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ABSTRACT: The dissociation energies from all rovibrational levels of H2 and D2 in the ground electronic state are calculated with
high accuracy by including relativistic and quantum electrodynamics (QED) effects in the nonadiabatic treatment of the nuclear
motion. For D2, the obtained energies have theoretical uncertainties of 0.001 cm

�1. For H2, similar uncertainties are for the lowest
levels, while for the higher ones the uncertainty increases to 0.005 cm�1. Very good agreement with recent high-resolution
measurements of the rotational v = 0 levels of H2, including states with large angular momentum J, is achieved. This agreement
would not have been possible without accurate evaluation of the relativistic and QED contributions and may be viewed as the first
observation of the QED effects, mainly the electron self-energy, in a molecular spectrum. For several electric quadrupole transitions,
we still observe certain disagreement with experimental results, which remains to be explained.

1. INTRODUCTION

Due to its simplicity, the hydrogen molecule and its isotopo-
mers D2 and HD are natural benchmark systems for testing
various computational and experimental approaches in molecu-
lar spectroscopy. The measurements of their rovibrational levels
have reached such a precision level1�4 that not only the
nonadiabatic and the leading relativistic effects but also quantum
electrodynamics (QED) and possibly finite nuclear size correc-
tions become important. In this work, we exploit recent theore-
tical progress in calculating the spectra of H2 and D2 using
explicitly correlated basis sets built of Gaussian or expo-
nential functions. For the latter, exact analytic formulas have
recently been derived,5 making possible the calculation of the
Born�Oppenheimer potential with an uncertainty smaller than
10�9 cm�1. The finite nuclear mass effects are calculated using
nonadiabatic perturbation theory (NAPT).6,7 In this approach,
leading nonadiabatic corrections are obtained by solving a
suitable modification of the radial Schr€odinger equation for the
nuclear motion. The advantage of this procedure is that three
universal nonadiabatic potentials entering this equation are
sufficient to obtain all rovibrational levels supported by a given
electronic state. At the precision level adequate for the present
purposes, the relativistic, QED, and finite nuclear size effects can
be taken into account at the adiabatic level of theory and included
by means of appropriate corrections to the Born�Oppenheimer
potential. These corrections are expectation values of the
Breit�Pauli Hamiltonian,8 or effective QED operators,9 com-
puted with the clamped nuclei nonrelativistic electronic wave
function. Our approach is based on the expansion of energy levels
in powers of fine structure constant α,10,11 which was originally
developed for hydrogenic systems and applied in highly accurate
calculations for light atoms.12�15

2. HISTORICAL PERSPECTIVE

A meaningful confrontation of theoretically predicted rovi-
brational levels with high-resolution spectroscopy measure-
ments became possible in 1983 with the appearance of the
pioneering work of Wolniewicz,16 who accurately computed
the nonadiabatic corrections to all vibrational levels of H2,
HD, and D2. For the H2 molecule, Wolniewicz observed a
significant disagreement of up to 0.7 cm�1 with the experi-
mental vibrational excitation energies available at that time.17

In a subsequent development, Kolos et al.18 recomputed the
Born�Oppenheimer potential for H2, obtaining the adiabatic
levels 0.1�0.2 cm�1 below the Wolniewicz values. Using the
nonadiabatic corrections from the Wolniewicz work, the authors
of ref 18 obtained improved agreement (with errors up to
0.2�0.3 cm�1) when compared with a more recent measure-
ment of Dabrowski.19

The works ofWolniewicz16 and of Kolos et al.18 were based on
the relativistic corrections computed in 196420 using a rather
small basis (of James and Coolidge type21) and only for inter-
nuclear distancesRe 3.7 bohr. To eliminate this source of uncer-
tainty, Wolniewicz22 recomputed in 1993 the relativistic cor-
rections for a wide range of distances employing a large,
asymptotically correct basis set introduced in 1966 by Kolos
and Wolniewicz.23 To obtain the nonadiabatic corrections,
Wolniewicz used an ab initio based scaling and extrapolation
procedure proposed by Schwartz and LeRoy,24 which he
believed to be more reliable (except for v = J = 0) than his
ab initio data of 1983.16 This work led to some improve-
ment in agreement with the experimental vibrational spectrum
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of Dabrowski,19 as compared with the 1986 work of Kolos
et al.18

As the method of Schwartz and LeRoy24 had not been
performing very satisfactorily in some applications, especially
in the cases of HD and HT,25 in 1995 Wolniewicz26 recomputed
the nonadiabatic corrections obtaining significantly more accu-
rate values for higher vibrational levels. This resulted in further
improvement of the agreement with the vibrational quanta of
ref 19. It is difficult to say how significant this improvement was,
since the disagreement with the experimental results ofDabrowski19

was on the last digit reported by her and the corresponding experi-
mental uncertainty is not clear.

According to Wolniewicz,26 the main source of uncertainty of
his results is the QED corrections, which he evaluated only
approximately. These corrections are accurately taken into
account in the present calculations, with all α3 and the leading
α4 terms included (α is the fine structure constant). Results for
the ground rovibrational state (i.e., for the dissociation energy) of
H2 and D2 have already been presented by us in ref 27 and for
HD in ref 28. Very recently, Salumbides et al.29 reported highly
accurate experimental values of the rotational energies of v = 0
levels of H2. The uncertainty of themajority of these levels ranges
from 0.0001 cm�1 up to 0.005 cm�1. Such an accuracy, in
connection with our calculations, is sufficient to determine the
magnitude of QED effects directly from the measurements. It
should be noted that QED corrections have also been treated for
more complex systems, such as the water molecule,30 but using
an approximate one-electron approach; thus not all of the α3

terms were taken into account. However, for such systems, the
nonrelativistic treatment of the spectrum is still not accurate
enough to see QED effects in a head-on comparison between
theory and experiment.31

3. THE NONADIABATIC SCHRO. DINGER EQUATION

The nonrelativistic Schr€odinger equation is solved using the
NAPT approach.6,7 For electronic states of Σ symmetry, the
zeroth-order approximation to the total wave function can be
assumed to be a product of the electronic ϕel and nuclear χ
functions (atomic units will be used throughout):

ϕað rB, RBÞ ¼ ϕelð rB; RBÞ χð RBÞ ð1Þ

The electronic wave function ϕel satisfies the clamped nuclei
Schr€odinger equation:

½Hel � EelðRÞ�ϕel ¼ 0 ð2Þ
where Hel is the electronic Hamiltonian, and thus parametrically
depends on the internuclear distance R. The function χ satisfies
the nuclear Schr€odinger equation

�∇2
R

2μn
þ EelðRÞ þ EaðRÞ

" #
χð RBÞ ¼ Eaχð RBÞ ð3Þ

with μn being the nuclear reduced mass, and the adiabatic
correction Ea(R) is given by the electronic matrix element

