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Nonadiabatic exponential functions are employed to solve the four-body Schrödinger equation.
Nonrelativistic bound energy levels of the HD molecule are calculated to the relative accuracy of
10−12−10−13, which is the first step toward highly accurate prediction of dissociation and transi-
tion energies. Such energies, in connection with equally accurate experimental data, will enable
refinement of the physical constant and aid the search for deviations caused by yet unknown
interactions at the atomic scale.

1 Introduction
For the hydrogen molecule and its isotopic variants, contempo-
rary spectroscopic measurements have reached the accuracy of
10−5-10−6 cm−1 for selected transition energies.1–7 However, dif-
ferent experiments do not always agree within the claimed accu-
racy. In particular, for the R(1) transition in the (2,0) overtone
band in HD, Cozijn et al.5 have determined this transition energy
to the accuracy of 7 · 10−7 cm−1 (20 kHz), whereas Tao et al.7

have reached the accuracy of 3 ·10−6 cm−1 (80 kHz) with results
that differ among themselves by about 3 · 10−5 cm−1 (900 kHz).
Theoretical calculations could resolve this discrepancy provided a
sufficient accuracy (of ca. 10−5 cm−1) is achieved. This requires
calculations of nonadiabatic corrections to the quantum electro-
dynamic contribution, which will be feasible in the near future.

The accuracy of theoretical predictions is ultimately limited by
uncertainties in the nucleus-electron mass ratios. For example,
the difference between the CODATA 2014 proton-electron mass
ratio (µp = mp/me) and the value reported most recently8 leads
to a difference of about 7 ·10−7 cm−1 (20 kHz) for the R(1) transi-
tion. This means that sufficiently accurate calculations of higher-
order quantum electrodynamical effects may lead to the improved
determination of the proton-electron mass ratio. Eventually, if
one observes any discrepancies that can not be accommodated by
physical constants, it will indicate the presence of yet unknown
interaction that goes beyond the Standard Model.

On the theoretical side, various relativistic and quantum elec-
trodynamic corrections have recently been calculated to a high
accuracy,9,10 but the principal problem up to now has been the
insufficient accuracy of nonrelativistic energy levels. The purpose
of this work is to present a method which enables the uncertainty
originating from the nonrelativistic energy to be practically re-
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Poland. E-mail: komasa@man.poznan.pl

moved from the overall energy budget. This method aims at the
precision level of 10−7 cm−1 for the dissociation energy of an ar-
bitrary rovibrational energy level.

From a historical point of view, our work is related to the clas-
sic paper by Kołos and Wolniewicz.11 Although, our formalism
differs significantly from the one used in their work, that article
deserves a mention as the first attempt of a fully nonadiabatic
description of the hydrogen molecule. Later on, the nonadia-
batic corrections for rovibrational levels were evaluated in frames
of the adiabatic approximation by Wolniewicz12 in 1995 and
by us13 in 2010. Two lowest nonrotational levels were studied
within a nonadiabatic formalism by Stanke et al.14 in 2009.

2 Theory

Our aim is to find highly accurate variational solutions to the sta-
tionary Schrödinger equation ĤΨ = EΨ for a heteronuclear di-
atomic molecule with the nuclei of charge ZA and ZB and finite
masses MA and MB. The four-body Coulomb Hamiltonian for such
a system, in atomic units and with a common notation, reads
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We search for both the eigenvalues E representing energy of
bound rovibrational levels and the eigenfunctions Ψ which will
be employed in future studies of relativistic and electrodynamic
energy corrections.

A properly constructed trial wave function must reflect all sym-
metries and angular momenta present in the molecule. We as-
sume that the rotational angular momentum of nuclei couples to
the electronic angular momentum, ~L, to form the total angular
momentum ~J of the molecule. Therefore, for a given rotational
level J the wave function ΨJ,M , which formally depends also on
M—the projection of ~J on the Z-axis in the laboratory frame, must
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involve ingredients describing the subsequent electronic states.
The quantum number Λ—the eigenvalue of the~n ·~L operator and
the inversion symmetry symbol g or u (for gerade or ungerade)
are employed to distinguish between such states: Σg,u, Πg,u, ∆g,u,
. . . Our Ansatz is a sum of components with growing Λ

