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We calculate the isotope shift of 21P0 − 21S0, 31S0 − 21S0 transitions and of the 21S0 ionization potential
in the four-electron beryllium atom. The achieved precision is high enough to make possible the accurate
determination of the nuclear charge radii from the experimental isotope shifts. This calls for corresponding
measurements and opens the window for determination of charge radii of heavier nuclei.
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I. INTRODUCTION

The determination of accurate charge radii from isotope
shifts in atomic transitions was first performed for hydrogenic
[1, 2], and later for He [3–5], Li [6–8] and Be+ systems [9–
11]. While for hydrogenic ions the nonrelativistic wave func-
tion is known exactly, for all other systems it has to be ob-
tained numerically, most often with the help of the variational
approach. Presently, nonrelativistic energies of the He atom
are known to more than 20 digits of accuracy [12–14], for Li
it is about 15 digits [15, 16], and very recently the precision
achieved for the Be atom reached 11 significant digits [17, 18].
The computation approach for four-electron systems is based
on explicitly correlated Gaussian (ECG) functions [19, 20]
and global optimization of more than 40 000 nonlinear param-
eters. All the corrections to energies, including finite nuclear
mass, relativistic and QED, are calculated as an expectation
value with this nonrelativistic wave function.

The isotope shift observed in atomic spectra results from
differences in the masses and charge distributions of the nu-
clei. For light isotopes the mass shift is about 4-5 orders of
magnitude larger than the shift caused by the finite size of the
nucleus (the so-called field shift). Since it is not possible to
separate the two effects experimentally, one has to rely on the
theoretical calculations of the mass shift to extract the field
shift effect from precise atomic spectroscopy. In this way one
determines the nuclear charge radius with respect to a well-
known stable isotope, for which the charge radius is known
from the electron scattering experiments.

In this work we perform the calculation of mass shift ef-
fects in transition energies of Be atoms with a precision more
than sufficient to determine the nuclear charge radius from the
experimental isotope shifts, once they become available. It
will enable verification of the results obtained from the spec-
troscopy of the Be+ ion, and also can be directly extended
to other four-electron systems, e.g. the boron cation B+ or
doubly ionized carbon C2+.

The most general approach to the calculation of energy
levels of light atomic systems is based on the expansion
in the fine structure constant α. The leading term is the
nonrelativistic energy. The higher order coefficients in α,
namely the relativistic mα4 and quantum-electrodynamics
(QED) mα5 corrections, are expressed as mean values of
some effective Hamiltonians, while electron correlations are

treated accurately by the use of explicitly correlated basis
sets. For three-electron systems, the most accurate solution
of the Schrödinger equation is obtained with the Hylleraas
basis functions [15, 16, 21]. In such systems, the accuracy
of the theoretical predictions for transition energies and iso-
tope shifts is limited by the approximate treatment of higher
order (mα6,7) QED corrections rather than by numerical in-
accuracies of the nonrelativistic wave function. Methods
with Hylleraas functions have been extended to four-electron
atomic systems, but only for some restricted selection of basis
functions, because of the significant difficulties in the evalu-
ation of fully-correlated integrals [22, 23]. Even more diffi-
cult integrals appear in the matrix elements of relativistic op-
erators. Unquestionably, significant efforts have to be made
to improve upon the Hylleraas approach, in order for it to
be practical for four-electron systems. Therefore, at present,
the method of choice for such systems is that based on ex-
plicitly correlated Gaussian (ECG) functions. The effective-
ness of the ECG functions in treating few-electron problems
has been demonstrated by many high-precision calculations
of the nonrelativistic energies of atomic and molecular sys-
tems [20, 24, 25]. For the beryllium atom the highest accu-
racy has been obtained using ECG functions [18, 19, 26–28].
In contrast to methods based on the Hylleraas functions, the
main advantage of the ECG method is that the underlying in-
tegrations are manageable and very fast in numerical evalua-
tions due to the compact formulas involving elementary func-
tions only. On the other hand, the Gaussian functions have the
drawback of improper asymptotic behaviour since they decay
too fast at long inter-particle distances. They also have an in-
correct short-range form and fail to correctly describe the Kato
cusp. However, the two flaws can be overcome if one employs
a sufficiently large and well-optimized ECG basis set. The is-
sue is subtler in calculations of relativistic and QED proper-
ties, where the local inaccuracies of the wave functions result
in significant numerical uncertainties of mean values. One
has to very carefully optimize over a huge number of the vari-
ational parameters matching local behaviour of the exact wave
function as accurately as possible and employ dedicated tech-
niques that accelerate the convergence of singular operators
[29]. It is a time-consuming process, but the continuously on-
going advancements in accessible computing power and the
development of new algorithms dedicated to multi-threaded
and parallel architecture makes the extensive optimization of
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the Gaussian exponents computationally feasible even for sys-
tems with more than four electrons [20].