EaðRÞ ¼ ÆϕeljHnjϕelæel ð4Þ
of the nuclear partHn =H�Hel of the total HamiltonianH (the
brackets Æ 3 3 3 æel denote integration over the electronic coordi-
nates only). For specified angular momentum J, the nuclear

equation becomes

� 1
R2

∂

∂R
R2

2μn

∂

∂R
þ JðJ þ 1Þ

2μnR2
þ EaðRÞ þ EelðRÞ

" #
χJðRÞ

¼ EaχJðRÞ
ð5Þ

Using NAPT,6,7 all of the finite nuclear mass corrections are
obtained perturbatively in progressive powers of the electron�
nuclear mass ratio. Up to the order O (μn

�2), they can all be
included in the following radial equation as an R-dependent
modification of the effective nuclear reduced mass and of the
interaction potential:

� 1
R2

∂
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R2

2μjjðRÞ
∂
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þ JðJ þ 1Þ

2μ^ðRÞR2
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" #
χ~JðRÞ

¼ Eχ~JðRÞ ð6Þ

where

Y ðRÞ ¼ EelðRÞ þ EaðRÞ þ δEnaðRÞ ð7Þ

Themodifications of the effective nuclear reducedmass are of the
form

1
2μjjðRÞ
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nB 3∇BRϕel

����� 1
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*
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and
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2μ^ðRÞ
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X
i, j

ðδij � ninjÞ
2

∇i
Rϕel

����� 1
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�����∇j
Rϕel

+
el

*

ð9Þ

with nB = RB/R and the prime in the resolvent indicating the
orthogonalization to ϕel. The concept of the variable nuclear
reduced mass has been present in the literature for a long time
now,32�35 and NAPT supplies explicit formulas for their numer-
ical evaluation. The nonadiabatic correction δEna(R) to the
interaction potential can also be expressed in terms of the
second-order electronic matrix elements. Since the correspond-
ing formula is rather complicated, we refer the reader to refs 6 and
7 for its detailed form. The main advantage of the presented
approach is that a single radial equation (eq 6) gives quite
accurately all (nonrelativistic) rovibrational states of a diatomic
molecule. In the present implementation of NAPT, the compu-
tational precision is limited by neglectedO (μn

�5/2) corrections,
which for the dissociation energy of the lowest rovibrational state
are estimated to amount about 0.0001 cm�1. Other important
corrections are considered in the following section.
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4. RELATIVISTIC AND QED CORRECTIONS

When computed using the adiabatic wave function of eq 1, the
leading-order relativistic, QED, and finite nuclear size corrections
enter only through an effective potential Y (R), namely

Y ðRÞ ¼ EelðRÞ þ EaðRÞ þ δEnaðRÞ þ Eð2ÞðRÞ
þ Eð3ÞðRÞ þ Eð4ÞðRÞ þ E fsðRÞ

ð10Þ

The relativistic correction E(2)(R) is the electronic expectation
value of the Breit�Pauli Hamiltonian,8 which for a Σ state of a
many-electron molecule is

Eð2ÞðRÞ ¼ α2 ϕel

������1
8

X
a

p4a þ π

2

X
a,A

ZAδð rBaAÞ þ π
X
a < b

δð rBabÞ
*

� 1
2

X
a < b

pBa

1
rab

pBb þ pBa 3 rBab

1
r3ab

rBab 3 pBb

 !�����ϕel
+
el

ð11Þ
where the indices a and A correspond to electrons and nuclei,
respectively.

The leading QED correction for a Σ state is

Eð3ÞðRÞ ¼ α3
P
a < b

164
15

þ 14
3
ln α

� �
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(
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� �
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3
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ð12Þ

The matrix element of 1/rab
3 requires subtraction of a divergence

at rab = 0; for details, see ref 9. In the adiabatic approximation, the
R-dependent Bethe logarithm ln k0(R) is defined by27

ln k0ðRÞ ¼
Æϕelj

P
a

pBaðHel � EelÞ ln½2ðHel � EelÞ�
P
b

pBbjϕelæ
Æϕelj

P
a

pBaðHel � EelÞ
P
b

pBbjϕelæ

ð13Þ
The α4 and higher-order QED corrections36,37 are in general
not known for molecules. One can however approximate them
by the numerically dominating one-loop self-energy and
vacuum polarization corrections known from the hydrogenic
Lamb shift:36

Eð4Þ
one-loopðRÞ ¼ πα4 427

96
� ln 4

� �X
a,A

ZAÆϕeljδð rBaAÞjϕelæel

ð14Þ
On the basis of the atomic calculations,36,37 we conservatively
estimate that this formula approximates the accurate value of
E(4) with an error of at most 50%.

The finite nuclear size correction E fs(R) is given, to a very
good approximation, by the root-mean-square nuclear charge
radius rch:

E fsðRÞ ¼ 2π
3
α2
X
a,A

ZA
r2chðAÞ
l2C

Æϕeljδð rBaAÞjϕelæel ð15Þ

where lC = 386.15926459 fm is the Compton wavelength over
2π (rch(H) = 0.84184(67) fm and rch(D) = 2.1402(28) fm). For
H2, the energy level shift resulting from this correction is always
less than 0.0001 cm�1, whereas for D2 it amounts to only
0.0002 cm�1 or less. Nevertheless, in both cases, this correction
has been included in our final results. According to our knowl-
edge, there are no further corrections to the rovibrational
energies which contribute above 0.001 cm�1. The atomic
hyperfine splittings are larger than that but are subtracted from
the experimental dissociation energies. Recently reported38

gerade�ungerade mixing and splitting effects in H2 turned out
to be smaller than 10�6 cm�1 and thus are entirely negligible for
the present purposes.

5. NUMERICAL APPROACH

A very accurate clamped nuclei potential for the X1Σg
+ state

was reported recently in ref 5. For the whole energy curve, an
accuracy on the order of 10�9 cm�1 has been reached. This is the
most accurate potential to date for H2 itself but also for any
molecular system with two or more electrons. Increasing the
accuracy to this level has been possible thanks to the discovery of
analytic formulas for two-center two-electron integrals with expo-
nential functions.39 To achieve this high numerical accuracy,
different basis sets were used, depending on the internuclear
distanceR. ForR<12 bohr, the James�Coolidge basis functions21

of the form

ψkð rB1, rB2Þ ¼ ð1 þ P̂12Þð1 þ î Þ
expð� αðr1A þ r1BÞ � αðr2A þ r2BÞÞ
� rn1k12 ðr1A� r1BÞn2kðr2A� r2BÞn3kðr1A þ r1BÞn4kðr2A þ r2BÞn5k

ð16Þ
have been employed. The symmetry projector (1 + P̂12) ensures
a singlet state, while the spatial projector (1 + î) ensures the
gerade symmetry. Since in the actual numerical calculations one
can use only a finite number of basis functions, one has to
somehow select the most appropriate finite subset of functions of
eq 16. We assumed, therefore, that the finite basis consists of all
functions ψk with nonnegative integers nik such thatX5

i¼ 1

nik e Ω ð17Þ

with Ω = 3�20, and the final result is obtained by a numerical
extrapolation with Ω f ∞. The nonlinear parameters were
optimized separately for each internuclear distance R, and then
the exponential convergence to a complete basis set as Ω f ∞
was observed.