Ψ
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where

Ψ
J,M
Σg,u

= Y J
M Φ

J
Σg,u

, for J ≥ 0 (3)
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and so on for the higher electronic angular momenta. In the
above equations we use the following notation

(ρ i
ρ
′ j)(2) ≡ 1

2
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where ~ρ,~ρ ′ ≡ ~ρ1 or ~ρ2, ni ≡ Ri/R and ρ i
a =

(
δ i j−nin j) r j

aB, with
the Einstein summation convention assumed. The Y J

M = Y J
M(~n)

denotes a spherical harmonic. The functions ΦJ
Λ

represent linear
expansions

Φ
J
Λ
= RJ

∑
{k}

c{k} (1+P12) Φ
J
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in the following nonadiabatic James-Coolidge (naJC) basis func-
tions

Φ{k} = e−α R−β (ζ1+ζ2) Rk0 rk1
12 η

k2
1 η

k3
2 ζ

k4
1 ζ

k5
2 (8)

with ζ1 = r1A + r1B, η1 = r1A− r1B, ζ2 = r2A + r2B, η2 = r2A− r2B,
and ~R =~rAB. The α and β denote nonlinear variational parame-
ters and ki are non-negative integers collectively denoted as {k}.
The basis functions with k2 + k3 even (odd) have the subscript g
(u).

The trial four-particle wave function defined above depends ex-
plicitly on interparticle distances only, i.e. it is translationally in-
variant and our results do not depend on the choice of the origin
in space.

Evaluation of the overlap and Hamiltonian matrix elements in
the naJC basis Φ{k} was described in detail elsewere15 and will
not be repeated here.

Due to the mutual orthogonality of the basis functions be-
longing to different electronic symmetries (〈ΦΛ|ΦΛ′〉 = δ Λ′Λ),
the overlap matrix N has a block-diagonal structure whereas
the Hamiltonian matrix H is block-band diagonal because〈
ΦΛ|Ĥ|ΦΛ′

〉
= 0 whenever |Λ−Λ′|> 1, see Eqs. (9) and (10).

N=



NΣgΣg 0 0 0 0 0 · · ·
0 NΣuΣu 0 0 0 0 · · ·
0 0 NΠgΠg 0 0 0 · · ·
0 0 0 NΠuΠu 0 0 · · ·
0 0 0 0 N∆g∆g 0 · · ·
0 0 0 0 0 N∆u∆u · · ·
...

...
...

...
...

...
. . .


(9)

H=



HΣgΣg HΣgΣu HΣgΠg HΣgΠu 0 0 · · ·
HΣuΣg HΣuΣu HΣuΠg HΣuΠu 0 0 · · ·
HΠgΣg HΠgΣu HΠgΠg HΠgΠu HΠg∆g HΠg∆u · · ·
HΠuΣg HΠuΣu HΠuΠg HΠuΠu HΠu∆g HΠu∆u · · ·

0 0 H∆gΠg H∆gΠu H∆g∆g H∆g∆u · · ·
0 0 H∆uΠg H∆uΠu H∆u∆g H∆u∆u · · ·
...

...
...

...
...

...
. . .


(10)

3 Solving the matrix equation

The matrix Schrödinger equation (H−EN)c = 0 can be solved
directly, e.g. by the inverse iteration method, or perturbatively by
utilizing the fact that all off-diagonal blocks are proportional to
the inverse of nuclear mass, and thus are small. The latter ap-
proach is particularly advantageous for very large basis sets—the
largest expansion employed in our calculations involved 445 498
basis functions. It is based on the Rayleigh-Schrödinger perturba-
tion expansion of the total energy

E = E(0)+E(2)+E(3)+E(4)+ . . . (11)

with respect to off-diagonal blocks. The superscript n in E(n) cor-
responds to the power of the off-diagonal blocks appearing in sub-
sequent energy corrections. The unperturbed energy E(0) = EΣg is
obtained from the 0’th order equation

(HΣgΣg −EΣg NΣgΣg)Ψ
J,M
Σg

= 0 (12)

and is numerically several orders of magnitude larger than all the
higher-order terms of the series.

The second-order term is expressed as the expectation value

E(2) =
〈

Ψ
J,M
Σg

∣∣∣V (EΣg)
∣∣∣ΨJ,M

Σg

〉
. (13)

with the perturbation operator defined by

V (E)=HΣgΣu

1
E−HΣu

HΣuΣg +HΣgΠg

1
E−HΠg

HΠgΣg +HΣgΠu

1
E−HΠu

HΠuΣg .

