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and

Krzysztof Pachucki3

Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland

Abstract: The Simon-Zhislin-Hunziger theorem implies that Zc, the critical charge below which the three

electron atom is not bound, is at most 2. The vanishing electron affinity of He implies that Zc is not less

than 2. Hence, Zc = 2. To elucidate the approach to the critical charge, we calculated non-relativistic

binding energies for the third electron in the ground state, 1s22s 2S, and in the first and second excited

states, 1s22p 2P and 1s23s 2S for nuclear charges approaching Zc. At this limit the quantum defects for

both 2S states are found to approach unity. This implies that the orbital specifying the outer (ns, n = 2, 3)

electron becomes a very diffuse (n − 1)s-type orbital, except within the relatively tiny space occupied by

the inner two-electron shell. For the 2P state the quantum defect approaches zero both as Z → ∞ and as

Z → 2. An expression for the s-p splitting at Z → 2 is suggested, that improves upon earlier results based

on energies computed (or measured) at integer values of Z. Rigorous large Z asymptotic expressions for

the quantum defects in the 1s2ns 2S states are presented, exhibiting the expected mild dependence on the

1email: jkatriel@technion.ac.il

2email: Mariusz.Puchalski@fuw.edu.pl

3email: Krzysztof.Pachucki@fuw.edu.pl

1



principal quantum number.

1 Introduction

Insightful clues to the understanding of the relative magnitudes of the energy components that contribute

to the s-p splitting in the lithium (and similar) isoelectronic sequences are provided by a consideration of

the two limits, as the nuclear charge Z grows to infinity on the one hand and as it approaches the critical

charge below which the third electron is not bound, on the other [1]. Whereas the former limit is simply

provided by 1
Z

-perturbation theory, the latter requires a more subtle analysis [2]. Current efforts to improve

the (already very impressive) accuracy of computed energies and wavefunctions for light atoms, that are

driven by the need to obtain sufficiently precise values for the higher-order QED terms [3, 4], provide the

computational procedure used in the present article.

Ionization energies are computed for the three-electron isoelectronic sequences 1s22s 2S, 1s23s 2S and

1s22p 2P as well as for the two-electron isoelectronic sequences 1s2s 1,3S and 1s2p 1,3P , emphasizing Z

values approaching the critical charge. For the ground 2S state of the three-electron system our energy

values are essentially in agreement with Feldmann and King [5] as well as with Guevara and Turbiner [6].

Our reservations concerning both reference [5] and reference [6] are specified below.

The computed ionization energies allow the evaluation of the quantum defect for the outermost electron,

which, upon approaching the critical charge, turns out to approach unity in the three-electron 2S states, but

zero in the 2P state.

Similar behavior is observed for the He isoelectronic sequence: when the nuclear charge approaches its

critical value (that for the singly excited states is equal to unity) the quantum defect of the outer electron

approaches unity in the 1sns 1,3S (n ≥ 2) states, but it approaches zero in the 1snp 1,3P states. These

results suggest that an essential aspect of the behavior of alkali atoms in that limit is captured by the hard

core model studied by Parsons and Weisskopf [7], which completely ignores both correlation and the effect

of the outer electron on the core. The threshold behavior of the photodetachment cross-sections of negative

ions has been interpreted in terms of a similar insight into the form of the outgoing electron (continuum)

wavefunction [8].
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The asymptotic forms of the quantum defects suggested by the presently obtained energies yield a phys-

ically meaningful expression for the behavior of the 2s-2p splitting upon approaching the critical charge.

2 The critical charge

If the nuclear charge of an N -electron atom is allowed to decrease continuously, a certain critical charge is

encountered below which the N ’th electron ceases to be bound. The evaluation of this critical charge for the

isoelectronic sequences of most members of the periodic table has been studied by several authors, some of

whom are referred to below.

Most (neutral) atoms have positive electron affinities, i.e., they form bound singly-negative ions. Closed-

shell atoms such as the rare gases (except the element Z = 118, closing the 7s27p6 shell [9]) and the closed

d-shell elements (Zn, Cd, Hg) do not form bound negative ions. It appears that bound doubly negative

atomic ions do not exist.