To represent the electronic wave function at 12 e R e 20
bohr, a special case of the Kolos andWolniewicz basis40 was used

ψkð rB1, rB2Þ
¼ ð1 þ P̂12Þð1 þîÞ expð� ðr1A þ r2BÞÞ rn1k12 r

n2k
1A r

n3k
1B r

n4k
2A r

n5k
2B

ð18Þ
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withΩ up to 16. This basis, which may be viewed as a generalized
Heitler�London basis (it contains the Heitler�London function),

is needed to correctly describe molecular dissociation. At R = 12
bohr, the accuracy achieved with the basis set of eq 18 is close to

Table 1. Theoretically Predicted Dissociation Energies (in cm�1) of All 302 Bound States of H2
a

v\J 0 1 2 3 4 5 6 7

0 36118.0696 35999.5827 35763.6964 35412.5507 34949.2721 34377.8800 33703.1726 32930.5991
1 31956.9034 31844.3290 31620.2311 31286.6781 30846.6902 30304.1479 29663.6809 28930.5440
2 28031.0670 27924.2753 27711.7087 27395.3676 26978.1720 26463.8724 25856.9411 25162.4519

3 24335.6787 24234.5818 24033.3726 23733.9878 23339.2543 22852.8015 22278.9563 21622.6265

4 20867.7039 20772.2598 20582.3263 20299.7818 19927.3669 19468.6008 18927.6785 18309.3586

5 17626.1400 17536.3593 17357.7260 17092.0653 16742.0411 16311.0741 15803.2433 15223.1787

6 14612.2901 14528.2461 14361.0627 14112.5194 13785.2138 13382.4836 12908.3120 12367.2247

7 11830.1543 11751.9964 11596.5661 11365.6062 11061.6626 10688.0095 10248.5600 9747.7694

8 9286.9790 9214.9526 9071.7726 8859.1575 8579.6206 8236.3999 7833.3746 7374.9763

9 6994.0292 6928.5057 6798.3271 6605.2057 6351.6504 6040.9022 5676.8602 5264.0027

10 4967.6786 4909.1996 4793.1191 4621.1702 4395.9005 4120.6166 3799.3225 3436.6592

11 3230.9712 3180.3202 3079.9265 2931.5894 2737.9677 2502.5403 2229.5680 1924.0695

12 1815.8955 1774.2213 1691.8517 1570.7364 1413.7847 1224.8610 1008.8062 771.5140

13 766.7551 735.8177 675.0810 586.8399 474.5979 343.1936 199.1012 51.2532

14 144.7964 127.6357 94.9453 50.2393 0.0265b

v\J 8 9 10 11 12 13 14 15

0 32066.1266 31116.1067 30087.1493 28986.0061 27819.4682 26594.2780 25317.0575 23994.2505

1 28110.4874 27209.6288 26234.3321 25191.0967 24086.4605 22926.9171 21718.8492 20468.4759

2 24385.9548 23533.3534 22610.7880 21624.5312 20580.8960 19486.1590 18346.4985 17167.9474

3 20889.1803 20084.3279 19214.0114 18284.3049 17301.3289 16271.1794 15199.8715 14093.2980

4 17618.8479 16861.6882 16043.6518 15170.6479 14248.6434 13283.5982 12281.4160 11247.9099

5 14575.9499 13866.9601 13101.8471 12286.3973 11426.4734 10527.9578 9596.7126 8638.5554

6 11764.1860 11104.4981 10393.7108 9637.5433 8841.8215 8012.4332 7155.3007 6276.3735

7 9190.5379 8582.1192 7928.0390 7234.0292 6505.9792 5749.9080 4971.9605 4178.4321

8 6866.1012 6312.0299 5718.3612 5090.9637 4435.9509 3759.6871 3068.8309 2370.4348

9 4807.3140 4312.2229 3784.5601 3230.5444 2656.8077 2070.4770 1479.3467 892.2132

10 3037.8559 2608.7032 2155.5628 1685.4344 1206.1180 726.5520 257.5346

11 1591.8264 1239.4455 874.5218 506.0045 145.0445

12 520.1248 263.4848 13.3741

v\J 16 17 18 19 20 21 22 23

0 22632.0799 21236.5171 19813.2627 18367.7376 16905.0813 15430.1579 13947.5677 12461.6638

1 19181.8142 17864.6524 16522.5351 15160.7573 13784.3676 12398.1776 11006.7791 9614.5672

2 15956.3587 14717.3851 13456.4677 12178.8362 10889.5174 9593.3530 8295.0256 6999.0945

3 12957.2014 11797.1591 10618.5796 9426.7112 8226.6608 7023.4255 5821.9382 4627.1316

4 10188.7828 9109.6212 8015.9040 6913.0252 5806.3338 4701.1940 3603.0755 2517.6864

5 7659.2518 6664.5260 5660.0900 4651.6971 3645.2264 2646.8145 1663.0640 701.3929

6 5381.6434 4477.1860 3569.2356 2664.3109 1769.4191 892.4054 42.5995

7 3375.8309 2570.9911 1771.2705 984.8942 221.6033

8 1672.1303 982.4662 311.5626

9 319.5464

v\J 24 25 26 27 28 29 30 31

0 10976.5735 9496.2237 8024.3709 6564.6364 5120.5483 3695.5928 2293.2796 917.2285
1 8225.7696 6844.4839 5474.7238 4120.4784 2785.7900 1474.8629 192.2238
2 5710.0438 4432.3453 3170.5449 1929.3851 713.9904

3 3444.0280 2277.8701 1134.3209 19.7931b

4 1451.1807 410.5020
a v and J are the vibrational and rotational quantum numbers, respectively. Error estimation for individual states is given in the Supporting Information.
bThis state is entirely due to nonadiabatic effects. Since it does not appear at the adiabatic approximation, its energy may be substantially less accurate
than the energies of the remaining rovibrational states.
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Table 2. Theoretically Predicted Dissociation Energies (in cm�1) of All 598 Bound States of D2
a

v\J 0 1 2 3 4 5 6 7 8 9 10

0 36748.3634 36688.5828 36569.2963 36391.0490 36154.6478 35861.1488 35511.8412 35108.2289 34652.0088 34145.0488 33589.3635

1 33754.7463 33697.0758 33582.0029 33410.0597 33182.0337 32898.9554 32562.0824 32172.8812 31733.0063 31244.2778 30708.6583