(14)
The third-order term reads

E(3) =
〈

Ψ
J,M
Σg

∣∣∣V (3)
∣∣∣ΨJ,M

Σg

〉
(15)
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where
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and involves a set of auxiliary operators appearing also in the
expressions for E(4) below
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The fourth-order term involves the contributions from ∆ states
and can be evaluated from
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(22)

This perturbation expansion converges very rapidly, so including
terms up to the fourth order appears to be sufficient to reach the
desired accuracy.

4 Technical details and the convergence
study

Calculations of the matrix elements as well as the linear alge-
bra were performed in octuple-precision arithmetic.16 Apart from
a trivial matrix elements parallelization, the linear algebra tasks
were also efficiently parallelized for use on both distributed and
shared memory systems. In the former case we applied the El-
emental library17 in connection with MPI communication proto-
col, whereas in the latter—the PLASMA library18 with OpenMP
interface. The multithreading has significantly lowered the time
limitations of our calculations, additionally, the distributed mem-
ory program has lifted the memory barrier.

The nonlinear parameters α and β of the basis function Φ{k}
(Eq. (8)) were determined variationally. All the basis functions
have a common α exponent but separate β exponents for differ-

ent Λ states. In the first step, the number of basis functions kmax
i

saturating the energy up to the 10−9 cm−1 threshold for given Λ

were determined. Next, optimal α and β Σg were found. With
these two exponents fixed, the β Σu , β Πg , and β Πu were optimized
independently. The basis functions of ∆ states appear in two vari-
ants necessary to make the wave function complete. One, for
which (ρ iρ ′ j)(2) of Eq. (6) has ρ = ρ ′, and the other with ρ 6= ρ ′.
Both variants feature their own β ∆g and β ∆u exponents optimized
in the presence of the other β s fixed.

As already mentioned, the E(0) contribution (see Eq. (11)) is
several orders of magnitude larger than the remaining ones. For
this reason, we made a special effort to converge this energy com-
ponent and we employed a double basis set for its description.
Such a double basis set was composed of two sets of basis func-
tions sharing the α exponent but having their own β Σg nonlinear
parameters. The optimal parameters and the number of expan-
sion terms were determined for both sets simultaneously.

An indispensable (and requiring serious additional effort) fea-
ture of the results of high-precision calculations is the estimated
uncertainty assigned to a final result. For basis functions capable
of forming a complete basis set, as it is in the present case, the un-
certainty can be determined from a convergence pattern obtained
by evaluation of the energy with a successively increasing expan-
sion of the wave function. As a key parameter employed to con-
trol the energy convergence we have selected the ’shell’ parameter
Ω. This parameter limits the number of basis functions included
in calculations to those fulfilling the inequality ∑

5
k=1 ki ≤Ω, while

the maximum of k0 is fixed at the kmax
0 value. The number of all

basis functions K which meet this condition grows nonuniformly
with Ω but ensures the saturation of the subsequent electronic
’shells’. The E(0) energy converges with growing K regularly ac-
cording to the inverse power law which permits a firm extrapo-
lation to the complete basis set and the estimation of the uncer-
tainty. The convergence of the consecutive energy components
E(2), E(3), and E(4) is less regular but also very rapid. As the final
uncertainty changes very slowly between neighboring levels, the
analysis of the convergence has been omitted for some of them.
The features of the convergence are illustrated by the data col-
lected in Table 1. The numerical convergence achieved for the
individual E(n) terms is of the order of 10−13 a.u. and slowly
grows with rotational or vibrational quantum number.

Another aspect of the convergence study is the saturation of
these energy terms with respect to the presence of the basis func-
tions with the growing quantum number Λ. For the nonrotational
states only Σg,u functions are required. However, with increasing
J, the contributions from the Πg and Πu functions become more
and more significant so that already for J = 3 their sum super-
sedes that from the Σu functions. The contribution from ∆g,u func-
tions become larger than 10−7 cm−1 already for levels with J ≥ 4,
but they appear only in the fourth and higher-order terms of ex-
pansion (11). Figure 1 shows graphically how the contributions
to dissociation energy from subsequent Λ states change with the
growing J quantum number. The expected contribution from the
Φg,u functions emerge only in terms E(6) and higher and may be-
come noticeable only for the highest rotational excitations, which
are not considered here. Therefore, we can safely claim that all
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Table 1 Convergence of the E(0), E(2), E(3), and E(4) components (in a.u.) with the size of the basis set for the (0,0) and (0,16) levels. For the former
level the E(3) vanishes