A theorem due to Simon [10], Zhislin [11] and Hunziger [12] states that N -electron atomic systems have

an infinite number of bound states if Z > N − 1, and at most a finite number of bound states if Z ≤ N − 1.

For the ground state of the He-isoelectronic sequence the critical charge had been determined fairly ac-

curately. The controvesy that still exists involves the fourth digit, beyond Zc ≈ 0.911 [6, 13]. Indeed, H− is

known to have a (single) bound state [14, 15, 16]. Upon approaching the critical charge the ionization energy,

whose square root determines the rate of the exponential asymptotic decay, vanishes. Nevertheless, it was

shown that at the critical charge the wavefunction remains bound (square-integrable), decaying asymptot-

ically as the exponent of the square root of r [17]. This mode of approach towards the critical charge has

been referred to as “absorbing”. A concise review is provided by Hogreve [18].

For the Li isoelectronic sequence the SZH-theorem cited above implies that the critical charge is at most

2. The fact that He has a vanishing electron-affinity implies that the critical charge is not less than 2.

This is consistent with an “expanding” mechanism implying that at Zc = 2 the outermost electron becomes

infinitely diffuse. This same behavior should be expected to hold for other isoelectronic sequences involving

atoms with a single electron outside a closed shell.

The claim made in reference [6] that the critical charge is strictly larger than 2 (Zc ≈ 2.0090) is probably

3



a consequence of the fact that these authors’ data analysis involves fitting the total three-electron 2S energy

rather than the much smaller ionization energy of the outermost electron, the quantity whose vanishing

determines the critical charge. Our non-vanishing binding energy for the 2s electron at Z = 2.001 (presented

in Table 4), and similar results for even lower Z by Feldmann and King [5] (which, as suggested below, are

in all likelyhood lower than the actual binding energies) are consistent with Zc = 2.

Inspection of ground state atoms may suggest that the “absorbing” mechanism, which (probably) charac-

terizes the behavior of isoelectronic sequences whose singly negative member is bound, is the more common

one. However, apart from a finite number of cases, singly excited states of N -electron atoms cease to be

bound when the nuclear charge equals N − 1, suggesting that the “expanding” mechanism (the outermost

orbital becoming infinitely diffuse) is the prevailing mode of detachment of the outermost electron upon

approaching the critical charge.

As an illustration we consider the 1s2s 1,3S and the 1s2p 1,3P states of the helium isoelectronic sequence,

whose ground state is “absorbing”. The pertinent results are presented in Tables 1 and 2, respectively. Upon

approaching the critical charge, Zc = 1, the binding energy of the outer electron in both P states approaches

the asymptotic form − (Z−1)2

8 , characterizing the expected “expanding” scenario. The binding energy of

the outer electron in the two S states approaches − (Z−1)2

2 as Z approaches the critical charge, although

the deviation from this asymptotic form takes place much more rapidly upon increase of Z. Hence, the 2s

electron behaves, close to the critical charge, like a diffuse 1s electron, whereas the 2p electron, occupying

the lowest possible orbital of that symmetry type, becomes a diffuse hydrogen-like 2p orbital at the same

limit. The rightmost columns of Tables 1 and 2 suggest that close to the critical charge the singlet-triplet

splittings satisfy

E(1S) − E(3S) ≈ 0.15 · (Z − 1)2.25

E(1P ) − E(3P ) ≈ 0.25 · (Z − 1)4.75 .

Attempting to estimate the critical exponent using the “natural” integer Z energies (Z = 2, 3, · · ·) a consid-

erably lower critical exponent is obtained. Thus, for the 1s2s 1,3S states such a fit yields E(1S) − E(3S) ≈

0.029 · (Z−1)1.25. It is tempting to conjecture that the actual limiting critical exponent for the 1,3P splitting

is 5, and that for the 1,3S splitting is possibly 5
2 .
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Atomic doubly excited states present a host of issues that are beyond the scope of the present discussion.