2 30880.2430 30824.6456 30713.7129 30547.9643 30328.1686 30055.3317 29730.6810 29355.6472 28931.8440 28461.0461 27945.1666

3 28122.7615 28069.2076 27962.3556 27802.7132 27591.0311 27328.2917 27015.6934 26654.6328 26246.6848 25793.5810 25297.1880

4 25480.6486 25429.1157 25326.3000 25172.6976 24969.0422 24716.2938 24415.6231 24068.3944 23676.1459 23240.5687 22763.4852

5 22952.7114 22903.1852 22804.3772 22656.7728 22461.0894 22218.2657 21929.4464 21595.9654 21219.3265 20801.1827 20343.3156

6 20538.2479 20490.7226 20395.9113 20254.2889 20066.5579 19833.6368 19556.6462 19236.8915 18875.8444 18475.1232 18036.4718

7 18237.0868 18191.5664 18100.7600 17965.1331 17785.3739 17562.3826 17297.2573 16991.2773 16645.8854 16262.6681 15843.3359

8 16049.6405 16006.1398 15919.3685 15789.7833 15618.0596 15405.0808 15151.9249 14859.8479 14530.2666 14164.7400 13764.9495

9 13976.9722 13935.5186 13852.8377 13729.3782 13565.8044 13362.9849 13121.9801 12844.0261 12530.5179 12182.9911 11803.1038

10 12020.8819 11981.5173 11903.0111 11785.8056 11630.5553 11438.1169 11209.5363 10946.0334 10648.9863 10319.9134 9960.4560

11 10184.0153 10146.7989 10072.5866 9961.8154 9815.1328 9633.3864 9417.6115 9169.0172 8888.9705 8578.9799 8240.6789

12 8470.0026 8435.0143 8365.2566 8261.1634 8123.3777 7952.7421 7750.2867 7517.2160 7254.8939 6964.8287 6648.6575

13 6883.6348 6850.9801 6785.8889 6688.7948 6560.3401 6401.3676 6212.9089 5996.1728 5752.5308 5483.5039 5190.7489

14 5431.0906 5400.9066 5340.7582 5251.0815 5132.5237 4985.9347 4812.3575 4613.0166 4389.3065 4142.7793 3875.1345

15 4120.2289 4092.6936 4037.8462 3956.1303 3848.2050 3714.9379 3557.3966 3376.8392 3174.7048 2952.6049 2712.3169

16 2960.9710 2936.3160 2887.2361 2814.1894 2717.8581 2599.1427 2459.1559 2299.2164 2120.8431 1925.7521 1715.8578

17 1965.8035 1944.3335 1901.6362 1838.1950 1754.7324 1652.2069 1531.8105 1394.9679 1243.3394 1078.8290 903.6027

18 1150.4486 1132.5743 1097.0897 1044.5231 975.6684 891.5869 793.6143 683.3726 562.7936 434.1618 300.1927

19 534.7343 521.0330 493.9347 454.0526 402.3180 339.9993 268.7360 190.6028 108.2387 25.1501

20 143.4642 134.8278 117.9548 93.6691 63.2806 28.7401

21 1.6642 0.0491b

v\J 11 12 13 14 15 16 17 18 19 20 21

0 32987.0905 32340.4669 31651.8060 30923.4758 30157.8783 29357.4315 28524.5520 27661.6407 26771.0694 25855.1707 24916.2279

1 30128.2296 29505.1695 28841.7298 28140.2145 27402.9610 26632.3216 25830.6476 25000.2755 24143.5140 23262.6347 22359.8626

2 27386.2346 26786.3718 26147.7718 25472.6790 24763.3702 24022.1367 23251.2697 22453.0464 21629.7184 20783.5020 19916.5706

3 24759.4845 24182.5401 23568.4939 22919.5347 22237.8832 21525.7751 20785.4464 20019.1210 19228.9994 18417.2497 17586.0005

4 22246.8277 21692.6167 21102.9411 20479.9386 19825.7789 19142.6472 18432.7304 17698.2055 16941.2288 16163.9280 15368.3950

5 19847.6143 19316.0545 18750.6790 18153.5798 17526.8807 16872.7226 16193.2502 15490.6008 14766.8946 14024.2276 13264.6654

6 17561.7401 17052.8634 16511.8438 15940.7327 15341.6146 14716.5931 14067.7784 13397.2768 12707.1824 11999.5701 11276.4914

7 15389.7037 14903.6716 14387.2068 13842.3268 13271.0842 12675.5536 12057.8202 11419.9700 10764.0828 10092.2265 9406.4537

8 13332.6805 12869.8040 12378.2591 11860.0373 11317.1686 10751.7089 10165.7299 9561.3111 8940.5334 8305.4757 7658.2131

9 11392.6185 10953.3842 10487.3206 9996.4033 9482.6509 8948.1137 8394.8655 7824.9967 7240.6106 6643.8215 6036.7566

10 9572.3616 9157.4667 8717.6828 8254.9820 7771.3865 7268.9587 6749.7950 6216.0214 5669.7926 5113.2944 4548.7496

11 7875.8101 7486.2101 7073.7960 6640.5542 6188.5304 5719.8236 5236.5818 4741.0024 4235.3355 3721.8929 3203.0627

12 6308.1321 5945.1055 5561.5208 5159.4021 4740.8480 4308.0294 3863.1902 3408.6539 2946.8363 2480.2668 2011.6212

13 4876.0459 4541.2881 4188.4733 3819.6987 3437.1601 3043.1557 2640.0964 2230.5252 1817.1485 1402.8863 990.9510

14 3588.2093 3283.9721 2964.5198 2632.0792 2289.0159 1937.8510 1581.2918 1222.2810 864.0776 510.3933 165.6395

15 2455.7797 2185.0946 1902.5323 1610.5491 1311.8159 1009.2686 706.1933 406.3736 114.3694

16 1493.2790 1260.3555 1019.6781 774.1419 527.0394 282.2304 44.4834

17 720.1223 531.2062 340.1405 150.8950

18 164.1866 30.3695

v\J 22 23 24 25 26 27 28 29 30 31 32

0 23956.4683 22978.0571 21983.0935 20973.6071 19951.5567 18918.8293 17877.2405 16828.5352 15774.3900 14716.4151 13656.1575

1 21437.3699 20497.2704 19541.6158 18572.3932 17591.5237 16600.8620 15602.1976 14597.2554 13587.6991 12575.1334 11561.1078

2 19031.0480 18129.0038 17212.4502 16283.3399 15343.5655 14394.9594 13439.2953 12478.2906 11513.6089 10546.8645 9579.6270

3 16737.3351 15873.2873 14995.8389 14106.9182 13208.4000 12302.1065 11389.8096 10473.2340 9554.0614 8633.9359 7714.4708