II. ENERGY LEVEL EXPANSION IN THE FINE
STRUCTURE CONSTANT

The energy level is considered as a function of the fine
structure constant α being expanded in a power series

E(α) =
∑
n

E(n) , E(n) ∼ mαn, n = 2, 4, 5, 6, . . .(1)

We perform also an expansion in the reduced electron mass to
nuclear mass ratio η = −µ/M(∼ m/M)

E(n) =
∑
k

E(n,k) , E(n,k) ∼ mαnηk, (2)

(k = 0, 1, 2, . . . ) and each coefficient E(n,k) is calculated
separately from an expectation value of the corresponding ef-
fective Hamiltonian.

The leading order E(2) is obtained from the non-relativistic
Hamiltonian in the center-of-mass system

H(2) =
∑
a

p2
a

2m
+
p2
N

2M
−
∑
a

Z α

ra
+
∑
a<b

α

rab
, (3)

with ~pN = −
∑
a ~pa. In order to extract a dependence on the

finite nuclear mass M , all momenta and distances are scaled
following the rules

~p→ ~p (1 + η) , ~r → 1

1 + η
~r . (4)

Then, the transformed nonrelativistic Hamiltonian (3) is given
by

H(2) = (1 + η)

(
H0 − η

∑
a<b

~pa · ~pb
m

)
. (5)

The leading termE(2,0) ≡ E0 is a solution of the Schrödinger
equation H0Ψ = E0Ψ with the clamped nucleus Hamiltonian

H0 =
∑
a

(
p2
a

2m
− Zα

ra

)
+
∑
a<b

α

rab
. (6)

The mass polarization effect in Eq. (5) is included perturba-
tively. It leads to the first order correction to the wave function
Ψ̃ = Ψ + η δΨmp with

δΨmp = − 1

E0 −H0

∑
a<b

~pa · ~pb
m

Ψ . (7)

Let us introduce the following shorthand notation 〈. . .〉 =
〈Ψ| . . . |Ψ〉 and 〈. . .〉mp = 2 〈Ψ| . . . |δΨmp〉. The first and the

second order nonrelativistic recoil coefficients can be written
as

E(2,1) = η

(
E(2,0) −

∑
a<b

〈
~pa · ~pb
m

〉)
, (8)

E(2,2) = −η2
∑
a<b

(〈
~pa · ~pb
m

〉
+

1

2

〈
~pa · ~pb
m

〉
mp

)
. (9)

In calculations of relativistic effects for singlet states, the
spin-spin interaction and the spin-orbit coupling terms vanish
in the effective Breit-Pauli Hamiltonian [30]. We also do not
consider the hyperfine structure. The final relativistic Hamil-
tonian is of the form

H(4) =
∑
a

H(4)
a +

∑
a>b

H
(4)
ab +

∑
a

H
(4)
aN , (10)

H(4)
a = − ~p4

a

8m3
, (11)

H
(4)
ab = α

{
π

m2
δ3(rab)−

1

2m2
pia

(
δij

rab
+
riab r

j
ab

r3
ab

)
pjb

}
H

(4)
aN = −Z α

{
− 1

2mM
pia

(
δij

ra
+
ria r

j
a

r3
a

)
pjN

−2π

3

(
〈r2

ch〉+
3

4m2

)
δ3(ra)

}
. (12)

All terms in Eq. (10) are treated as perturbations. Elements
free of the nuclear mass and the rms radius 〈r2

ch〉 contribute
to E(4,0) as mean values with the unperturbed wave function
Ψ. Coefficient E(4,1) comprises terms proportional to η re-
sulting from the scaling from Eq. (4) and the evaluation of the
expectation value of H(4) with the perturbed wave function
Ψ̃. Relativistic finite nuclear mass terms of order O(mα4η2)
have been abandoned as negligible.