3 The quantum defect

For the outermost electron in alkali atoms (and corresponding isoelectronic ions) the ionization (binding)

energy is expressed, semi-empirically, in the form [19]

εn,` = −
(Z − N0)

2

2(n − δn`)2
. (1)

Here, N0 is the number of core electrons and δn` is referred to as the quantum defect. For a given isoelectronic

sequence the quantum defect is weakly dependent on the principal quantum number n but strongly dependent

on both the nuclear charge Z and the angular momentum quantum number `. The quantum defects presented

in reference [19] for the 3s and 3p states of the first four members of the Na isoelectronic sequence sharply

decrease upon increasing the nuclear charge, eventually tending to zero. Anticipating our results for the

Li isoelectronic sequence, we note that the values of the quantum defects in the Na isoelectronic sequence

referred to above are consistent with an extrapolation of the 3s quantum defect to 2.0, and the 3p quantum

defect to 1.0, upon decrease of Z to 10. This feature suggests that, close to the critical charge, the outermost

electron occupies (outside the relatively tiny 1s22s22p6 core) a (diffuse) 1s-like or a 2p-like hydrogenic orbital,

respectively.

The binding energies of the outer electron in the singly excited states of the He isoelectronic sequence,

reported in Tables 1 and 2, suggest that as Z approaches the critical charge the quantum defects are given

by

δ(1s2s 3S) ≈ 1 − 8.75(Z − 1)

δ(1s2s 1S) ≈ 1 − 3.30(Z − 1)

δ(1s2p 3P ) ≈ 0.6(Z − 1)2

δ(1s2p 1P ) ≈ 0.7(Z − 1)2

The slightly lower quantum defects in the triplet states, compared to the corresponding singlets, are manifes-

tations of Hund’s multiplicity rule. The values of the quantum defects suggest that the 2s orbital approaches,
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close to the critical charge, a hydrogenic 1s orbital, while the 2p orbital approaches a hydrogenic 2p orbital

in the same limit.

For the large Z members of an isoelectronic sequence the low order 1
Z

-perturbation theory is adequate.

Thus, for the He ground state [13], the Li 1s22s 2S and the Li 1s22p 2P [20] isoelectronic sequences, the

following are the leading terms

E(1s2 1S) = −Z2 +
5

8
Z + · · ·

E(1s22s 2S) = −
9

8
Z2 +

5965

5832
Z + · · · (2)

E(1s22p 2P ) = −
9

8
Z2 +

57397

52488
Z + · · · .

Hence, for the binding energies of the outermost electron in the 2S and 2P isoelectronic sequences we obtain

ε2s = −
1

8
Z2 +

290

729
Z + · · ·

ε2p = −
1

8
Z2 +

3074

6561
Z + · · · .

Expanding the expression for the binding energy, eq. 1 in terms of the quantum defect we obtain

εn` = −
(Z − 2)2

2 · (n − δn`(Z))2
≈ −

Z2

2 · n2
+

Z

2 · n2

(

4 −
2δ

(0)
n`

n

)

,

where, for large Z, δn` ≈ δ
(0)

n`

Z
+ · · ·. Comparing to the binding energies obtained by means of the 1

Z
-

perturbation theory it follows that

δ2s =
596

729 · Z
+ · · · ≈

0.8176

Z
+ · · ·

δ2p =
1652

6561 · Z
+ · · · ≈

0.2518

Z
+ · · · .

For the 1s23s 2S and the 1s24s 2S states one similarly obtains, using the Slater integrals F0(1s, ns) and

G0(1s, ns) (n = 3, 4) evaluated by Butler et al. [21] and by Golden [22],

εns = −
Z2

2 · n2
+ Z ·

(

2F0(1s, ns) − G0(1s, ns)
)

+ · · · ,

i.e.,

ε3s = −
Z2

8
+ Z ·

6331

32768
+ · · ·

and

ε4s = −
Z2

32
+ Z ·

1102802

9765625
+ · · · .
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The corresponding large Z quantum defects are

δ3s =
25671

32768 · Z
+ · · · ≈

0.7834

Z
,

δ4s =
7545672

9765625 · Z
+ · · · ≈

0.7727

Z
.