4 14556.6818 13730.7962 12892.7006 12044.3114 11187.4992 10324.0917 9455.8769 8584.6075 7712.0074 6839.7795 5969.6154

5 12490.2391 11702.9433 10904.7348 10097.5334 9283.2241 8463.6608 7640.6720 6816.0677 5991.6492 5169.2212 4350.6073

6 10539.9706 9792.0047 9034.5628 8269.5895 7499.0087 6724.7301 5948.6581 5172.7034 4398.7986 3628.9187 2865.1080

7 8708.8007 8001.2872 7285.9202 6564.6983 5839.6198 5112.6937 4385.9547 3661.4828 2941.4313 2228.0638 1523.8081

8 7000.8179 6335.3630 5663.9281 4988.6099 4311.5357 3634.8825 2960.9045 2291.9703 1630.6160 979.6255 342.1539



F dx.doi.org/10.1021/ct200438t |J. Chem. Theory Comput. XXXX, XXX, 000–000

Journal of Chemical Theory and Computation ARTICLE

that obtained with the James�Coolidge basis. The Born�
Oppenheimer energies obtained as described above were fitted
with an analytic function of the form given in ref 27. We estimate
that it represents the Born�Oppenheimer potential with accu-
racy better than 10�5 cm�1. Fortran code to compute this
analytic function can be supplied upon request.

For the evaluation of adiabatic, nonadiabatic, relativistic, and
QED corrections, we have not used exponential functions, like
Kolos andWolniewicz in refs 40 and 22, because we have not yet
developed integrals with inverse quadratic powers of electronic
variables. Instead, we used explicitly correlated Gaussian (ECG)
functions of the form

ψkð rB1, rB2Þ

¼ ð1 þ P̂12Þð1( îÞ exp½�
X2
i, j¼ 1

Ak, ijð rBi � sBk, iÞð rBj � sBk, jÞ�

ð19Þ
where the symmetric 2 � 2 matrices Ak and vectors sBk (lying on
the internuclear axis) contain nonlinear parameters, five per basis
function, to be variationally optimized. The 1200-term ECG
bases were optimized with respect to Eel for R spread over the
range 0�12 bohr and employed to evaluate all of the corrections.
At larger values of R, the relativistic and QED corrections to the
potential were represented using the asymptotic constants
reported in refs 41 and 27. Details of numerical evaluations of
adiabatic and nonadiabatic corrections were presented in refs 6
and 7, while the evaluation of relativistic and QED corrections to
the potential was presented in ref 27.

It should be stressed that the method of computing the
rovibrational levels employed in this work differs slightly from
that of ref 27. In this reference, the relativistic and QED
corrections were obtained directly by averaging the corrections
to the potential with nuclear wave functions obtained in the
adiabatic approximation. In the present work, the relativistic and
QED corrections to the potential are used in the nonadiabatic
equation for the nuclear motion, so we can deal with excep-
tional states which do not exist on the adiabatic level. The

corresponding corrections to the rovibrational levels were ob-
tained as appropriate differences in calculated energies. Thus, the
present “α2” energies contain very small contributions of the
fourth and higher order inα as well as the first and higher order in
α2/μn. Similarly, the “α3” energies contain some very small
contributions from the fifth and higher powers of α. For low
values of the vibrational quantum number v, both approaches
give results differing by 0.0001 cm�1 or less. At the highest values
of v, apart from exceptional states described later on, the
differences reach 0.0005 cm�1, i.e., are of the order of the
neglected recoil corrections. These differences appear only at
the relativistic level. The QED corrections differ always less than
0.0001 cm�1.

6. RESULTS FOR HYDROGEN AND DEUTERIUM
MOLECULES

In Tables 1 and 2, we present the complete rovibrational
spectrum of molecular hydrogen and deuterium in the electronic
ground state (X 1Σg

+) in terms of dissociation energies with a
precision of about 0.001 cm�1 for D2 and from 0.001 to
0.005 cm�1 for H2. The individual adiabatic, nonadiabatic,
relativistic, and QED contributions for each level of H2 and D2

are listed in the Supporting Information files associated with this
article (the very small finite-size contribution is included in the
relativistic correction). The estimated theoretical uncertainties
corresponding to each level are also listed in these files. The
largest uncertainty comes from the α4 and higher-order QED
corrections, which have been included only approximately, see
eq 14, and from the higher-orderO (μn

�5/2) NAPT corrections.
Other significant sources of uncertainty are the neglected non-
adiabatic relativistic effects. To estimate the uncertainty of each
rovibrational level, we used the following procedure. We as-
sumed that the error caused by the neglect of the relativistic recoil
term can be estimated as me/μn times the α2 correction and,
analogously, times the α3 correction to account for the missing
QED recoil term. Similarly, we calculate the contribution to
the error budget from the missing higher-order nonadia-
batic terms as proportional to me/μn times the second-order

Table 2. Continued
v\J 22 23 24 25 26 27 28 29 30 31 32

9 5421.5600 4800.4013 4175.4879 3549.0832 2923.5329 2301.3016 1685.0260 1077.5947 482.2723

10 3978.4290 3404.6679 2829.8912 2256.6490 1687.6692 1125.9370 574.8194 38.2756

11 2681.3328 2159.3251 1639.8473 1125.9722 621.1627 129.4853

12 1543.7728 1079.8706 623.4674 178.7378

13 584.9779 189.2547

v\J 33 34 35 36 37 38 39 40 41 42 43

0 12595.1047 11534.6886 10476.2901 9421.2440 8370.8452 7326.3541 6289.0044 5260.0106 4240.5776 3231.9113 2235.2318

1 10547.1215 9534.6279 8525.0406 7519.7400 6520.0811 5527.4021 4543.0351 3568.3189 2604.6139 1653.3230 715.9165

2 8613.4269 7649.7624 6690.1076 5735.9218 4788.6608 3849.7912 2920.8076 2003.2555 1098.7610

3 6797.2565 5883.8701 4975.8879 4074.9000 3182.5291 2300.4554 1430.4494 574.4182

4 5103.2079 4242.2662 3388.5358 2543.8247 1710.0382 889.2289

5 3537.6706 2732.3404 1936.6489 1152.7828 383.1585

6 2109.5182 1364.4607 632.4843

7 831.3351 153.6817
a v and J are the vibrational and rotational quantumnumbers, respectively. Error estimation for individual states is given in the Supporting Information. bThis state
does not exist in the Born�Oppenheimer approximation and its energymay be substantially less accurate than the energies of the remaining rovibrational states.



G dx.doi.org/10.1021/ct200438t |J. Chem. Theory Comput. XXXX, XXX, 000–000

Journal of Chemical Theory and Computation ARTICLE

nonadiabatic correction. Another part of the uncertainty comes
from the incomplete treatment of the higher-order QED effects.
As previously,27 we conservatively estimate that the E(4) terms
other than the one-loop term of eq 14 as well as all higher-order
E(n) terms, n > 4, contribute at most 50% of the value of E(4)

one-loop.
The quadratic sum of the four error components described
above leads to the overall uncertainty on D0 or any other
computed energy difference.