Analogously, the leading QED corrections E(5,0), E(5,1)

are determined based on the known formulas [31, 32]

E(5) = −4Z α2

3

(
1

m
+
Z

M

)2 〈∑
a

δ3(ra)
〉

ln k0

+
∑
a

〈H(5)
aN 〉+

∑
a>b

〈H(5)
ab 〉+ Epol, (13)

H
(5)
aN =

(
19

30
+ ln(α−2)

)
4α2 Z

3m2
δ3(ra) (14)

+

(
62

3
+ ln(α−2)

)
(Z α)2

3mM
δ3(ra)

− 7

6π

m2

M
(Z α)5 P

(
1

(mαra)3

)
,

H
(5)
ab =

α2

m2

(
164

15
+

14

3
lnα

)
δ3(rab) (15)

− 7

6π
mα5 P

(
1

(mαrab)3

)
,

where the Bethe logarithm and the Araki-Sucher distribution
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are defined by

ln k0 =

∑
a,b

〈
~pa (H0 − E0) ln

[ 2 (H0−E0)
α2m

]
~pb
〉

2π αZ
∑
c

〈
δ3(rch)

〉 , (16)

〈φ|P
(

1

r3

)
|ψ〉 = lim

a→0

∫
d3r (17)

φ∗(~r)

(
1

r3
Θ(r − a) + 4π δ3(r) (γ + ln a)

)
ψ(~r) .

At present, complete numerical evaluation of the mα6 cor-
rections for a four-electron system is unfeasible. Full calcu-
lations of the E(6) have been performed only for one- [33]
and two-electron systems [34]. From this experience we ob-
serve that the E(6) factor can be reasonably estimated using
its dominating contribution built of one-electron terms

E(6) ≈
{
Z2 α3

m2

(
427

96
− 2 ln(2)

)
+
Z2 α3

mM

(
35

36
− 448

27π2
− 2 ln(2) +

6ζ(3)

π2

)
+
Z3 α3

mM

(
4 ln(2)− 7

2

)}
π
∑
a

〈
δ3(ra)

〉
. (18)

The above formula consists of electron-nucleus one-loop ra-
diative, radiative recoil, and pure (no-loop) recoil correc-
tions [33]. The electron-electron radiative corrections and
the purely relativistic mα6 corrections were neglected. As
in [18], the approximate treatment of E(6) is the main source
of uncertainty in the overall error budget.

The nuclear recoil corrections mα6 η represented by coef-
ficient E(6,1) are obtained from Eq. (18) in a procedure anal-
ogous to that described above for E(4,1) and E(5,1). Although
the radiative recoil effect is negligible in the case of the tran-
sition energy calculations, it is still significant for the isotope
mass shift. Again, the approximate form employed to estimate
this contribution introduces some uncertainty in the determi-
nation of the isotope shift.

In addition to the above corrections resulting from the en-
ergy expansion (1)-(2), we included a term corresponding to
the nuclear polarizability correction Epol. It comes from ex-
citation of the nucleus by electrons orbiting in the atom. The
relevant formula [7] relating the electric dipole nuclear transi-
tion moment with the shift of atomic energy levels reads

Epol = −mα4
∑
a

〈
δ3(ra)

〉
(m3 α̃pol), (19)

where α̃pol is a weighted electric polarizability of the nucleus
[7]. This correction has been calculated from the so-called
B(E1) function for beryllium isotopes 9,11Be+ [11, 35]. In
contrast to the beryllium ion calculations [11], we use in Eq.
(19) the expectation value of the Dirac-δ operator of the neu-
tral beryllium atom.

