiments [13–15].

The most accurate present experimental values from
pionic hydrogen are ε1s = −7.108 ± 0.013(stat.) ±
0.034(syst.) eV and Γns = 0.868 ± 0.040(stat.) ±
0.038(syst.) eV [16, 17]. A recent experiment [18] at
the Paul Scherrer Institute aims at a ≈4 ppm accuracy
(≈ 0.01 eV) on transition energies, leading to a determi-
nation of the strong interaction shift to better than 1%,
if compared to accurate QED results. In this work, we
evaluate all QED contributions to the 1s and np, n = 2–
4 level energies up to order α4 and all contributions to
order α5 that correspond to purely electromagnetic in-
teraction.

This paper follows the approach used in [19] for muonic
hydrogen. All formulas are valid for any state and could
be applied to any spin 1/2 - spin 0 system, composed
of two finite sized particles with masses of the same or-
der of magnitude, in which case both particles must be
treated on the same footing, with exact mass dependence.
We start from the Breit-Pauli Hamiltonian, which in-
cludes the main relativistic and recoil corrections, and
accounts for the anomalous magnetic moment of the pro-
ton. In addition we calculate leading, double and second
order vacuum polarization contributions, relativistic cor-
rections to the leading vacuum polarization term, mixed
finite size-vacuum polarization diagrams, particles self-
energies, and the part of the two-photon exchange that
can be safely traced back to pure electromagnetic inter-
action. The main limitation in accuracy of the present
work is due to uncertainties in the rms charge radius of
the proton and pion, and in the pion mass. The fun-
damental constants and the proton mass are taken from
Refs. [20], while the pion mass (139.57018(35) MeV) and
charge radius (0.672(8) fm) come from [21]. The situa-
tion in what concerns the proton radius is at the moment
complicated. There is a recent very accurate value from
muonic hydrogen 0.84184(67) fm [22], that is 5 standard
deviations away from the one obtained from hydrogen
0.8768(69) fm [20] and from the most recent electron-
proton elastic scattering 0.879(8) fm [23]. Here we use

the muonic hydrogen value, as the pion and muon mass
are close, and whatever effect is at play in this large dis-
crepancy, must be more likely to be identical between
muonic and pionic hydrogen.

Figure 1. Diagrams corresponding to the Breit-Pauli Hamil-
tonian. Dashed lines correspond to the Coulomb interaction,
wavy lines to the magnetic interaction and plain thin and
thick lines to the lepton or proton wavefunction respectively.

II. QED CALCULATION

A. Breit equation including Darwin term and
magnetic moment

The Breit-Pauli Hamiltonian for our system is [24, 25]
HBP = H0 + δH + V BP with

H0 =
p2

2µ
− Zα

r
, δH = − p4

8m3
π

− p4

8m3
p

(7)

V BP =
πZα

2

1

m2
p

δ3(r)− Zα

2mpmπ
pi

1

r

(
δij +

rirj
r2

)
pj

+
Zα

r3

(
1 + 2κ

4m2
p

+
1 + κ

2mpmπ

)
(r × p) ·σ (8)

+
2

3
πZα

(
〈r2
π〉+ 〈r2

p〉
)
δ3(r). (9)

Here 〈r2
π〉, 〈r2

p〉 are the mean square charge radii of
the pion and proton, κ is the proton magnetic moment
anomaly, σ are Pauli matrices and Z is the nuclear
charge, which is used to distinguish proton and pion con-
tributions. The corresponding QED diagrams are shown
on Fig. 1. We note that the pion Darwin term, 1

m2
π
δ3(r)

is absent because the spin of the pion is 0. The known
πZα

2
(2κ)
m2
p
δ3(r) magnetic anomaly correction to the first

term in (8) is in this case included in the proton charge
distribution (9), when provided by bound-state measure-
ments [26, 27], from which is derived the proton charge
radius [22]. The corresponding energies for each contri-
bution can be found in Ref. [25] for example.