These results, together with δ2s, exhibit the (mild) dependence of the quantum defect on the principal

quantum number n (in the large Z limit). Evaluating the Slater integrals F0(1s, ns) and G0(1s, ns) for

hydrogenic orbitals with higher principal quantum numbers we obtain the quantum defects δns ≈ δ(0)
ns

Z
+ · · ·,

where

δ
(0)
5s ≈ 0.767889 δ

(0)
6s ≈ 0.765334 δ

(0)
7s ≈ 0.763809 δ

(0)
8s ≈ 0.762825

· · · δ
(0)
15s ≈ 0.760543 · · · δ

(0)
20s ≈ 0.760149

· · · δ
(0)
30s ≈ 0.759868 · · · δ

(0)
40s ≈ 0.759769

· · · δ
(0)
50s ≈ 0.759724 · · · δ

(0)
60s ≈ 0.759699

· · · δ
(0)
70s ≈ 0.759684 · · · δ

(0)
80s ≈ 0.759675

· · ·

In Table 3 we report our calculated binding energies for the outermost electron in the variuos three-

electron sequences considered, at large Z. The derived values of Z · δ2s appear to depend (for Z not too

low) roughly linearly on 1
Z

, yielding limZ→∞(Z · δ2s) ≈ 0.81. Similarly, limZ→∞(Z · δ2p) ≈ 0.25 and

limZ→∞(Z · δ3s) ≈ 0.78. These values are in agreement with those provided by first order perturbation

theory, presented above.

4 The 1s22s 2S isoelectronic sequence

The ground state energy of the lithium atom and isoelectronic ions has been one of the early targets of

computational quantum chemistry. A review of the early approaches is provided by Ritter, Pauncz and

Appel [23], who obtained ionization energies that agree to about 1% with the experimental results. Current

approaches [3, 4, 5] yield much higher accuracy.

Our results for the binding energies of the 2s, 2p and 3s electron in the low nuclear charge range (2 <

Z ≤ 3), are presented in Tables 4-6. These results were obtained using the quadruple precision version of the

7



procedure described in references [3, 4]. The higher Z energies presented in Table 3 were already referred to

in the previous section. Some results due to Feldmann and King [5] are appended at the bottom of Table 4.

For the 2s electron, the quantum defects at low Z are roughly consistent with the asymptotic expression

δ2s ≈ 1 − 0.6 · (Z − 2)
2
3 ; Z → 2 . (3)

Substituting in eq. 1 and expanding we obtain

ε2s ≈ −
(Z − 2)2

2
+ 0.6 · (Z − 2)

8
3 . (4)

The form of this expression is reminiscent of the Puiseux expansion proposed by Guevara and Turbiner [6].

The lowest Z calculation of Feldman and King [5] yields an unreasonable quantum defect. Use of the

asymptotic expression for the quantum defect, eq. 3, suggests that the ionization energy at Z = 2.000001

should be about 4.9994 · 10−13 a.u. , not 3.75 · 10−13 a.u. Our own results suffer from the same deficiency

already at Z = 2.001, where the 2s binding energy should probably be closer to 49 · 10−8 a.u. than to the

reported value, 36.6 · 10−8 a.u., in order to give rise to a reasonable quantum defect. Since these ionization

energies are the differences of the three electron and two electron ground state energies, the computations

reported in reference [5] imply an accuracy of some 13 digits. It is remarkable that the asymptotic values

of the quantum defect, as used here, provide such a sensitive measure of the ionization energy close to the

critical charge.