Ω K E(0) K E(2) ·107 E(3) ·109 E(4) ·1012

(0,0)

9 30 415 −1.16547171120265 31 843 −2.12715216 −2.233
10 45 045 −1.16547171123917 47 502 −2.12715184 −2.233
11 64 680 −1.16547171124514 68 712 −2.12715185 −2.233
12 90 860 −1.16547171124656 96 992 −2.12715181 −2.233
13 124 740 −1.16547171124687
14 171 360 −1.16547171124696
∞ ∞ −1.16547171124699(3) ∞ −2.1271518(1) −2.233

(0,16)

9 19 355 −1.11730246146666 70 089 −45.529370 1.515796 −499.944
10 28 665 −1.11730246150930 104 647 −45.529401 1.515800 −499.969
11 41 160 −1.11730246151685 151 524 −45.529403 1.515801 −499.991
12 57 820 −1.11730246151855 213 870 −45.529406 1.515802 −499.998
13 79 380 −1.11730246151895
14 107 100 −1.11730246151905
∞ ∞ −1.11730246151909(3) ∞ −45.529410(3) 1.515802(1) −500.01(1)

the energy levels presented in this work are saturated with respect
to the electronic angular momentum.

The next question to be asked, is how large is the error in en-
ergy introduced by cutting off the series of Eq. (11) after the
fourth term. Table 2 presents the individual E(n) contributions
for a few selected states. These contributions grow polynomially
with increasing J. For the v = 0,J = 16 level the E(4) contribu-
tion is of the order of 10−4 cm−1, and it is justified to ask whether
still higher-order terms are not necessary to guarantee the desired
accuracy. We note that each Hamiltonian contains the 1/µn fac-
tor. Hence, we can expect that E(5)/E(4) ≈ 1/µn or even less, as
observed in the case of the E(3)/E(2) relation, which is approx-
imately −3 · 10−4. The above question can also be answered by
a direct comparison of the energy obtained from the full matrix
diagonalization with the energy evaluated using Eq. (11). Results
of such computations in comparison with the simple scaling of
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Fig. 1 The contributions from Σu, Π, and ∆ states to the total nonrelativis-
tic dissociation energy as a function of the rotational quantum number J
(for v = 0).
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Fig. 2 The estimated contribution to the total nonrelativistic dissociation
energy from the omitted D(n), n ≥ 5 terms as a function of the rotational
quantum number J (for v = 0). The blue squares correspond to the com-
puted contribution from the omitted higher order terms and the red line to
the simple estimation D(5) ≈ D(4)/µn.

D(4) by the inverse of the nuclear reduced mass are shown in Fig-
ure 2. As we can infer from this figure, the contribution from the
omitted D(n), n ≥ 5 terms exceeds 10−8 cm−1 only for J ≥ 9 and
remains smaller than 10−7 cm−1 for higher J. On the basis of the
above arguments we conclude that even for the highest J con-
sidered here, the contributions from the neglected higher-order
energy components are smaller than 10−7 cm−1.

5 Numerical results
Table 3 contains the final nonrelativistic energies obtained for
41 rovibrational levels, which are located up to ca. 10000cm−1

above the ground level. The energy of remaining levels, obtained
in frames of the nonadiabatic perturbation theory (NAPT) with
the accuracy of ca. 0.0005cm−1, is available in ref. 13. For each
level, both the nonadiabatic eigenvalue Ev,J and the correspond-
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Table 2 Convergence of the eigenvalue expansion E = E(0)+E(2)+E(3)+E(4) in terms of the corresponding dissociation energy components (in cm−1)
for the selected levels of HD

Term v = 0,J = 0 v = 0,J = 1 v = 0,J = 16 v = 2,J = 2

D(0) 36406.46420530(1) 36317.22941180(1) 25834.53587789(1) 29075.22038341(1)
D(2) 0.04668559 0.05472398 0.99925503(7) 0.21758859(2)
D(3) 0.00000000 −0.00000290 −0.00033268 −0.00000977
D(4) 0.00000049 0.00000053 0.00010974 0.00000298(1)