A complete relativistic treatment of the pion bound
states, in the non-recoil approximation, can be done in
the framework of the Klein-Gordon equation. The corre-
sponding energy is given by the well known expression

EKG(Z, n, l) =


1 +

(Zα)2(
n− l − 1

2 +

√(
l + 1

2

)2 − (Zα)2

)2


− 1

2

− 1

µc2, (10)
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which can be expanded in power of Zα as

EKG(Z, n, l) = − (Zα)2

2n2
µc2 (11)

+

(
3

8n4
− 1

(2l + 1)n3

)
(Zα)4µc2

+O
(
(Zα)6

)
. (12)

The two first term of this expansion are included in the
solutions of (7) and (8). We include the sum of all higher-
order terms in our result for completeness.

B. Vacuum polarization corrections

The electron vacuum polarization modifies the effec-
tive electromagnetic interaction. Because of the rela-
tively large pion mass, diagrams with vacuum polariza-
tion loops dominate among QED corrections, while the
self-energy is very small, in contrast to electronic atoms.
The vacuum polarization can be evaluated by modifying
the photon propagator. In leading order, it corresponds
to the replacement:

−gµν
k2
→ −gµν

k2
(1− ω̄(k2)). (13)

At the one-loop level, ω̄ is given by [28]:

ω̄(k2) =
α

π
k2

∫ ∞
4

d(q2)
1

q2(m2
eq

2 − k2)
u(q2), (14)

with

u(q2) =
1

3

√
1− 4

q2

(
1 +

2

q2

)
. (15)

This leads to the effective interaction potential (Fig. 2):

Vvp(r) = −Zα
r

α

π

∫ ∞
4

d(q2)

q2
e−meqru(q2), (16)

known as the Uehling potential [29]. The corresponding
energy shift in the first order is:

Enl = 〈φnl|Vvp|φnl〉 =

∫
d3r Vvp(r)|φnl(r)|2, (17)

where φnl(r) is the Schrödinger-Coulomb wavefunction
[30], which depends on the reduced mass µ. Replacing
(16) in (17) leads to:

Enl = −Zαα
π

∫ ∞
4

d(q2)

q2
u
(
q2
) ∫

dr e−meqrrR2
nl(r),

(18)

where the integral over r is performed analytically and
Rnl is the radial part of φnl. In the case of the 1s level
the integral over q2 can also be evaluated analytically.

Figure 2. Diagram corresponding to the Vacuum polarization
at one loop (Uehling potential). Dashed lines correspond to
the Coulomb interaction, plain lines to the electron wavefunc-
tion and the cross to the interaction with the nuclear charge.

The muonic vacuum polarization (in which the e+e−

loop is replaced by a µ+µ− loop) is evaluated by replacing
the electron mass me by the muon mass in Eq. (16).

In order to achieve a few ppm accuracy, we also calcu-
late the leading relativistic correction to the nonrelativis-
tic electronic vacuum polarization contribution, which is
done, in the framework of the Breit-Pauli approach, with
the exact mass dependence, representing the interaction
between the particles by the exchange of a massive pho-
ton. We integrate over this mass % which is equivalent,
through dispersion relation, to integrate over q. Follow-
ing the derivation in Ref. [31] §83 that provides Eq. (8),
but using Vvp(r) = −αr e

−%r instead of the Coulomb in-
teraction, we get:

V BP
vp (r) =

α

π

∫ ∞
4

d(%2)

%2
u

(
%2

m2
e

)
V BP

vp (r) (19)

with

V BP
vp (r) =

Zα

8

1

m2
p

(
4πδ3(r)− %2

r
e−%r

)
− Zα

4mpmπ

%2e−%r

r

(
1− %r

2

)
− Zα

2mpmπ
pi
e−%r

r

(
δij +

rirj
r2

(1 + %r)
)
pj

+
Zα

r3

(
1 + 2κ

4m2
p

+
1 + κ

2mpmπ

)
e−%r(1 + %r)(r × p) ·σ.

The hamiltonian becomes H = H0 + δH + V BP + Vvp +
V BP

vp ≡ H0 + W . We perform a perturbative expansion
in W up to second order and keep only the main terms
involving the massive photon. We get:

E(%) = 〈φnl|V BP
vp |φnl〉

+ 2〈φnl|(δH + V BP)
1

(E0 −H0)′
Vvp|φnl〉, (20)

which corresponds to the diagrams presented in Fig.
3. The reduced Coulomb Green function terms G′ =
〈r1| 1

(E0−H0)′ |r2〉 are calculated using the code written for

[19]. We finally integrate over the mass %

E =
α

π

∫ ∞
4

d(%2)

%2
u(

%2

me
2

)E(%). (21)
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Figure 3. Relativistic correction to vacuum polarization dia-
gram. Dashed lines correspond to the Coulomb interaction,
double line to the nonrelativistic propagator.