Following the convention introduced for E(n,m), formulas
for related contributions to the transition energy and to the

isotope mass shift are given by

ν(n,m)(X → Y ) = E(n,m)(X)− E(n,m)(Y ) (20)

∆ν(n,m)(A,B) = ν(n,m)(A)− ν(n,m)(B) . (21)

One of the main goals of this work was to present data which
enable determination of the nuclear charge radius of one iso-
tope, say A with respect to B

δr2
ch = 〈r2

ch〉A − 〈r2
ch〉B . (22)

δr2
ch can be determined from the difference between the ex-

perimental and theoretical isotope mass shifts

∆νexp −∆νthe
ms = C δr2

ch (23)

provided that the C constant is known. To determine this con-
stant we consider various corrections due to the finite nuclear
size. The leading rch-dependent corrections consist of the
mα4 terms extracted from the Eq. (12)

E
(4,0)
fs =

2π

3
Z α 〈r2

ch〉
∑
a

〈δ3(ra)〉 (24)

and

E
(4,1)
fs =

2π

3
Z α 〈r2

ch〉 η

(
3
∑
a

〈δ3(ra)〉+
∑
a

〈δ3(ra)〉mp

)
.

(25)

We include also the logarithmic relativistic correction to the
wave function at the origin

E
(6,0)
fs,log = −(Z α)2 ln(Z αm 〈r2

ch〉)E
(4,0)
fs . (26)

Our recommended value of the constant C is obtained as a
sum of three components C = C(4,0) + C(4,1) + C

(6,0)
log .

III. NUMERICAL CALCULATIONS

In numerical calculations we use dimensionless energies
E(n,k) with the α and η factors pulled out, e.g. E(n,k) =
mαnηk E(n,k). The same can also be done for all terms in the
effective Hamiltonian H(n,k) = mαnηkH(n,k) entertaining
transformations p→ mαp and r−1 → mαr−1.

As an extension of our previous nonrelativistic results for
21S and 21P states [18], we present herein results for the 31S-
state. We employed the ECG basis functions of progressively
doubled size from 512 to 4096 terms. The sequence of ener-
gies obtained for several basis sets enables estimation of the
final energy error. The energy obtained from the largest basis
is of comparable accuracy to the value published a few years
ago by Stanke et al. [27], but size of our basis set has been
significantly reduced thanks to the thorough optimization.

Apart from finding the best possible energy and the wave
function of the unperturbed atom, one of the most crucial parts
of our perturbative calculations of the isotope mass shift is an
accurate representation of the mass polarization correction to
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the wave function, δΨmp, of Eq. (7). This correction can be
found as a solution of the inhomogeneous equation

(E0 −H0)δΨmp = −
∑
a<b

(
~pa · ~pb − 〈~pa · ~pb〉

)
Ψ . (27)

The operator ~pa · ~pb changes neither the orbital angular mo-
mentum nor the spin symmetry of Ψ. This means that δΨmp

can be expressed using basis functions of the same symme-
try as Ψ. The variational parameters of such a basis can
be determined in a minimization of the symmetric quantity
J [δΨmp] = 〈

∑
a<b ~pa · ~pb〉mp. In our approach, the basis set

for δΨmp is divided into two sectors. The first sector is built
of the known basis functions with the nonlinear parameters
determined in the minimization of E0. For this purpose we se-
lected one of the previously generated basis sets of size equal
to half of the final size of Ψ. The nonlinear parameters of
this basis remain fixed during the optimization in order to en-
able accurate representation of the states orthogonal to Ψ. The
second sector, of size equal to that of the final Ψ, consists of
basis functions that undergo optimization with respect to the
functional J . Due to the more complicated structure of the
first order function, both the convergence and the cost of the
optimization are less favourable than in the case of the unper-
turbed wave function optimization. The first order correction
function δΨmp obtained in the procedure sketched above is
subsequently employed to evaluate all the mass polarization
corrections for the relativistic and QED operators.