5 The 1s22p 2P isoelectronic sequence

The ionization energies of the 1s22p 2P state yield quantum defects that are very close to zero near the critical

charge. The negative quantum defects (i.e., 2−δ > 2) presented in Table 6 for the lowest values of Z suggest

that the computation of the corresponding ionization potentials is not sufficiently accurate. The values of

the quantum defects obtained imply an error in the third or fourth digit of the ionization energies, i.e., a

respective error in the eighth or nineth digit of the total energies. Assuming that the behavior suggested by

the quantum defect for somewhat higher nuclear charges is valid we write

δ2p ≈ 0.06 · (Z − 2)
3
2 .
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Hence,

ε2p ≈ −
(Z − 2)2

8
+ 0.007 · (Z − 2)

7
2 .

The asymptotic form ε2p ≈ − (Z−2)2

8 is adequate.

6 s-p splitting in the Lithium isoelectronic sequence

Using the asymptotic expressions, close to the critical charge, of the 2s and 2p ionization energies, the 2s−2p

splitting, i.e., the difference between the total (or ionization) energies of the 1s22p 2P and the 1s22s 2S states,

is given by

∆ε ≈
3

8
· (Z − 2)2 − 0.6 · (Z − 2)

8
3 .

This expression yields, via the Hellmann-Feynman theorem (differentiation with respect to the nuclear

charge), the difference of nuclear attractions

∆L ≈
3

4
· Z(Z − 2) − 1.6 · Z(Z − 2)

5
3 ,

and, via the virial theorem, the difference of interelectronic repulsions

∆C ≈ −
3

2
· (Z − 2) + 0.4(Z + 6) · (Z − 2)

5
3 .

It follows that close to the critical charge, where only the leading term matters,

∆C

∆L
≈ −

2

Z
,

hence

lim
Z→2

∆C

∆L
= −1 . (5)

This result was recently obtained on the basis of a postulated expression of the form α · (Z − 2)β for the low

Z behavior of the s-p splitting, which was crudely fitted to a few integer Z energies, yielding for the critical

exponent the value β ≈ 1.21 [1]. It appears that the higher critical exponent, 2, suggested by the present

analysis, can only be reliably estimated close enough to the critical charge, as was done in the present article.

The limiting ratio, eq. 5, does not depend on the value of the critical exponent, provided that it is larger

than unity.
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7 Conclusions

Highly accurate ionization energies were obtained for the 1s2s 1,3S and the 1s2p 1,3P states of the He

isoelectronic sequence and for the 1s22s 2S, 1s23s 2S and 1s22p 2P states of the lithium isoelectronic

sequence, in particular for nuclear charges approaching the critical charges, Zc = 1 and 2, respectively, as

closely as the stability of the computational procedure allowed. It was observed that as Z approaches the

critical charge the quantum defects corresponding to the computed ionization energies approach unity for

the S states and zero for the P states, in both the He and the Li isoelectronic sequences. This behavior can

be understood by noting that, close to the critical charge, the outermost electron occupies a diffuse orbital

that - most of the time - experiences the two core electrons as a tiny sphere screening the nuclear charge.

This behavior, as well as weaker support stemming from the analysis of experimental spectra of heavier

alkali metals, suggests the conjecture that limZ→Zc
δn` = N`, where N` is the number of `-type shells in the

core. Estimates of the asymptotic behavior of the quantum defects near the critical charge yield asymptotic

expressions for the ionization energies, and, consequently, the s-p splitting. The high Z limit of the quantum

defects was studied as well, providing an asymptotically rigorous assessment of the commonly claimed near

independence of the quantum defect on the principal quantum number.

The extraction of asymptotic features out of highly accurate computations near the critical charge appears

to suggest insights that would otherwise not be accessible.