D 36406.51089137(1) 36317.28413342(1) 25835.53490998(7) 29075.43796520(3)

Table 3 Nonadiabatic eigenvalue (Ev,J) and dissociation energy (Dv,J) of the rovibrational energy levels of HD located up to ca. 10000cm−1 above the
ground level. The uncertainties assigned to Ev,J and Dv,J are due to the numerical convergence only and do not account for uncertainties transferred
from the fundamental constants. The µn is the nucleus-to-electron mass ratio, with n = p,d

(v,J) Ev,J/hartree Dv,J/cm−1 ∂Ev,J

∂ µp
·106 ∂Ev,J

∂ µd
·106

(0,0) −1.16547192396439(3) 36406.51089137(1) −1.69 −0.424
(0,1) −1.16506537694165(3) 36317.28413342(1) −1.84 −0.459
(0,2) −1.16425508309094(3) 36139.44518924(1) −2.13 −0.533
(0,3) −1.16304657592944(3) 35874.20852546(1) −2.55 −0.639
(0,4) −1.16144799233927(6) 35523.35998129(1) −3.12 −0.781
(0,5) −1.15946988670851(8) 35089.21597717(2) −3.81 −0.953
(0,6) −1.15712499903903(9) 34574.57262031(2) −4.61 −1.15
(0,7) −1.1544279886395(1) 33982.64725706(2) −5.53 −1.38
(0,8) −1.1513951457706(1) 33317.01518642(2) −6.54 −1.64
(0,9) −1.1480440933964(1) 32581.54420188(2) −7.64 −1.91
(0,10) −1.1443934901810(1) 31780.32940690(2) −8.82 −2.21
(0,11) −1.1404627442859(1) 30917.63040056(2) −10.1 −2.52
(0,12) −1.1362717455822(2) 29997.81250501(3) −11.3 −2.84
(0,13) −1.1318406218566(3) 29025.29325878(7) −12.7 −3.17
(0,14) −1.1271895226147(3) 28004.49496719(7) −14.0 −3.51
(0,15) −1.1223384323217(3) 26939.80371339(7) −15.4 −3.86
(0,16) −1.1173070134442(3) 25835.53490998(7) −16.8 −4.20

(1,0) −1.14892259349461(3) 32774.35268710(1) −4.54 −1.14
(1,1) −1.14853361535671(3) 32688.98185367(1) −4.68 −1.17
(1,2) −1.14775837810983(3) 32518.83694469(1) −4.95 −1.24
(1,3) −1.14660225392289(4) 32265.09701494(1) −5.35 −1.34
(1,4) −1.14507314017112(4) 31929.49533795(1) −5.88 −1.47
(1,5) −1.1431812767341(1) 31514.27930750(2) −6.52 −1.63
(1,6) −1.1409390184852(1) 31022.16050490(3) −7.27 −1.82
(1,7) −1.1383605746595(2) 30456.25749675(4) −8.13 −2.03
(1,8) −1.1354617274586(1) 29820.03407593(2) −9.07 −2.27
(1,9) −1.1322595419602(3) 29117.23559408(7) −10.1 −2.53
(1,10) −1.1287720783053(3) 28351.82579400(7) −11.2 −2.80
(1,11) −1.1250181154717(4) 27527.92618493(9) −12.3 −3.08
(1,12) −1.1210168939675(2) 26649.75957027(5) −13.5 −3.38

(2,0) −1.13318174315629(4) 29319.63536164(1) −7.11 −1.78
(2,1) −1.13280998089048(6) 29238.04297540(2) −7.23 −1.81
(2,2) −1.13206909795027(6) 29075.43796520(2) −7.49 −1.87
(2,3) −1.13096431272305(8) 28832.96563472(2) −7.86 −1.97
(2,4) −1.12950329468599(8) 28512.30923961(1) −8.35 −2.09
(2,5) −1.1276959851255(2) 28115.65064004(5) −8.95 −2.24
(2,6) −1.1255543743172(2) 27645.62139735(5) −9.65 −2.42
(2,7) −1.1230922468621(2) 27105.24688177(5) −10.4 −2.61
(2,8) −1.1203249075122(2) 26497.88609807(5) −11.3 −2.83
(2,9) −1.1172688994405(2) 25827.16985307(5) −12.3 −3.07