Direct use of formulas (10) and (13) for relativistic and
QED operators leads to a slow numerical convergence of its
mean values, since they are sensitive to local inaccuracies
of the wave function Ψ and the mass polarization correc-
tion δΨmp. This spurious effect is especially observable with
the ECG functions having improper short-distance behaviour.
The solution is to employ the regularized matrix elements fol-
lowing Drachman‘s recipes [36]. Pertinent expressions for the
relativistic operators, including those with the mass polariza-
tion correction, have been presented in Appendix A. Below
we provide the set of formulas for the Araki-Sucher distribu-
tion P (r−3). The expression for P (r−3

ab ) has been derived in
Ref. [29]

[P (r−3
a )]r = 4π (1 + γ) δ3(ra) (28)

+ 4 (E0 − V) r−1
a ln ra − 2

∑
b

~pb r
−1
a ln ra ~pb ,

[P (r−3
ab )]r = 4π (1 + γ) δ3(rab) (29)

+2 (E0 − V) r−1
ab ln rab −

∑
c

~pc r
−1
ab ln rab ~pc .

where V is a dimmensionless Coulomb potential. Such a reg-
ularized operator, denoted as [...]r, has exactly the same ex-

pectation value as the operator inside the square brackets if
the exact wave function is used.

In the regularized form of the second order elements
〈...〉mp, there are additional first order terms to be evaluated
following the formula:

〈P (r−3
ab )〉mp = 〈[P (r−3

ab )]r〉mp (30)

+2
∑
c<d

(
〈~pc · ~pd r−1

ab ln rab〉 − 〈~pc · ~pd〉〈r−1
ab ln rab〉

)
.

The Bethe logarithm and its mass polarization correction
is computationally the most demanding term in this work. It
involves numerical evaluation of the integrand in 200 points
in the method based on the integral representation introduced
by Schwartz [37, 38]. Recently, we have obtained the Bethe
logarithms for the 21S and 21P states [18], whereas here we
present a new result for the 31S state. The method of evalua-
tion of the mass polarization correction to the Bethe logarithm
was originally applied to the helium atom [39]. We have re-
cently extended this approach to the lithium atom [8], and we
follow this approach here.

IV. RESULTS

Numerical results for all operators necessary to evaluate the
transition energies and the isotope shifts with the 21S, 31S
and 21P states of the beryllium atom are presented in Table I.
In calculations of the isotope mass shift of the ionization en-
ergy, we use the numerical values obtained previously with the
Hylleraas basis functions [11] for the Be+ ion. These values
appear to be determined with much higher numerical preci-
sion than that accessible from the ECG approach. In Table I,
some of the first order quantities 〈...〉 for the 21S and 21P
states come from our former work [18]. For a given operator
the final value is assessed in an extrapolation from a series of
basis sets of progressively doubled size. We have used up to
4096 basis functions to represent the 21S and 31S states in
the first order expectation value as well as in the mass polar-
ization corrections 〈...〉mp. The exception is the Bethe loga-
rithm calculated with, at most, 2048 basis functions. For the
21P state the most accurate results have been acquired from
a 6144-term basis, but only for the first order terms. The ex-
pressions for the expectation values in the 1P states are much
more complex compared to those of the 1S states, and thus
accurate determination of the mass polarization corrections
is very time-consuming. We obtained these corrections with
3072-term functions, and the Bethe logarithm calculations in-
volved up to 1536 basis functions.

Table II contains dimensionless coefficients of the energy dif-
ference ensuing from the expansion (1)-(2), which have been

computed on the basis of the data collected in Table I. These



5

TABLE I: Mean values for 21S, 31S and 21P of the beryllium atom.

Operator 21S 31S 21P
〈. . .〉 〈. . .〉mp 〈. . .〉 〈. . .〉mp 〈. . .〉 〈. . .〉mp

H0 −14.667 356 498(3) −14.418 240 37(5) −14.473 451 37(4)
~pa · ~pb 0.460 224 112(8) 7.702 088 9(11) 0.450 500 94(9) 6.930 24(12) 0.434 811 25(13) 8.291 95(5)
~p 4
a 2 165.630 1(9) 138.347(6) 2 148.339 7(18) 122.58(18) 2 133.321 1(12) 195.83(11)