Among the levels listed in Tables 1 and 2, we note a couple of
curiosities—the bound levels, which are absent in the Born�
Oppenheimer approximation. Such levels do not reveal them-
selves until the finite mass corrections are taken into account. In
H2, there are two such “nonadiabatic” levels: (v,J) = (3,27) and
(14,4), with dissociation energies of about 19.79 cm�1 and
0.03 cm�1, respectively. The former state was observed by
Dabrowski19 as lying 36098.04 cm�1 above the (0,0) level, which
corresponds to D0 = 20.03 cm�1. The latter one, located
36 118.12 cm�1 above the reference state, she describes as “the

last observed” and “presumably bound”. However, if we assign
the up-to-date value ofD0 to the (0,0) level, the state observed by
Dabrowski becomes a resonance located 0.05 cm�1 above the
dissociation threshold. This value is an order of magnitude
smaller than the accuracy declared by Dabrowski; therefore,
from the experimental point of view, the question whether this
state is bound or not remains open. In the D2 spectrum, we
predict the existence of only one such level (21,1) with D0 =
0.05 cm�1. In this case, it is the adiabatic correction which makes
this state bound. We note also the presence of another level
located just below the dissociation threshold—the (21,0) state
with D0 = 1.66 cm�1. This state, in contrast, is a regular one,
accommodated already by the Born�Oppenheimer potential.

The v and J dependence of the relativistic and QED correc-
tions to the rotational and vibrational excitation energies (relative
the ground v= 0, J = 0 level) is shown in Figures 1 and 2. It may be
pointed out that individual terms in eqs 11 and 12, like, e.g, mass
velocity, Darwin, Breit or Araki-Sucher ones, lead to a monotonic
dependence on v or J. The nonmonotonic behavior observed in
Figures 1 and 2 is due to cancellation effects and can be
rationalized on the basis of the different R dependence of the
corresponding corrections to the potential. One may observe
that the QED correction is not much smaller than the relativistic
one and that the neglect of the former would lead to a
qualitatively incorrect v or J dependence of the relativistic +
QED contribution.

Theoretical predictions for the ground rovibrational state
of H2 and D2 have already been presented by us in ref 27. Here,
in Table 3, we compare these results with the most recent

Figure 1. J dependence of the relativistic and QED contributions to
the rotational excitation energies at v = 0. The relativistic and
QED corrections to the ground, J = 0 level are 0.5318(5) cm�1 and
0.1964(8) cm�1, respectively.

Figure 2. Vibrational quantum number dependence of the relativistic
andQED contributions to the excitation energies at J = 0. The relativistic
and QED corrections to the ground, v = 0 level are 0.5318(5) cm�1 and
0.1964(8) cm�1, respectively.

Table 3. Dissociation Energies (in cm�1) of H2 and D2 in
Their Ground State—A Comparison with the Experiment

D0/cm
�1

H2 D2

experiment (1993) 36118.06(4)a 36748.32(7)a

experiment (2004) 36118.062(10)b 36748.343(10)b

experiment (2009/10) 36118.06962(37)c 36748.36286(68)d

theory 36118.0696(11) 36748.3634(9)

difference 0.0000(12) 0.0005(11)
aRef 66. bRef 67. cRef 1. dRef 2.

Table 4. The Lowest Rotational and Vibrational Excitation
Energies (in cm�1)

H2

J = 0 f 1 v = 0 f 1

theory 118.486812(9) 4161.1661(9)

experiment 118.48684(10)a 4161.1660(3)b

difference �0.00003(10) 0.0001(9)

D2

J = 0 f 1 v = 0 f 1

theory 59.780615(3) 2 993.6171(2)

experiment 59.78130(95)c 2 993.6130(19)d

difference �0.00068(95) 0.0041(19)
aRef 68. bRef 46. cRef 2. dRef 45.
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experimental data. Our present theoretical value of the dissocia-
tion energy of H2, D0 = 36 118.0696(11) cm�1, differing very
slightly from that of ref 27, agrees very well with the value
36 118.06962(37) cm�1 derived experimentally by Liu et al.1

The dissociation energies for D2 are 36 748.3634(9) cm
�1 from

theory and 36 748.36286(68) cm�1 from the most recent
experiment.2 The perfect agreement with the sophisticated
high-resolution measurements (see also ref 42 for a confirmation
of the result from ref 2) indicates that we control numerical
accuracy of the included energy contributions as well as all
physical effects down to 0.001 cm�1. It is worth emphasizing
that this excellent agreement would have been impossible

without including the Araki-Sucher term43,44 and the interatomic
distance dependence of the two-electron Bethe logarithm.

In Table 4, we compare our predictions for the lowest
rotational and vibrational excitation energies. Agreement with
the experimental values for H2 is excellent, but for the vibrational
excitation in D2, a small discrepancy (of 2 experimental σ) is
observed. Note that the experimental vibrational energies shown
in this table are not measured directly but are extracted from a set
of experimental literature lines fitted to the Dunham expansion.

Table 5. Energy of Rotational ExcitationsΔE(J) inH2 (v = 0) with Respect to theGround Level (v = 0, J = 0)—AComparison with
the Experimental Results of Salumbides et al.27a

J ΔEtheo(J) ΔEexptl(J) δ(theo � exptl) ΔEtheo
QED(J) ΔEexptl

QED(J)

1 118.486812(9) 118.48684(10) �0.00003(10) �0.001030(4) �0.00100(10)

2 354.37313(3) 354.3733(2) �0.0002(2) �0.00307(1) �0.0029(2)

3 705.51883(5) 705.5189(3) �0.0001(3) �0.00610(2) �0.0060(3)

4 1168.79743(9) 1168.7982(2) �0.0008(2) �0.01005(4) �0.0093(2)

5 1740.1895(1) 1740.1895(3) �0.0000(3) �0.01487(6) �0.0148(3)

6 2414.8970(2) 2414.898(5) �0.001(5) �0.02050(8) �0.019(5)

7 3187.4705(2) 3187.472(5) �0.002(5) �0.0268(1) �0.025(5)

8 4051.9430(3) 4051.943(5) �0.000(5) �0.0338(1) �0.034(5)

9 5001.9628(4) 5001.963(5) �0.000(5) �0.0414(2) �0.041(5)

10 6030.9202(5) 6030.921(5) �0.001(5) �0.0494(2) �0.049(5)

11 7132.0634(6) 7132.066(5) �0.003(5) �0.0578(2) �0.055(5)

12 8298.6014(6) 8298.600(5) 0.001(5) �0.0665(3) �0.068(5)

13 9523.7916(7) 9523.794(7) �0.002(7) �0.0754(3) �0.073(7)

14 10801.0121(9) 10801.008(9) 0.004(9) �0.0846(3) �0.089(9)

15 12123.819(1) 12123.83(1) �0.01(1) �0.0938(4) �0.08(1)

16 13485.990(1) 13485.99(1) �0.00(1) �0.1030(4) �0.10(1)
aThe two last columns show contributions to this energy from the QED effects: ΔEtheo

QED(J), predicted in our calculations, and ΔEexptl
QED(J), extracted

from the experimental data by subtracting our relativistic energies from the measured values given in column ΔEexptl(J). All entries in cm�1.