Figure 4. Two-loop vacuum polarization diagram. See Fig. 3
for explanations of the symbols used.

C. two loops vacuum polarization correction

The double vacuum polarization term (Fig. 4) corre-
sponds to the shift:

E = 〈φnl|Vvp
1

(E0 −H0)′
Vvp|φnl〉. (22)

Two-loop vacuum polarization (Fig. 5), known as the
Källén and Sabry contribution [32], involves a modified
photon propagator, in the same way as the one loop one
(14):

ω̄(2)(−p2) =
(α
π

)2
∫ ∞

4

d(q2)
−p2

q2(m2
eq

2 + p2)
u(2)(q2),(23)

where the potential u(2)(q2) is given by [32]. We can
proceed in a similar fashion as for the leading term, using
Eq. (17), with

V (2)
vp (r) = −Zα

r

(α
π

)2
∫ ∞

4

d(q2)

q2
e−meqru(2)(q2). (24)

We obtain:

E = 〈φnl|V (2)
vp |φnl〉 =

∫
d3r V (2)

vp (r)|φnl(r)|2. (25)

D. finite size effects

The leading size correction due to the proton or the
pion, for a ns level, from Eq. (9) is given in, e.g. [20] Eq.

Figure 5. Diagram corresponding to the Vacuum polarization
at two loops (Källén and Sabry potential). See Fig. 3 for
explanation of the symbols used.

Figure 6. Vacuum polarization correction to finite size effect
diagrams. See Fig. 3 for explanations of the symbols used.

(51) as

ENS(Zα, n) =
2

3

(
µr
mπ

)3
(Zα)4

n3
mπ

〈
r2
p + r2

π

〉
λ2

C

,

= 87.07547(58)
Z4
〈
r2
p + r2

π

〉
n3

meV,

(26)

where λC = 1.4138189 fm is the pion Compton wave-
length. The contribution of the proton to the shift is
61.710(99) meV using the proton charge radius from [22],
66.9(11) meV using [20] and 67.3(12) meV using [23].
The contribution from the pion is 39.32(94) meV, and
largely dominate the uncertainty on this correction. This
is to be compared with the uncertainty due to the pion
mass, which represents, e.g., 5.3 meV on the 2p−1s tran-
sition.

The main corrections to the leading finite-size contri-
bution are due to vacuum polarization, as illustrated by
diagrams “a” and “b” on Fig. 6, and are given by

Ea = −2

3

α

4π
Zα
〈
r2
p + r2

π

〉 ∫ ∞
4

d(q2)

q2
u(q2)

×
∫ ∞

0

drR2
nl(r)

(
r (meq)

2
e−meqr − δ(r)

)
, (27)

Eb = 2

(
2

3
πZα

)〈
r2
p + r2

π

〉
×
∫
d3r φnl(r)Vvp(r)G

′(r, 0)φnl(0). (28)

E. Self-energy

Except for an unpublished internal report [33], we are
not aware of any calculation of the pion self-energy. We
include it here. This correction correspond to the dia-
grams on Fig. 7. In this calculation, the part due to the
high-energy contribution (which corresponds to the parti-
cle form factor) is included in the finite size, as explained
for the proton case in [34]. This part must not be in-
cluded in the self-energy shift to avoid double counting.
The remaining low-energy part is known [28] and does
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Figure 7. Diagrams corresponding to the self energies of pion
and proton.

not depend on the particle spin value:

EπSE =
4

3πn3
α(Zα)4 µ

3

m2
π

×
[
− ln (k0(n, l)) + δl,0 ln

mπ

µ(Zα)2

]
(29)

where k0(n, l) is the Bethe logarithm. The proton self-
energy is obtained by replacing mπ by mp and by multi-
plying the right-hand side of (29) by Z2 [19, 34].

The finite size correction to the pion self-energy can be
estimated from Ref. [20], Eq. (54). It is very small, even
for the 1s level, and can be neglected at the present level
accuracy.