(3,0) −1.11823351322064(5) 26038.87810682(2) −9.39 −2.35
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ing dissociation energy Dv,J are given in the table. The dissocia-
tion energy was obtained from

Dv, j = 2Ry
(
E(H)+E(D)−Ev,J

)
, (23)

where the nonadiabatic atomic energies E(H) and E(D) are
known from the exact solution of the Schrödinger equation.
The Rydberg constant Ry= 109737.31568508(65)cm−1.19 All the
eigenvalues listed in Table 3 have assigned an uncertainty esti-
mated on the basis of the convergence analysis discussed above.
These uncertainties are purely numerical and do not account for
those due to physical constants. However, current uncertain-
ties in the proton-electron (deuteron-electron) mass ratio and
in the Rydberg constant are more significant than the numer-
ical ones. For example, the CODATA 201419 proton-electron
and deuteron-electron mass ratios have a relative standard un-
certainty of 9.5 · 10−11 and 3.5 · 10−11, respectively. A change
of this mass ratio by 1σ affects the eigenvalues of HD at the
level of 10−12 a.u. and the corresponding dissociation energy at
10−7 cm−1. Hence, one cannot exclude the possibility of a refine-
ment of these physical constants in future high-precision studies
of HD. Similarly, the current uncertainty in the Rydberg constant
affects the conversion of the dissociation energy value from a.u.
to reciprocal centimeters at the level of 10−7 cm−1.

Over the decades the fundamental constants were determined
with ever increasing accuracy. Not only their uncertainties change
but also their estimated values tend to change slightly. This pro-
cess seems to have accelerated in recent years. For this reason
we decided to present the results of our calculations in a form
which enables the small changes in the nucleus-to-electron mass
ratio to be accounted for. Therefore, apart from the energy evalu-
ated with the CODATA 2014 values of the ratios µp = mp/me and
µd = md/me, we supply derivatives of the energy with respect to
the change of these ratios δE/δ µp and δE/δ µd. In case a new rec-
ommendation of the proton or deuteron mass appears, the change
in µp or µd can be immediately reflected in the energy of a level
by using the derivatives given in Table 3 and the equation

Enew
v,J = Eold

v,J +(µnew
n −µ

old
n )

∂Ev,J

∂ µn
. (24)

These derivatives enable also an assessment of the sensitivity of
particular levels or pairs of levels to the nuclear mass variations
and hence a selection of the best candidates for the future nuclear
mass refinement.

The accuracy of the results presented in this work significantly
exceeds the accuracy of previously known results. In particu-
lar, the best previous dissociation energy of the ground level was
obtained from nonadiabatic, explicitly correlated Gaussian func-
tions14,20 as well as in adiabatic calculations by solving the ra-
dial nonadiabatic Schrödinger equation13. The comparison pre-
sented in Table 4 shows the progress in accuracy made by apply-
ing the naJC functions and enables assessment of the accuracy of
the other results.

Table 4 Comparison of the best previous literature data with the dissoci-
ation energy obtained in this work for the ground level of HD

Year, method, and reference D0,0/cm−1 Difference

This work 36406.51089137(1)
2018, 2048-term naECG20 36406.510879 1.3 ·10−5

2010, NAPT13 36406.5108(10) 1.1 ·10−4

2009, 10000-term ECG14 36406.51046 4.3 ·10−4

6 Conclusions
The method described in this work is an extension to the het-
eronuclear case of the approach presented previously for H2.15

As before, bound levels with an arbitrary rotational and vibra-
tional quantum numbers can be accessed. Another extension of
the previous approach, crucial from the practical point of view,
is the parallelization of the diagonalization procedure. The ac-
curacy achieved for the nonrelativistic energy levels using the
nonadiabatic James-Coolidge functions surpasses that obtained
with other methods by three or more orders of magnitude. From
now the uncertainty of the nonrelativistic component of the total
energy no longer limits the overall accuracy. Moreover, thanks
to the recent progress in relativistic calculations for HD,20,21 the
uncertainty of the relativistic correction has been significantly di-
minished (to 2 ·10−7 cm−1) and the current largest contribution to
the error budget comes from the missing nonadiabatic quantum
electrodynamic effects and amounts to less than 2 ·10−4 cm−1. It
is our intention to employ the wave functions obtained within
this project to accurately evaluate also the relativistic and QED
corrections.
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