Acknowledgement: The authors are grateful to Professor E. A. Halevi for a careful reading of the

manuscript.
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Table 1: The 2s binding energies in the 1s2s 1S and 1s2s 3S states of the He isoelectronic sequence

Z ε2s(
1S) ε2s(1S)

(Z−1)2 ε2s(
3S) ε2s(3S)

(Z−1)2
E(1S)−E(3S)

(Z−1)2.25

2.0 0.1459740 0.14597 0.17522938 0.17523

1.5 0.04141875 0.16568 0.05263081 0.21052

1.2 0.00838160 0.20954 0.01107373 0.27684 0.1006

1.1 0.00255789 0.25578 0.003348679 0.33487 0.1406

1.05 0.000773081 0.30923 0.0009732720 0.38931 0.1693

1.02 0.0001517148 0.37929 0.0001743921 0.43598 0.1702

1.01 0.0000422813 0.42281 0.0000468530 0.46853 0.1446

Table 2: The 2p binding energies in the 1s2p 1P and 1s2p 3P states of the He isoelectronic sequence

Z ε2p(
1P )

8·ε2p(1P )

(Z−1)2 ε2p(
3P )

8·ε2p(3P )

(Z−1)2
E(1P )−E(3P )

(Z−1)4.75

2.0 0.12384309 0.990745 0.13316419 1.06531

1.5 0.03122708 0.999267 0.03285671 1.05141

1.2 0.005021736 1.00435 0.005092757 1.01855 0.1484

1.1 0.001253514 1.00281 0.0012574865 1.00599 0.2234

1.05 0.000312855 1.00114 0.0003130254 1.00168 0.2575

1.02 0.0000500122 1.00024 0.0000500144 1.00029 0.2500

1.01 0.0000125008 1.00006 0.0000125009 1.00007 0.225
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Table 3: The 2s, 2p and 3s binding energies in the Li isoelectronic sequence - high Z behavior.

Z ε2s 2 − δ = Z−2√
2ε2s

Z · δ2s

14. 19.183252 1.93734 0.8773

13. 16.206234 1.93213 0.8823

12. 13.479248 1.92598 0.8882

11. 11.002307 1.91861 0.8953

Z ε2p 2 − δ = Z−2√
2ε2p

Z · δ2p

14. 18.317658 1.98258 0.2438

13. 15.411699 1.98131 0.2430

12. 12.755835 1.97984 0.2419

11. 10.350094 1.97813 0.2405

Z ε3s 3 − δ = Z−2√
2ε3s

Z · δ3s

14. 8.3315346 2.93971 0.8441

13. 7.0248252 2.93467 0.8492

12. 5.8292425 2.92873 0.8553

11. 4.7447916 2.92159 0.8625
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Table 4: The 2s binding energy in the Li isoelectronic sequence - low Z behavior. The bottom three lines

are from reference [5]

Z ε2s 2 − δ = Z−2√
2ε2s

1−δ

(Z−2)
2
3

3.0 0.19814691 1.58852

2.5 0.06053034 1.43704

2.2 0.01259749 1.26001 0.7603

2.1 0.003708863 1.16109 0.7477

2.05 0.001044725 1.09384 0.6914

2.02 0.000183315 1.04452 0.6042

2.01 0.0000472982 1.02816 0.6067

2.001 0.000000366

2.0001 4.992988 · 10−9 1.00070

2.00001 4.9963 · 10−11 1.00037

2.000001 3.75 · 10−13 1.1547

Table 5: The 3s binding energy in the Li isoelectronic sequence - low Z behavior.

Z ε3s 3 − δ = Z−2√
2ε3s

1−δ

(Z−2)
1
2

3.0 0.0741850 2.59613 0.5961

2.5 0.0209308 2.44378 0.6276

2.2 0.00390067 2.26436 0.5911

2.1 0.00106321 2.16858 0.5331

2.05 0.00028029 2.11179 0.4999
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Table 6: The 2p binding energy in the Li isoelectronic sequence - low Z behavior.

Z ε2p 2 − δ = Z−2√
2ε2p

δ

(Z−2)
3
2

3.0 0.130243 1.95933

2.5 0.0319970 1.97652 0.066

2.2 0.00503257 1.99352 0.072

2.1 0.00125241 1.998074 0.061

2.05 0.000312637 1.999562 0.039

2.02 0.0000499852 2.00030

2.01 0.0000124814 2.00149
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