F. Additional recoil

We can go further, evaluating the pure recoil correc-
tion of order (Zα)5, calculated first by Salpeter [24],
which correspond to two-photon exchange (Fig. 8). In
our case, there is no theoretical framework for dealing
with diagrams at this level of the perturbative expan-
sion with overlapping strong and electromagnetic inter-
actions. Since the strong interaction overlap with the
electromagnetic one only at short distances [6], we have
to exclude local interactions but keep leading logarithmic
parts of the contributions that wouldn’t overlap with the
strong interaction. One can apply the formula from [35]
which expresses the leading logarithmic term and an ad-
ditional recoil term:

E =
(Zα)5

πn3

µ3

mpmπ

[
−2

3
ln(Zα)δl,0

−8

3
ln (k0(n, l))− 7

6
n3

〈
P

(
1

(µαr)3

)〉
nl

]
. (30)

P is a distribution function that subtracts the singularity
at the origin [35].

G. Hadronic QED corrections

Hadronic degrees of freedoms also contribute to the
QED energy of the atom. Vacuum polarization loops
with pions, for example, or the proton polarization have
pure electromagnetic effects that translate into small en-
ergy shifts. One must be careful, however, as in the
correction described in Sec. II F, not to calculate the
contribution in the region where the QED and strong in-
teraction correction overlaps. The hadronic polarization

Figure 8. Diagrams corresponding to the exchange of two
photons. See previous figures for explanations .

correction has been evaluated for hydrogen [36, 37], for
muonic hydrogen by Borie [38, 39] and more recently by
Friar and coll. [37] and Martynenko and Faustov [40–
42], using experimental data from e+ + e− → hadrons
collisions. Here we use the relation

EHadronic
VP = 0.671(15)EµVP (31)

from [37], to get −0.1874(42) meV.
We do not know of any proton polarization calculation

for pionic hydrogen, but it has been calculated by several
authors in muonic hydrogen [19, 41–43]. Carlson and
coll. have very recently calculated this correction for both
the hyperfine structure of muonic hydrogen [44, 45] and
for the 2s Lamb shift [46]. The value provided in Ref.
[41] for the 1s state is 0.144 meV and 0.018 meV for the
2s. Higher orders polarization corrections provided in
[42] are negligible. Using the 2s muonic hydrogen value
from Ref. [46] ∆Epp2s = −36.9 ± 2.4µeV, scaling it by
n3 = 8 gives ∆Epp1s = −295 ± 19µeV. We obtain the
pionic hydrogen value by doing a scaling with the pion
to muon reduced mass to the third power, we get a shift
of order −0.62 meV that we use with an uncertainty of
50%. There should be an additional contribution from
the pion polarizability. To account for it we increase the
polarizability error to 100% of the proton value.

III. RESULTS

The numerical values of the corrections evaluated in
Sec. II are presented in Table I, for 1s, 2p, 3p and
4p states and relevant hyperfine sublevels. It should be
noted that if hyperfine sublevels are statistically popu-
lated, the shift due to the hyperfine interaction averages
to 0 for transitions ending in an s state [48]. Adding the
Schrödinger equation solution from Eq. (11) we obtain
the transition energies presented in Table III, with an ac-
curacy of ≈2.3 ppm, dominated by the uncertainties on
the pion mass (2.2 ppm, for the 3p→ 1s transition) and
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Contribution Eq. no. 1s 2p 3p 4p
VP one loop (17) −3240.802(16) −35.79480(28) −11.406601(86) −4.920557(37)

Breit-Pauli interaction (7)–(8)
F = 1/2 −178.46117(32) −11.655153(37) −4.220937(13) −1.942614(6)
F = 3/2 −4.048290(4) −1.967051(3) −0.991756(2)

Finite charge radius (9)
p 61.710(99) 0 0 0
π− 39.32(94) 0 0 0

VP two loops (Källén & Sabry) −24.36484(11) −0.346025(3) −0.107956 −0.046283
Pion self energy (29) 5.656122(9) 0.003034 0.001144 0.000530
VP second order (22) −4.110407(25) −0.008161 −0.002472 −0.001034

Relativistic corr. to VP (21)
F = 1/2 −0.432480(2) −0.026426 −0.008588 −0.003710
F = 3/2 0.007631 0.002362 0.001008