Figure 3. QED contributions to the rotational excitation energies at
v = 0. Comparison of the present theoretical calculations (open diamonds)
with the experimental data of ref 29. The left/right energy scale is for the
levels to the left/right from the vertical line. The extent of the vertical
bars shows the experimental uncertainties (listed in Table 5). The
theoretical uncertainties (not shown) are at least an order of magnitude
smaller than the experimental ones, except for J = 4 and J = 5, when they
are 5 times smaller.

Table 6. Vibrational Excitation Energies E(v,J = 0)� E(v = 0,
J = 0) for H2 and Their Differences with the Experimental
Values of Dabrowski19 (δexptl) and with the Best Previous
Theoretical Values by Wolniewicz26 (δWol)

a

v theory δexptl
b δWol

c

1 4161.1661(9) 0.03 �0.001(1)

2 8087.0026(17) 0.07 0.000(2)

3 11782.3908(25) 0.03 �0.001(3)

4 15250.3656(32) 0.06 �0.002(3)

5 18491.9296(37) 0.01 �0.002(4)

6 21505.7795(43) 0.00 �0.004(4)

7 24287.9152(47) 0.01 �0.004(5)

8 26831.0906(50) �0.07 �0.003(5)

9 29124.0404(52) �0.05 �0.004(5)

10 31150.3909(51) �0.08 �0.004(5)

11 32887.0983(49) �0.03 �0.004(5)

12 34302.1740(42) �0.03 �0.004(4)

13 35351.3145(31) �0.05 �0.003(3)

14 35973.2731(16) �0.11 0.000(2)
aAll energies in cm�1. bDabrowski19 estimates the uncertainty of the
measurements as 0.1 cm�1. cWolniewicz26 does not give uncertainties
for individual levels. He estimates overall accuracy as 0.001 cm�1. The
error estimation in this column comes only from the uncertainty of our
calculations.
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The error estimation of the obtained value is one standard
deviation of this fit.45,46 We can also compare our result for D2

with recent fully nonadiabatic relativistic calculations through
order α2 (including all recoil terms of the order of α2/μn)
performed by Bubin et al.45 For the energy difference of
rotationless v = 1 and v = 0 states of D2, these authors obtained

2993.6326(10) cm�1, in perfect agreement with our value
2993.6326(2) cm�1 obtained neglecting recoil terms. The
authors of ref 45 attributed a discrepancy of their value
with experimental results to the missing QED correction,
unknown when their work was published. In fact, when our
QED correction, amounting to �0.0155 cm�1, is added, a small

Table 7. Comparison of the Theoretical and Experimental Quadrupole Transition Energies in H2. δ is their difference and carries
the combined experimental/theoretical uncertainty. All energies in cm�1.

S0(J)

J theory experiment53 δ experiment29 δ

0 354.373 13(3) 354.373 50(40) �0.000 37(40) 354.373 3(2) �0.000 2(2)

1 587.032 02(4) 587.032 11(17) �0.000 09(17) 587.032 1(3) 0.000 0(3)

2 814.424 30(6) 814.424 73(8) �0.000 43(10) 814.424 9(2) �0.000 6(2)

3 1 034.670 68(8) 1 034.670 24(3) 0.000 44(9) 1 034.670 6(3) 0.000 1(3)

4 1 246.099 54(9) 1 246.098 11(17) 0.001 43(19) 1 246.100(5) 0.000(5)

5 1 447.280 93(11) 1 447.278 82(41) 0.002 11(42) 1 447.282(5) �0.002(5)

Q1(J) S1(J)

J theory experiment54 δ theory experiment54 δ

0 4497.8384(9) 4497.8391(2) �0.0007(9)

1 4155.2538(9) 4155.25469(8) �0.0009(9) 4712.9046(9) 4712.9054(2) �0.0008(9)

2 4143.4653(9) 4143.4660(3) �0.0007(9) 4917.0063(10) 4917.0069(3) �0.0006(10)

3 4125.8726(9) 4125.8739(4) �0.0013(10) 5108.4029(10) 5108.4040(6) �0.0011(12)

4 4102.5820(9) 4102.582(4) 0.000(4)

Q2(J) S2(J)

J theory experiment54 δ theory experiment54 δ

0 8406.3608(18) 8406.365(2) �0.004(3)

1 8075.3074(17) 8075.3114(6) �0.0040(18) 8604.2152(18) 8604.2189(8) �0.0037(20)

2 8051.9877(17) 8051.991(7) �0.003(7) 8785.5244(18) 8785.529(6) �0.005(6)

3 8017.1831(17) 8017.19(1) �0.01(1)

Table 8. Comparison of the Theoretical and Experimental Quadrupole Transition Energies in D2. δ is their difference and carries
the combined experimental/theoretical uncertainty. All energies in cm�1.

S0(J) S1(J)

J theory experiment55 δ theory experiment56 δ

0 179.06710(1) 179.068(2) �0.001(2) 3166.3605(2) 3166.3596(40) 0.0009(40)

1 297.53374(1) 297.533(3) 0.001(3) 3278.5231(2) 3278.5222(40) 0.0009(40)

2 414.64845(2) 414.648(2) 0.000(2) 3387.2626(2) 3387.2606(50) 0.0020(50)

3 529.90025(2) 529.900(4) 0.000(4) 3492.0937(2) 3492.0913(40) 0.0024(40)

4 642.80664(2) 642.806(4) 0.001(4)

5 752.91993(3) 752.923(20) �0.003(20)

6 859.83237(3) 859.845(20) �0.013(20)

O1(J) Q1(J)

J theory experiment56 δ theory experiment56 δ

1 2991.5070(2) 2991.5043(40) 0.0027(40)

2 2814.5500(2) 2814.5459(40) 0.0041(40) 2987.2934(2) 2987.2955(40) �0.0021(40)

3 2693.9733(2) 2693.9723(40) 0.0010(40) 2980.9894(2) 2980.9882(40) 0.0012(40)

4 2572.645 0(2) 2572.6428(50) 0.0022(50) 2972.6141(2) 2972.6128(50) 0.0013(50)
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disagreement of 0.004(2) cm�1, the same as shown in Table 4,
remains.