δ3(ra) 35.369 002 6(6) 1.274 91(17) 35.127 977(9) 1.039(5) 34.897 914 6(8) 2.268(3)
δ3(rab) 1.605 305 33(9) −0.417 38(9) 1.583 185 4(7) −0.425 2(6) 1.567 943 6(2) −0.335 7(5)

pia

(
δij

rab
+
riab r

j
ab

r3
ab

)
pjb 1.783 648 19(15) 19.320 040(3) 1.800 258 3(15) 18.243 7(5) 1.624 185 8(5) 19.278 7(8)

piN

(
δij

ra
+
ria r

j
a

r3a

)
pja 224.965 525(6) 222.843 53(7) 220.689 8(2)

1/r3ab −7.326 766(3) −0.305(7) −7.472 06(4) −0.12(5) −7.097 15(8) −1.978(9)
1/r3a −917.750 9(2) −911.495 2(9) −905.256(3)

ln(k0) 5.750 46(2) −0.130 9(2) 5.751 49(5) −0.126 7(7) 5.752 32(8) −0.128(3)

coefficients enable summation of the expansion for any iso-
tope. We show explicitly the results of such a summation for
the 31S−21S energy gap in the 9Be isotope (see column 3 of
Tab. II). A major contribution to the overall uncertainty of this
value comes from the assumption that the missing mα6 and
higher order terms contribute ca. 20% of the evaluated cor-
rection ν(6,0). For this transition we have obtained agreement
with the other theoretical calculation [27] as well as with the

experimental value [40]. Note, however, that theoretical re-
sults are currently significantly more accurate than measure-
ment results. The entries neglected in the third column of Ta-
ble II correspond to contributions that do not affect the abso-
lute transition frequencies. However, they are significant in
the isotope shift calculations. The results of analogous sum-
mation for the 21P − 21S transition and the 21S ionization
potential have already been given in [18].

TABLE II: Dimensionless coefficients of the energy difference expansion in powers of α and η. For 31S − 21S transition the coefficients
were explicitly converted to MHz using CODATA [41] inverse fine structure constant α−1 = 137.035 999 074(44) and the nuclear mass
mN (9Be) = 9.012 182 20(43) u [42]. The finite size correction ν(4,0)fs was calculated with rch(9Be) = 2.519(12) fm [43].

Contribution 31S − 21S (in MHz) 21P − 21S IP(21S)

ν(2,0) 0.249 116 13(6) 54 674.671(13) 0.193 905 149(8) 0.342 593 324(6)

ν(2,1) 0.258 839 3(2) −3.458 8 0.219 318 0(2) 0.349 898 28(3)

ν(2,2) 0.395 65(6) −0.269 541(12) 0.677 212(4)

ν(4,0) 0.569 5(8) 6.65 6(9) 1.041 2(2) 0.634 38(12)

ν(4,1) 0.632(8) −2.060(3) 0.926 4(5)

ν(5,0) −5.945(10) −0.507(1) −11.849(16) −6.542(5)

ν(5,1) −4.74(15) 28.86(15) −7.36(5)

ν(6,0) −37.(7) −0.023(4) −73.(15) −41.(9)

ν(6,1) −180.(90) −167.(84) −236.(118)

ν
(4,0)
fs −2.041 257〈r2c 〉 −0.0010 −3.946 571〈r2c 〉 −2.211 142〈r2c 〉
Total 54 677.337(17)

Theor. [27] 54 677.378(30)
Exp. [40] 54 677.26(10)

The expansion coefficients ν(n,1), n = 2, 4, 5, 6 and ν(2,2)

of Table II can be used to evaluate subsequent contributions
to the isotope mass shift ∆νthe

ms . An example of such an eval-
uation for 11Be–9Be shift is presented in Table III. We ob-
serve that the leading nonrelativistic contribution gives at least
99.9% of the total isotope shift. The relativistic and QED re-
coil corrections are small but still important. The uncertainty
of our ∆νthe

ms comes in 50% from ∆ν(6,1), in 10% from ∆νpol,
and in the remaining part from several smaller contributions.
The nucleus polarizability α̃pol has been determined based on
B(E1) data [11, 35] and is used here to obtain the shift of
energy levels Epol. Calculating coefficient C we included the

finite mass correction as well as the logarithmic relativistic
correction, resulting in a small isotope dependence. The un-
certainty of C coefficients comes from the estimation of the
relativistic correction to the wave function at the origin, which
is about 25% of the logarithmic part. This completes the the-
oretical results necessary for the nuclear charge radii determi-
nation of the beryllium isotopes.
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TABLE III: Contributions to the 11Be - 9Be isotope shift of 31S −
21S, 21P − 21S transition and ionization potential IP(21S) in
MHz, with excluding the finite size correction. The second uncer-
tainty of ∆νthems is due to the atomic mass. The nucleus polariz-
ability α̃pol(

11Be) = 6.90(69) 10−7 m−3 [11], α̃pol(
9Be) =

2.90(29) 10−7 m−3[35] .