VP corr. (b) to finite size (28)
p 0.29779(48) 0 0 0
π− 0.1898(46) 0 0 0

Proton & pion polarization −0.62(62) 0 0 0
Muonic VP (18) −0.279306(2) 0 0 0

Hadronic VP (31) −0.1874(42) 0 0 0
Proton self energy (29) 0.159247(2) 0.000067 0.000025 0.000012

VP corr. (a) to finite size (27)
p 0.14573(24) −0.000396 −0.000131 −0.000057
π− 0.0929(23) −0.000253(7) −0.000083(2) −0.000036

2 photons exchange (30) −0.130157 −0.003483 −0.000959 −0.000390
Klein-Gordon correction (10) −0.024083 −0.000079 −0.000033 −0.000015

Total correction
F = 1/2 −3341.8(16) −47.83168(32) −15.746591(99) −6.914155(43)
F = 3/2 −40.19076(29) −13.481756(89) −5.958579(39)

Table I. Contributions to pionic hydrogen level energies (meV), sorted by size. F is the total angular momentum. Numbers
in parenthesis represent uncertainty in the last digits. When absent, the uncertainty is smaller than 1 in the last digit. The
non-relativistic energy is not shown. The proton and pion size corrections are given in Eq. (26).

1s-level QED binding energy
This work −3238.2867(88)

Ref. [3] −3238.250
Ref. [7] −3238.264(9)

Table II. Theoretical QED ground state energy and compari-
son with previous calculations.

the charge radii (0.5 ppm). For the 1s QED binding en-
ergy the results are presented in Table II, together with
previous evaluations.

The energy of the photon emitted by an atom is slightly
reduced, compared to the energy difference between the
initial and final state, due to momentum and energy con-
servation: the atomic recoil consumes part of the avail-
able energy. Here, this correction is larger than our goal
accuracy, due to the high energy of the emitted photon
and low total mass of the atom. This correction is also
included in Ref. [17]. The corresponding values are pre-
sented in Table III for an atom initially at rest.

Using the present results and the experimental value
from Ref. [17] Eq. (14), we obtain a strong interaction
shift of −7.085 ± 0.013(stat.) ± 0.034(syst.) eV, instead
of 7.108 ± 0.013(stat.) ± 0.034(syst.) eV using the theo-
retical value from Ref. [7]. This does not improve much
the shift accuracy (0.75%), as it is dominated by the un-
certainty in the pion mass, the transition energy being
calibrated with electronic K X-ray transitions in Ar. Us-

Transition 2p→ 1s 3p→ 1s 4p→ 1s
Atomic recoil −0.0027 −0.0038 −0.0043

This work 2429.5477(89) 2878.8445(79) 3036.0984(76)
Theor. [7] 2878.812(8) 3036.072(9)
Theor. [17] 2878.808(8)
Exp.. [17] 2885.916(13)(33)

Exp. [18, 47] 2885.928(8)

Table III. Theoretical F -averaged energies of the emitted pho-
ton for np→ 1s transitions in pionic hydrogen (n = 2–4) (eV).
Numbers in parenthesis: total uncertainty due to the uncer-
tainties in the proton and pion charge radii (0.098 meV and
0.94 meV resp.) and in the pion mass, combined quadrati-
cally. The transition energies from Ref. [7] are corrected for
the pion mass value [21] (a ≈ 4 meV change). Our values in-
clude the contribution from the atom recoil when it emits the
photon.

ing the preliminary value from [18, 47], which is cali-
brated with pionic oxygen transition energies, we get a
shift of 7.0969(96)(10) eV (instead of 7.120 eV), with a
total relative accuracy of 0.14%. Because of this cali-
bration method, which use an energy proportional to the
pion mass, this new results depends only weakly on it.

In summary the present work uses non-relativistic
QED techniques to provide the most accurate evalua-
tion of pure-QED transitions energies in pionic hydro-
gen. Combined with recent experimental values, it al-
lows for a significant increase in the precision of the de-
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termination of the strong interaction shift and thus of
the π−p → π−p scattering length at low energy. Ob-
taining more accurate energies would require extending
effective theory like the one described in [6] to evaluate
strong and electromagnetic contributions to high-orders,
which is not currently possible, and an improved mea-
surement of the pion mass. Deducing improved values of
the isospin-independant scattering length from the shift
would moreover require more accurate measurements of
the low energy constant f1.
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