A detailed comparison of the theoretical rotational excitation
energies with a very recent experimental determination29 is
presented in Table 5. The error estimation assigned to the
theoretical energy differences has been computed in the same
fashion as the uncertainty for the individual levels, described
earlier. In general, the assumed theoretical uncertainties are
much smaller than the experimental ones. Very good agreement
between the theoretical and experimental values is observed for
all measured levels up to J = 16, except for J = 4, where a 4σ
unexplained discrepancy is present.

In the two last columns of Table 5, we also present the pure
QED contribution to each measured rotational level obtained by
subtracting the nonrelativistic and our relativistic energies from
either the total theoretical or the experimental values. The
comparison of the theoretical and experimental QED contribu-
tions is shown in Figure 3. The observed agreement is remarkably
good (except for J = 4), confirming the accuracy of both the
measurement and the calculations. To our knowledge, this
agreement represents the first observation of QED effects in a
molecular spectrum. Specifically, these effects include the elec-
tron self-energy (interaction of the electron with the vacuum
fluctuations of the electromagnetic field), the vacuum polariza-
tion (electron�positron virtual pair creation), and the retarda-
tion of the electron�electron interaction.9 The conventional
relativistic quantum mechanics based on the Dirac�Coulomb
(DC) or Dirac�Coulomb�Breit (DCB) equations31 neglects this
complicated physics. Had we assumed the presence of exactly
two electrons in the molecule and solved the DC or DCB
equations using the direct perturbation theory (DPT) expansion
in even powers of α,47,48 then all theoretical points in Figure 3
would have lain very close to the straight line E = 0. The deviation
from this line is a quantitative demonstration of QED contribu-
tion to the rotational excitation energies of H2 . It may be pointed
out in this context that due to the Brown�Ravenhall disease,49

the eigenenergies of the DC or DCB equations are not precisely
defined50 and have an intrinsic uncertainty on the order of α3,51

the same as the leading QED effects. Thus, when adding the α3

QED contribution to relativistic energies obtained using meth-
ods other than DPT, one should take special care to avoid double
counting.

Whereas the effects of QED are well seen in the rotational
spectrum, their influence on the bond length in H2 is very small.
The rotational constant B, defined as half of the smallest
rotational spacing, decreases only by about 8 � 10�6 in relative
terms, which leads to an increase of the H�H bond distance
(assumed to be proportional to B�1/2) by merely 3 � 10�6 Å.
One should note, however, that for very weakly bound dimers,
like e.g. He2, the QED effects may significantly affect the bond
length.52

It appears that the experimental pure vibrational excitation
energies (J = 0) have not beenmeasured with accuracy comparable
to that of pure rotational ones (v = 0) of ref 29. In Table 6, we
show a comparison of our values with the experimental data of
Dabrowski19 and with the theoretical values of Wolniewicz.26

The agreement in both cases is very good, although it should be
kept in mind that the accuracy of Dabrowski’s results is limited.
She estimates it as 0.1 cm�1 without referring to any specific part
of the spectrum. We observed, however, that for some high-lying
levels (i.e., the highest bound levels shown in Table 4 of ref 19),
her energies differ from ours by 0.2�0.4 cm�1, i.e., much more

than our estimated uncertainties. The excellent agreement
between ours and Wolniewicz’s results, seen in Table 6, is likely
due to the fact that the contribution of the two-electron QED
effects, neglected by Wolniewicz, is small for the presented
vibrational energy differences.

Some highly accurate values of theQ and S branch quadrupole
transition frequencies of H2 and D2 are available in the
literature53�56 and are compared with our results in Tables 7
and 8. Both for H2 and for D2 we observe now some disagree-
ments between theory and experimental results. The most
significant discrepancies occur for the S0(2) � S0(5) transitions
in H2 measured by Jennings and Brault.53 Their transition
energies differ from 5 up to 15 experimental σ from our values.
The reason for this discrepancy is not obvious to us.We speculate
that an explanationmay come from a possible underestimation of
higher-order nonadiabatic effects, which are larger for H2 than
D2. An alternative explanation, put forward for consideration by
Campargue,57 is a small pressure shift affecting the experimental
result. On the other hand, we observe good agreement of our
predictions with somewhat less accurate S0(J) transition energies
that can be obtained from very recent measurement by Salu-
mbides et al.29 [except for the S0(2) line related to a similar
exception noted in Table 5 for J = 4]. For the Q1 and S1
transitions, the discrepancies exceed the experimental error but
fit within the sum of the theoretical and experimental uncertain-
ties. Among the Q2 and S2 transitions, two lines (J = 1) do not
conform to the above description and show discrepancies
almost twice the size of the sum of these two uncertainties.
Campargue,57 on the basis of his own measurements and a
comparison with Rahn and Rosasco’s results,58 suggests that the
discrepancy in theQ1 branch may be due to the calibration of the
spectra of ref 54. What is more, we observe very good agreement
of theoretical line positions with the measurements by Ferguson
et al.59 for higher transitions (not shown in Tables): S4(0), S4(1),
and S5(1). The differences (and the experimental uncertainties)
are 0.0008(36), 0.0001(10), and 0.0014(200) cm�1, res-
pectively.

For D2 (see Table 8), we find general agreement with the
measurements of Jennings et al.55 and of McKellar and Oka.56

The differences δ between the experimental and theoretical
frequencies fit well within the experimental uncertainties of
several thousandths of cm�1. We observe, however, a dis-
crepancy with recently reported measurements60 of S1(0) and
S1(1) lines. The experimental values 3166.3620(2) cm�1 and
3278.5220(2) cm�1 differ from our predictions by several
combined experimental/theoretical uncertainties.

7. CONCLUSION

The accuracy of about 0.001 cm�1 for most of the dissociation
energies of rovibrational levels of H2 and isotopomers has been
achieved due to the recent progress made in two directions. The
first one enabled a complete treatment of the leading α3 QED
effects. In particular, an effective approach to calculating the
many-electron Bethe logarithm and mean values of singular
operators, like the Araki-Sucher term,43,44 has been developed
and is given in refs 27, 61 and 62. The second direction,
indispensable to reaching this accuracy, is the nonadiabatic
perturbation theory, NAPT,6,7,63 which enables a rigorous ap-
proach to the finite nuclear mass effects beyond the adiabatic
approximation. However, nonadiabatic contributions to the
relativistic and QED energies (the so-called recoil corrections)
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still remain to be evaluated. These corrections as well as the
higher-order nonadiabatic O (μn

�5/2), the complete α4 QED,
and the leading term in α5 correction have to be evaluated in
order to reach a 10�6 cm�1 level of accuracy, where the H2

spectrum becomes sensitive to uncertainties in the electron�
proton mass ratio and in the proton charge radius.64 One
may speculate that at this level of precision exotic forces
between hadrons carried by very weakly interacting sub-
electronvolt particles (WISPs) might also become spectro-
scopically observable.65
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