Contribution 31S − 21S 21P − 21S IP(21S)

∆ν(2,1) 18 907.131(15) 16 020.271(15) 25 558.619(2)

∆ν(2,2) −3.198 2(5) 2.178 8(1) −5.474 2

∆ν(4,1) 2.46(3) −8.013(12) 3.604(2)

∆ν(5,1) −0.135(4) 0.819(4) −0.209(2)

∆ν(6,1) −0.037(19) −0.035(18) −0.049(25)
∆νpol 0.034(3) 0.066(7) 0.037(4)

∆νthe
ms 18 906.33(4)(1) 16 015.29(3)(1) 25 556.53(3)(1)

C(MHz/fm2) −4.772(8) −9.334(16) −5.225(9)

V. CONCLUSION

The principal motivation for this work was to provide the-
oretical means for determination of the nuclear radii from the
isotope shifts of transition lines 21P − 21S, 31S − 21S and
ionization potential of 21S state. The uncertainty of our calcu-

lations for beryllium isotope mass shifts is dominated by the
numerical uncertainty of ∆ν(n,1), n = 2, 4 and the estimation
of unknown terms of order mα6 η, which amounts to 30-40
kHz. This is sufficient to determine the mean square charge
radii difference with a precision of about 0.003 fm2, which
is much less than the uncertainty in the charge radius of the
reference nucleus. The beryllium rms charge radii of 7,10-12Be
have already been obtained relative to the only stable 9Be nu-
cleus from the D1 and D2 transition lines in three-electron
Be+ [9, 44]. The results provided herein can be employed
for a consistency check with corresponding values extracted
from presumably more accurate transitions in atomic beryl-
lium. More important however, is that the analogous results
can be can obtained for the beryllium-like ions, such as the
boron cation B+ or carbon cation C2+.
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Appendix A: Regularization of relativistic operators

In this section we present regularization formulas. The fol-
lowing three new operators, denoted by [. . . ]r, are defined:

∑
a

[p4
a]r = 4 (E0 − V)2 − 2

∑
a<b

~p 2
a ~p

2
b , (A1)

4π [δ3(ra)]r = 4 (E0 − V) r−1
a − 2

∑
b

~pb r
−1
a ~pb , (A2)

4π [δ3(rab)]r = 2 (E0 − V) r−1
ab −

∑
c

~pc r
−1
ab ~pc. (A3)

For the exact wave function the following expectation value identities are valid:∑
a

〈p 4
a 〉 =

∑
a

〈[p 4
a ]r〉 , (A4)

〈4π δ3(ra)〉 = 〈4π [δ3(ra)]r〉 , (A5)
〈4π δ3(rab)〉 = 〈4π [δ3(rab)]r〉 , (A6)∑

a

〈p 4
a 〉mp =

∑
a

〈[p 4
a ]r〉mp − 8

∑
a<b

(
〈~pa · ~pb V〉 − 2 E0 〈~pa · ~pb〉

)
, (A7)

〈4π δ3(ra)〉mp = 〈4π [δ3(ra)]r〉mp + 4
∑
b<c

(
〈~pb · ~pc r−1

a 〉 − 〈~pb · ~pc〉〈r−1
a 〉
)
, (A8)

〈4π δ3(rab)〉mp = 〈4π [δ3(rab)]r〉mp + 2
∑
c<d

(
〈~pc · ~pd r−1

ab 〉 − 〈~pc · ~pd〉〈r
−1
ab 〉
)
. (A9)

For an approximate wave function, the right hand side con-
verges faster to the exact value than does the conventional ex-

pression on the left hand side.


